
extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

DAOS Usage and Application

Kevin Harms

Argonne National Laboratory – Leadership Computing

http://extremecomputingtraining.anl.gov/

What is DAOS

• Distributed Asynchronous Object Storage (DAOS) is an open-source
software-defined high-performance scalable key-value-array store
providing support for multiple data models.

• DAOS provides functionality similar to that of Parallel File Systems
(PFS) such as Lustre or Spectrum Scale (GPFS) but is not built on
files but objects.

• Provides several APIs for storing and retrieving data, most
importantly, POSIX.

https://daos.io

Why DAOS

• Extreme scalability
• No synchronous read-modify-write
• No locking
• No client tracking or client recovery
• Multi-version concurrency control
• Not all POSIX semantics are preserved

• https://docs.daos.io/latest/user/filesystem/?h=posix#posix-compliance

• Maximum performance
• Specifically designed to take advantage of NVMe and Storage Class Memory

(SCM)

Aurora Storage Architecture

Slingshot
Fabric

Existing storage systems

Lustre Performance:
Flare – 100 PB @ 650 GB/s
Eagle – 100 PB @ 650 GB/s

Gateway nodes

System & Access
Nodes

•1024 DAOS server nodes, each with:
• 16 x 512GB persistent memory
• 16 x 15.3TB NVMe drives
• 2 x HPE Slingshot NICs
• Dual CPU with 512 GB RAM

The Aurora open-source storage strategy strongly favors cooperation:

▪ DAOS: object storage system for in-fabric high-performance platform
storage (the first of its kind on a DOE leadership system!)

▪ Lustre: parallel file systems for facility-wide access and data sharing
Namespace integration will make it easier for users to manage data.

Aurora Network Architecture

8 1

• Increased DAOS inter-group bandwidth
• Support rebuilding and inter-server communication
• Prevent DAOS server traffic interfering with application communication

• Increased bandwidth to service group
• Support off-cluster access and data-movement to other storage systems

166

• User space DFS library with an API like
POSIX.

• Requires application changes (new API)
• Kernel Bypass, no client cache

• DFUSE plugin to support POSIX API
• No application changes
• Fuse Kernel Supports data (wb and ra) &

metadata caching (stat, open, etc.)

• DFUSE + IL
• No application changes, runtime

LD_PRELOAD
• Kernel Bypass for IO and metadata

I/O Architecture

Application / Framework

DAOS library (libdaos)

DFS - DAOS File System (libdfs)

Interception Library (libpil4dfs)

dfuse

Single process address space

DAOS Storage Engine

RPC RDMA

Ke
rn

el
 B

yp
as

s

DAOS Pools

• Pools
• A system may contain hundreds
• Physically allocated storage

• Decided at pool creation time
• Equal storage allocated per storage target
• Contains Access Control Lists (ACLs)
• Contains default parameters for containers

DAOS Containers

• Containers
• A pool may contain thousands of containers
• Basic unit of storage from user perspective
• Containers have a type (POSIX, HDF5, pyDAOS, SEGY, …)
• POSIX containers can have many millions of

files/directory/data
• Configuration for object class/redundancy, checksums,

cell size, etc.
• Many options
• Determines distribution across pool

• ACLs
• Determine access rights, not POSIX permissions

DAOS Data Model

Pool

Container DAOS Container

datadatadatafile

dir

datadatafile

dir

datadatadatadatafile

dir

root

Encapsulated POSIX Namespace File-per-process

DAOS Container

datadatadatadatafile

datadatadatadatafile

datadatadatadatafile

datadatadatadatafile

DAOS Container

datadatadatadataset

group

datadatadataset

group

datadatadatadatadataset

group

group

HDF5 « File » Key-value store

Graph

DAOS Container

valuekey

valuekey

valuekey

valuekey valuekey

DAOS Container

node

node

node

node
node

node

DAOS Container

Columnar Database

key

key

key

key

Value

Value

Value

Value

Value

Value

Value

Value

Object
dkey

akey akey

dkey
akey akey

Object
dkey

akey akey

dkey
akey akey

Container

Object
dkey

akey akey

dkey
akey akey

Object
dkey

akey akey

dkey
akey akey

Examples

Aurora Pools and Containers

• ALCF will assign pools to projects
• Large allocations will receive pools with ~80% of

available targets
• Number of targets proportional to performance

• Pools are a physical allocation (guaranteed
allocation of storage)

• Users of the project will be given full rights to the pool
• Users create their own containers with their desired

settings
• The initial pool will have the suggested defaults from ALCF

• POSIX containers must be mounted by the user
• dfuse started by the user

• Lustre/DAOS integration should allow easy POSIX
container access
• Access DAOS POSIX containers via existing Lustre

mount points

Containers

• User created

• Ability to select

⏤Data protection

▪ Checksums

▪ Redundancy factor

⏤EC Cell size

⏤Features

▪ compression

▪ encryption

⏤Security

▪ ACLs

APIs for POSIX Containers

• POSIX
• Provides POSIX API but not full POSIX semantics
• Most POSIX semantics supported

• MPI-IO
• Native DAOS backend

• DFS (DAOS File System)
• POSIX-like API
• Provides more control over file/object configuration

Further Reading

• https://daos.io
• https://docs.daos.io/v2.6/

• https://docs.daos.io/v2.6/user/workflow/

• https://docs.alcf.anl.gov/aurora/data-management/daos/daos-
overview/

• https://github.com/daos-stack/daos
• README.md contain information about structure and design

https://daos.io/
https://daos.io/
https://docs.daos.io/v2.6/
https://docs.daos.io/v2.6/
https://docs.daos.io/v2.6/user/workflow/
https://docs.daos.io/v2.6/user/workflow/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://github.com/daos-stack/daos
https://github.com/daos-stack/daos
https://github.com/daos-stack/daos
https://github.com/daos-stack/daos

Hands-on

DAOS @ ALCF

• daos_user
• ~128 servers
• Primary storage system where projects that request storage are allocated
• Peak performance around ~4 TB/s with EC16+2

• daos_perf
• ~256 servers
• Experimental storage system – used for testing with certain users

• Some risk to using
• Pools only allocated here if you’re working with ALCF

Setup

• ATPESC2025
• DAOS pool created for all attendees
• Within “daos_user” instance
• All attendees have access, only put data within that you are willing to share

with everyone
• Someone could also delete your data

• Container
• Create your own container, name with your user name so it is clear

• Using “daos-test” just invites issues with confusion for other attendees

Container Creation

• From the login node…
• Load modules

• module use /soft/modulefiles
• module load daos/base

• Check the pool is accessible
• daos pool query ATPESC2025

• Create a container
• daos cont create --type=POSIX --dir-oclass=RP_3G1 --file-oclass=EC_16P2GX --

chunk-size=2097152 --
properties=rd_fac:2,cksum:crc32,cksum_size:131072,srv_cksum:on ATPESC2025
${USER}_cont

• daos cont query ATPESC2025 ${USER}_cont

harms@aurora-uan-0009:~> daos cont query ATPESC2025 ${USER}_cont
 Container UUID : 03081c8f-a34d-4888-9f05-e0c6bc526f20
 Container Label : harms_cont
 Container Type : POSIX
 Pool UUID : 23afd63a-9571-43d1-9cf4-03b55eaa7141
 Container redundancy factor : 2
 Number of open handles : 1
 Latest open time : 0x20353e8d42cc0000 (2025-08-06 20:11:12.463208448 +0000 UTC)
 Latest close/modify time : 0x20353e8d59800000 (2025-08-06 20:11:12.4870144 +0000 UTC)
 Number of snapshots : 0
 Object Class : UNKNOWN
 Dir Object Class : RP_3G1
 File Object Class : EC_16P2GX
 Chunk Size : 2.0 MiB

Mount DAOS (Login)

• Mount DAOS container
• mkdir $HOME/${USER}_cont
• dfuse --disable-caching $HOME/${USER}_cont ATPESC2025 ${USER}_cont
• mount | grep $USER
• ls $HOME/${USER}_cont
• touch $HOME/${USER}_cont/this_is_daos

• Unmount DAOS container (optional)
• fusermount3 –u $HOME/${USER}_cont
• ls $HOME/${USER}_cont

NOTE:
You only did this on one UAN

Setup Container

• Clone the example job scripts and code to your $HOME
• git clone https://github.com/radix-io/hands-on.git

• Copy examples into your container
• cp -R $HOME/hands-on/daos $HOME/${USER}_cont/.
• ls $HOME/${USER}_cont
• mount | grep $USER

• Modify the job script(s) if you wish to point to your own application

Job Script

• qsub must include the --filesystems=daos_user_fs
• This tells the prologue to start the appropriate daos agent process

• Load the DAOS module
• launch-dfuse.sh

• This will launch ”dfuse” on all the jobs compute nodes
• dfuse is the userspace component of Linux FUSE which connects to DAOS servers
• This will mount your specific container at a known location

• Running mpiexec must use the ‘--no-vni’ option
• This enables the DAOS client to talk the DAOS servers

• Clean-up of the mount point is handled by the epilogue of the job script
• vi -R $HOME/hands-on/daos/job-posix.sh

Show Job Script

Test Cases

• Simple write/read tests coded different ways which are all compatible and
all use a POSIX container

• Assumes target data file is in the root of the container
• Note about format

• Binary file
• repeated

• small header
• data “frame”

• Can change the size of the data written by modifying src/array.h
• adjusting the XDIM and YDIM -> I/O request size and file size increased
• ITER -> increase the file size
• cd $HOME/${USER}_cont/daos/src && make clean && make

Run the test

• Submit the job
• qsub -q ATPESC -v

DAOS_POOL=ATPESC2025,DAOS_CONT=${USER}_cont
$HOME/hands-on/daos/job-posix.sh

• qstat -u $USER
• tail -f job-posix.sh.[eo]*
• ls -l $HOME/${USER}_cont

write
total time; 0.029693 second
data size: 3 KiB
total size: 141 KiB
BW: 4.640393 MiB/s
IOps 2.694244 Kops
read
total time; 0.003773 second
data size: 3 KiB
total size: 141 KiB
BW: 36.516270 MiB/s
IOps 21.201597 Kops

extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: DAOS Usage and Application
	Slide 2: What is DAOS
	Slide 3: Why DAOS
	Slide 4: Aurora Storage Architecture
	Slide 5: Aurora Network Architecture
	Slide 6
	Slide 7: DAOS Pools
	Slide 8: DAOS Containers
	Slide 9: DAOS Data Model
	Slide 10: Aurora Pools and Containers
	Slide 11: APIs for POSIX Containers
	Slide 12: Further Reading
	Slide 13: Hands-on
	Slide 14: DAOS @ ALCF
	Slide 15: Setup
	Slide 16: Container Creation
	Slide 17: Mount DAOS (Login)
	Slide 18: Setup Container
	Slide 19: Job Script
	Slide 20: Show Job Script
	Slide 21: Test Cases
	Slide 22: Run the test
	Slide 23: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

