
1LLNL-PRES-2008671

Prepared by LLNL under Contract DE-AC52-07NA27344.
LLNL

Ascent Development Team2025/08/04

ATPESC 2025
Data Analysis and Visualization Track

Ascent: Flyweight In Situ Visualization and
Analysis for HPC Simulations

2LLNL-PRES-2008671

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344.
Lawrence Livermore National Security, LLC

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the
U.S. Department of Energy’s Office of Science and National Nuclear Security Administration,
responsible for delivering a capable exascale ecosystem, including software, applications, and
hardware technology, to support the nation’s exascale computing imperative.

https://upload.wikimedia.org/wikipedia/commons/f/fd/Lawrence_Livermore_National_Laboratory_logo.svg

3LLNL-PRES-2008671

• Introduction:
• In situ Visualization Concepts (10 min)
• Ascent Project Overview (15 min)

• Hands-on:
• Tutorial Exercises in cloud-hosted Jupyter Notebooks

Outline

4LLNL-PRES-2008671

The VisIt team develops open-source Visualization,
Analysis, and I/O tools

In-memory data
description, HPC I/O,
and shared schemas
for simulation data

exchange

File-based, scientific
data exchange library
for checkpoint restart
and visualization

Easy-to-use flyweight
in situ visualization
and analysis library
for HPC simulations

Turnkey HPC
application for
visualization and
analysis of simulation

data

Silo

5LLNL-PRES-2008671

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations
• Easy to use in-memory visualization and analysis

• Use cases: Making Pictures, Transforming Data, and Capturing Data

• Young effort, yet already supports most common visualization operations

• Provides a simple infrastructure to integrate custom analysis

• Provides C++, C, Python, and Fortran APIs

• Uses a flyweight design targeted at next-generation HPC
platforms
• Efficient distributed-memory (MPI) and many-core (CUDA, HIP, OpenMP)

execution

• Demonstrated scaling:
In situ filtering and ray tracing across 16,384 GPUs on LLNL's Sierra Cluster

• Has lower memory requirements than current tools

• Requires fewer dependencies than current tools (ex: no OpenGL)

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

http://ascent-dav.org/
http://ascent-dav.org/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent
https://github.com/Alpine-DAV/ascent
https://github.com/Alpine-DAV/ascent

6LLNL-PRES-2008671

Introduction to In Situ Processing Concepts

7LLNL-PRES-2008671

Scientific visualization tools transform, analyze, and
render mesh-based data from HPC simulations

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Visualization Tool

Transform, Analyze,
Render

Actions

8LLNL-PRES-2008671

Scientific visualization tools support a wide range of
use cases

Comparative Analysis

=
?

Presentation GraphicsVisual Debugging

Data Exploration

Quantitative Analysis

9LLNL-PRES-2008671

Scientific visualization tools support a wide range of
use cases

Comparative Analysis

=
?

Presentation GraphicsVisual Debugging

Data Exploration

Quantitative Analysis

These tools are used daily by scientists to
digest and understand HPC simulation results

10LLNL-PRES-2008671

Scientific visualization tools are used both post hoc
and in situ

Post Hoc

Simulation data is processed after the simulation is run using distinct
compute resources.

In Situ

Simulation data is processed while it is generated, sharing compute
resources with the simulation application.

11LLNL-PRES-2008671

Post Hoc visualization is the most widely used
paradigm to process simulation results

Visualization Application

Transform, Analyze, Render

…

Checkpoint/
Visualization

 File Sets

Mesh Data

Checkpoint/
Visualization

 File Sets

Mesh Data

Checkpoint/
Visualization

 File Sets

Mesh Data

Checkpoint/
Visualization

 File Sets

Mesh Data

ZZZZZZ

Simulation Application

Main Loop (1,000s to 10,000s of simulation cycles)

Physics Packages

𝑺(𝒕𝒏 + ∆𝒕) = 𝑭(𝑺(𝒕𝒏), ∆𝒕)

Simulation State

[Every N cycles]
Save state to file system

Actions

12LLNL-PRES-2008671

• In situ tools couple visualization and analysis
routines with the simulation application
(avoiding file system I/O)

• Pros:
• No or greatly reduced I/O vs post hoc processing
• Can access all simulation data
• Computational power is readily available
• Results are ready after simulation completes

• Cons:
• More difficult when lacking a priori knowledge of what

to visualize/analyze
• Increasing complexity
• Constraints (memory, network)

In situ processing expands the data we can access

ZZZZZZ

Simulation Application

Main Loop (1,000s to 10,000s of simulation cycles)

Physics Packages

𝑺(𝒕𝒏 + ∆𝒕) = 𝑭(𝑺(𝒕𝒏), ∆𝒕)

Simulation State

[Every M cycles]
Process In Situ

ActionsMesh Data

13LLNL-PRES-2008671

HPC Compute vs I/O speed ratios can favor in situ
processing

Advance N Cycles Save state to file system

Simulation Run Timeline for Post Hoc Processing

Advance M CyclesProcess In SituAdvance M CyclesProcess In SituAdvance M Cycles

Simulation Run Timeline for In Memory Processing

14LLNL-PRES-2008671

In transit is a flavor of in situ processing that can use
additional resources to improve runtime

Advance N Cycles Save state to file system

Simulation Run Timeline for Post Hoc Processing

Advance M CyclesProcess In SituAdvance M CyclesProcess In SituAdvance M Cycles

Simulation Run Timeline for In Memory Processing

Simulation Run Timeline for In Transit Processing

Advance M CyclesAdvance M Cycles Xfer

Process In Situ

XferAdvance M Cycles

Process In Situ

XferAdvance M Cycles

Process In Situ

15LLNL-PRES-2008671

There are many considerations and flavors of in situ
processing
Question: How deep does the rabbit hole go?

Answer: “A Terminology for In Situ Visualization and Analysis Systems”, H. Childs, et al.
https://cdux.cs.uoregon.edu/pubs/ChildsIJHPCA.pdf

https://cdux.cs.uoregon.edu/pubs/ChildsIJHPCA.pdf

16LLNL-PRES-2008671

We need to pass simulation mesh data and user
actions to our in situ visualization tool

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
Render

17LLNL-PRES-2008671

We need to pass simulation mesh data and user
actions to our in situ visualization tool

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
RenderQuestion 1: How do we pass simulation mesh data to Ascent?

18LLNL-PRES-2008671

• A variety of simulation codes leverage their own bespoke in-memory mesh data
models.

• Other tools leverage a range of mesh-focused toolkits, frameworks, and APIs
including: VTK, VTK-m, MFEM, SAMRAI, AMReX, (and many more …)

• A wide set of powerful analysis tools are mesh agnostic (NumPy, PyTorch, etc) and
recasting mesh data into these tools is a challenge

• A single full-fledged API will never cover all use cases across the ecosystem

HPC simulation applications implement and leverage
a wide range of mesh data structures and APIs

19LLNL-PRES-2008671

• A variety of simulation codes leverage their own bespoke in-memory mesh data
models.

• Other tools leverage a range of mesh-focused toolkits, frameworks, and APIs
including: VTK, VTK-m, MFEM, SAMRAI, AMReX, (and many more …)

• A wide set of powerful analysis tools are mesh agnostic (NumPy, PyTorch, etc) and
recasting mesh data into these tools is a challenge

• A single full-fledged API will never cover all use cases across the ecosystem

HPC simulation applications implement and leverage
a wide range of mesh data structures and APIs

Conduit Mesh Blueprint provides a strategy to describe and adapt mesh
data between a wide range of APIs

20LLNL-PRES-2008671

Ascent uses Conduit as a shared interface to
describe and accept simulation mesh data

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
Render

21LLNL-PRES-2008671

Conduit provides intuitive APIs for in-memory data
description and exchange
• Provides an intuitive API for in-memory data description

• Enables human-friendly hierarchical data organization

• Can describe in-memory arrays without copying

• Provides C++, C, Python, and Fortran APIs

• Provides common conventions for exchanging complex data
• Shared conventions for passing complex data (e.g. Simulation Meshes)

enable modular interfaces across software libraries and simulation
applications

• Provides easy to use I/O interfaces for moving and storing
data
• Enables use cases like binary checkpoint restart

• Supports moving complex data with MPI (serialization)

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

Website and GitHub Repo

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

22LLNL-PRES-2008671

The Conduit Blueprint library provides tools to share
common flavors of data with Conduit

Supports shared higher-level
conventions for using Conduit
to represent data

• Computational Meshes
• Multi-component Arrays
• One-to-many Relations
• Example Meshes
• Mesh Transforms

Blueprint

23LLNL-PRES-2008671

We will share several examples of Conduit
“Blueprint” meshes in this tutorial

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Example YAML Output An unstructured tet mesh

24LLNL-PRES-2008671

We need to pass simulation mesh data and user
actions to our in situ visualization tool

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
Render

Question 1: How do we pass simulation mesh data to Ascent?

Answer: Ascent accepts Conduit Mesh Blueprint data

25LLNL-PRES-2008671

We need to pass simulation mesh data and user
actions to our in situ visualization tool

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
RenderQuestion 2: How do we pass user actions to Ascent?

26LLNL-PRES-2008671

We need to pass simulation mesh data and user
actions to our in situ visualization tool

-
 action: "add_scenes"
 scenes:
 my_scene:
 plots:
 my_plot:
 type: "pseudocolor"
 field: "var1"

coordsets:
 coords:
 type: "explicit"
 values:
 x: [-1.0, 0.0, 0.0, 0.0, 1.0]
 y: [0.0, -1.0, 0.0, 1.0, 0.0]
 z: [0.0, 0.0, 1.0, 0.0, 0.0]
topologies:
 topo:
 type: "unstructured"
 coordset: "coords"
 elements:
 shape: "tet"
 connectivity: [0, 1, 3, 2, 4, 3, 1, 2]
fields:
 density:
 association: "element”
 topology: ”topo"
 values: [1.0, 2.0]

Mesh Data

Actions

Visualization Tool

Transform, Analyze,
Render

Question 2: How do we pass user actions to Ascent?

Answer: Ascent uses Conduit to create an Actions API
(available in C++, Fortran, Python, and YAML).

You will learn about Ascent’s API in the hands-on session.

27LLNL-PRES-2008671

Introduction to Ascent

28LLNL-PRES-2008671

Ascent is an easy-to-use flyweight in situ visualization
and analysis library for HPC simulations
• Easy to use in-memory visualization and analysis

• Use cases: Making Pictures, Transforming Data, and Capturing Data

• Young effort, yet already supports most common visualization operations

• Provides a simple infrastructure to integrate custom analysis

• Provides C++, C, Python, and Fortran APIs

• Uses a flyweight design targeted at next-generation HPC
platforms
• Efficient distributed-memory (MPI) and many-core (CUDA, HIP, OpenMP)

execution

• Demonstrated scaling:
In situ filtering and ray tracing across 16,384 GPUs on LLNL's Sierra Cluster

• Has lower memory requirements than current tools

• Requires fewer dependencies than current tools (ex: no OpenGL)

Visualizations created using Ascent

Extracts supported by Ascent

http://ascent-dav.org
https://github.com/Alpine-DAV/ascent

Website and GitHub Repo

http://ascent-dav.org/
http://ascent-dav.org/
http://ascent-dav.org/
https://github.com/Alpine-DAV/ascent
https://github.com/Alpine-DAV/ascent
https://github.com/Alpine-DAV/ascent

29LLNL-PRES-2008671

Ascent supports common visualization use cases

Clips

ContourThreshold SliceIso-Volume

Rendering

Devil Raymfem

[powered by]

Volume MeshPseudocolor

30LLNL-PRES-2008671

Ascent supports common analysis use cases

Extracts

Triggers

condition:
 entropy - history(entropy,
 relative_index = 1) > 0.5

Time Histories

expression: |
 du = gradient(field('velocity','u'))
 dv = gradient(field('velocity','v'))
 dw = gradient(field('velocity','w'))
 w_x = dw.y - dv.z
 w_y = dw.z - dv.x
 w_z = dw.x - dv.y
 vector(w_x,w_y,w_z)
name: vorticity

Derived Fields Lineouts and Spatial Binning

HDF5 FilesScalar Images Cinema
Databases

31LLNL-PRES-2008671

This success is the result of 10+ years of development since the Strawman Viz Proxy App.
Ascent owes its success to extensive work across the HPC ecosystem in key libraries:

VTK-m/Viskores, Conduit, Devil Ray, MFEM, RAJA, Umpire, and Kokkos.

• Ascent is being used for rendering and
data reduction on El Captain
• Ascent extracts and external surfaces

extracts are enabling post-hoc movies
using VisIt

• High demand and high hopes for in situ
data reduction to support AI/ML efforts

• Ascent was used with NASA FUN3D
INCITE runs on OLCF’s Frontier and will
be used as part of their ALCF Aurora
simulations

Ascent is being used at scale on the DOE’s exascale
supercomputers

Nielsen, E.J., Walden, A., Nastac, G., Wang, L., Jones, W., Lohry, M., Anderson, W.K., Diskin,
B., Liu, Y., Rumsey, C.L. and Iyer, P., 2024. Large-Scale Computational Fluid Dynamics
Simulations of Aerospace Configurations on the Frontier Exascale System. In AIAA
AVIATION FORUM AND ASCEND 2024 (p. 3866) https://doi.org/10.2514/6.2024-3866

Image from Mark Lohry, NASA Langley

https://doi.org/10.2514/6.2024-3866
https://doi.org/10.2514/6.2024-3866
https://doi.org/10.2514/6.2024-3866

32LLNL-PRES-2008671

We released Ascent 0.9.4 this July

Highlights:

• VTK-m 2.3 support

• Extracts: Adding ZFP HDF5 options and
adding Silo

• New logging and performance annotation
infrastructure & more runtime diagnostic
output

• Adding 2d camera view modes for
project_2d scalar renderer

• Affine transform filter to rotate, scale, reflect
and translate mesh coordinates

• Improvements to default scene cameras

• Improvements to project_2d, uniform grid
sampling, slicing, and simulated
radiography filters.

• Added camera frustum information of
rendered images to Ascent::info()

• Adding support for unstructured topologies
with mixed element types

• New external surfaces and point-based
sampling filters

• Unified file name formatting options

• H5Z-ZFP Compression Support (1D aware)

33LLNL-PRES-2008671

You will learn:

• How to use Conduit, the foundation of Ascent’s API

• How to get your simulation data into Ascent

• How to tell Ascent what pictures to render and what analysis to execute

Today we will teach you about Ascent’s API and
capabilities

34LLNL-PRES-2008671

Ascent tutorial examples are outlined in our docs and
included ready to run in Ascent installs

http://ascent-dav.org

http://ascent-dav.org/
http://ascent-dav.org/
http://ascent-dav.org/

35LLNL-PRES-2008671

Ascent tutorial examples are outlined in our docs and
included ready to run in Ascent installs

▪ http://ascent-dav.org

▪ Click on “Tutorial”

36LLNL-PRES-2008671

The publish(), execute(), and info() methods take Conduit trees as an argument.

Ascent’s interface provides five top-level functions

• open() / close()
• Initialize and finalize an Ascent instance

• publish()
• Pass your simulation data to Ascent

• execute()
• Tell Ascent what to do

• info()
• Ask for details about Ascent’s last operation

37LLNL-PRES-2008671

Conduit provides intuitive APIs for in-memory data
description and exchange
• Provides an intuitive API for in-memory data description

• Enables human-friendly hierarchical data organization

• Can describe in-memory arrays without copying

• Provides C++, C, Python, and Fortran APIs

• Provides common conventions for exchanging complex data
• Shared conventions for passing complex data (e.g. Simulation Meshes)

enable modular interfaces across software libraries and simulation
applications

• Provides easy to use I/O interfaces for moving and storing
data
• Enables use cases like binary checkpoint restart

• Supports moving complex data with MPI (serialization)

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

Hierarchical in-memory data description

Conventions for sharing in-memory mesh data

Website and GitHub Repo

http://software.llnl.gov/conduit
http://github.com/llnl/conduit

38LLNL-PRES-2008671

Learning Ascent equates to learning how to construct and pass Conduit trees
that encode your data and your expectations.

Ascent uses Conduit to provide a flexible and
extendable API

• Conduit underpins Ascent’s support for C++, C, Python, and Fortran interfaces

• Conduit also enables using YAML to specify Ascent actions

• Conduit’s zero-copy features help couple existing simulation data structures

• Conduit Blueprint provides a standard for how to present simulation meshes

39LLNL-PRES-2008671

To start, let’s look at the Ascent “First Light” Example
in C++
• https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

This code generates an example mesh

Instrument your “main” loop or similar function
with access to evolving simulation state

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

40LLNL-PRES-2008671

To start, let’s look at the Ascent “First Light” Example
in C++

Create an Ascent instance and set it up

Now Ascent has access to our mesh data

• https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

41LLNL-PRES-2008671

To start, let’s look at the Ascent “First Light” Example
in C++
• https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Create a tree that describes the actions
we want Ascent to do

Equivalent YAML Description

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

42LLNL-PRES-2008671

To start, let’s look at the Ascent “First Light” Example
in C++
• https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

Tell Ascent to execute these actions

Rendered Result!

https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html
https://ascent.readthedocs.io/en/latest/Tutorial_Intro_First_Light.html

43LLNL-PRES-2008671

Ascent’s interface provides five composable building
blocks to users

Scenes
(Render Pictures)

Pipelines
(Transform Data)

Triggers
(Direct Actions)

Extracts
(Capture Data)

Queries
(Ask Questions)

44LLNL-PRES-2008671

NOTE:

• VPNs or firewalls may block access to
general AWS IP addresses and ports

• You may need to disconnect from VPN or
request a firewall exemption

• LLNL attendees, you can use the EOR
process: https://cspservices.llnl.gov/eor/

For the reminder of the tutorial, we will run the Ascent
Tutorial examples using Jupyter Notebooks

https://cspservices.llnl.gov/eor/

45LLNL-PRES-2008671

You can run our tutorial examples Jupyter Lab via
Docker

Start here:
https://www.ascent-dav.org/tutorial/

https://www.ascent-dav.org/tutorial/
https://www.ascent-dav.org/tutorial/
https://www.ascent-dav.org/tutorial/

46LLNL-PRES-2008671

Ascent Actions and Runtime Aspects

47LLNL-PRES-2008671

Principles of the Ascent Actions Interface

• User API is YAML or Conduit (C, C++, Fortran, & Python)

• Provides well defined building blocks:
 Scenes, Pipelines, Extracts, Queries, Triggers

• Uses Hierarchical description linked using unique names

• Aims for a concise set of params for simple cases
• Examples:

- Mesh plot only requires a topology name if there are multiple topologies
present
- Azimuth, Elevation, and Zoom provide intuitive way to adjust default
camera

• Supports optional parameters for complex cases
• Example: Detailed Camera parameters

48LLNL-PRES-2008671

Actions YAML Examples

49LLNL-PRES-2008671

Actions YAML Examples

50LLNL-PRES-2008671

Actions YAML Examples

51LLNL-PRES-2008671

Actions YAML Examples

52LLNL-PRES-2008671

Actions YAML Examples

53LLNL-PRES-2008671

Principles of the Ascent Actions Interface

• Blueprint naturally supports multiple topologies with complex domain
decompositions

• All Filters must support domain-decomposed meshes (including empty cases)

• VTK-m, Devil Ray, and RAJA are used for Device (GPU) Execution

• Provides an expression language (DSL) that underpins Queries, Triggers, and can be
used for filter parameters

• Data Flow Networks are used for execution planning and execution
• Filter inputs are arbitrary
• Intermediate results are tracked and released when they are no longer needed
• Creative execution supports JIT expressions (prototype / limited cases)

• Filters can request data in several forms:
• Conduit Blueprint / LOR Conduit Blueprint (uses MFEM) / VTK-m / Devil Ray

54LLNL-PRES-2008671

	Main
	Slide 1: Ascent: Flyweight In Situ Visualization and Analysis for HPC Simulations
	Slide 2: Acknowledgements
	Slide 3: Outline
	Slide 4
	Slide 5: Ascent is an easy-to-use flyweight in situ visualization and analysis library for HPC simulations
	Slide 6: Introduction to In Situ Processing Concepts
	Slide 7: Scientific visualization tools transform, analyze, and render mesh-based data from HPC simulations
	Slide 8: Scientific visualization tools support a wide range of use cases
	Slide 9: Scientific visualization tools support a wide range of use cases
	Slide 10: Scientific visualization tools are used both post hoc and in situ
	Slide 11: Post Hoc visualization is the most widely used paradigm to process simulation results
	Slide 12: In situ processing expands the data we can access
	Slide 13: HPC Compute vs I/O speed ratios can favor in situ processing
	Slide 14: In transit is a flavor of in situ processing that can use additional resources to improve runtime
	Slide 15: There are many considerations and flavors of in situ processing
	Slide 16: We need to pass simulation mesh data and user actions to our in situ visualization tool
	Slide 17: We need to pass simulation mesh data and user actions to our in situ visualization tool
	Slide 18: HPC simulation applications implement and leverage a wide range of mesh data structures and APIs
	Slide 19: HPC simulation applications implement and leverage a wide range of mesh data structures and APIs
	Slide 20: Ascent uses Conduit as a shared interface to describe and accept simulation mesh data
	Slide 21: Conduit provides intuitive APIs for in-memory data description and exchange
	Slide 22: The Conduit Blueprint library provides tools to share common flavors of data with Conduit
	Slide 23: We will share several examples of Conduit “Blueprint” meshes in this tutorial
	Slide 24: We need to pass simulation mesh data and user actions to our in situ visualization tool
	Slide 25: We need to pass simulation mesh data and user actions to our in situ visualization tool
	Slide 26: We need to pass simulation mesh data and user actions to our in situ visualization tool
	Slide 27: Introduction to Ascent
	Slide 28: Ascent is an easy-to-use flyweight in situ visualization and analysis library for HPC simulations
	Slide 29: Ascent supports common visualization use cases
	Slide 30: Ascent supports common analysis use cases
	Slide 31: Ascent is being used at scale on the DOE’s exascale supercomputers
	Slide 32: We released Ascent 0.9.4 this July
	Slide 33: Today we will teach you about Ascent’s API and capabilities
	Slide 34: Ascent tutorial examples are outlined in our docs and included ready to run in Ascent installs
	Slide 35: Ascent tutorial examples are outlined in our docs and included ready to run in Ascent installs
	Slide 36: Ascent’s interface provides five top-level functions
	Slide 37: Conduit provides intuitive APIs for in-memory data description and exchange
	Slide 38: Ascent uses Conduit to provide a flexible and extendable API
	Slide 39: To start, let’s look at the Ascent “First Light” Example in C++
	Slide 40: To start, let’s look at the Ascent “First Light” Example in C++
	Slide 41: To start, let’s look at the Ascent “First Light” Example in C++
	Slide 42: To start, let’s look at the Ascent “First Light” Example in C++
	Slide 43: Ascent’s interface provides five composable building blocks to users
	Slide 44: For the reminder of the tutorial, we will run the Ascent Tutorial examples using Jupyter Notebooks
	Slide 45: You can run our tutorial examples Jupyter Lab via Docker
	Slide 46: Ascent Actions and Runtime Aspects
	Slide 47: Principles of the Ascent Actions Interface
	Slide 48: Actions YAML Examples
	Slide 49: Actions YAML Examples
	Slide 50: Actions YAML Examples
	Slide 51: Actions YAML Examples
	Slide 52: Actions YAML Examples
	Slide 53: Principles of the Ascent Actions Interface
	Slide 54

