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What is DAOS

• Distributed Asynchronous Object Storage (DAOS) is an open-source 
software-defined high-performance scalable key-value-array store 
providing support for multiple data models.

• DAOS provides functionality similar to that of Parallel File Systems 
(PFS) such as Lustre or Spectrum Scale (GPFS) but is not built on 
files but objects.

• Provides several APIs for storing and retrieving data, most 
importantly, POSIX.

https://daos.io



Why DAOS

• Extreme scalability
• No synchronous read-modify-write
• No locking
• No client tracking or client recovery
• Multi-version concurrency control
• Not all POSIX semantics are preserved

• https://docs.daos.io/latest/user/filesystem/?h=posix#posix-compliance

• Maximum performance
• Specifically designed to take advantage of NVMe and Storage Class Memory 

(SCM)



Aurora Storage Architecture
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System & Access
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•1024 DAOS server nodes, each with:
• 16 x 512GB persistent memory
• 16 x 15.3TB NVMe drives
• 2 x HPE Slingshot NICs
• Dual CPU with 512 GB RAM

The Aurora open-source storage strategy strongly favors cooperation:

▪ DAOS: object storage system for in-fabric high-performance platform 
storage (the first of its kind on a DOE leadership system!)

▪ Lustre: parallel file systems for facility-wide access and data sharing
Namespace integration will make it easier for users to manage data.



Aurora Network Architecture
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• Increased DAOS inter-group bandwidth
• Support rebuilding and inter-server communication
• Prevent DAOS server traffic interfering with application communication

• Increased bandwidth to service group
• Support off-cluster access and data-movement to other storage systems
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• User space DFS library with an API like 
POSIX.

• Requires application changes (new API)
• Kernel Bypass, no client cache

• DFUSE plugin to support POSIX API
• No application changes
• Fuse Kernel Supports data (wb and ra) & 

metadata caching (stat, open, etc.)

• DFUSE + IL
• No application changes, runtime 

LD_PRELOAD
• Kernel Bypass for IO and metadata

I/O Architecture

Application / Framework

DAOS library (libdaos)

DFS - DAOS File System (libdfs)

Interception Library (libpil4dfs)

dfuse

Single process address space

DAOS Storage Engine

RPC RDMA
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DAOS Pools

• Pools
• A system may contain hundreds
• Physically allocated storage

• Decided at pool creation time
• Equal storage allocated per storage target
• Contains Access Control Lists (ACLs)
• Contains default parameters for containers



DAOS Containers

• Containers
• A pool may contain thousands of containers
• Basic unit of storage from user perspective
• Containers have a type (POSIX, HDF5, pyDAOS, SEGY, …)
• POSIX containers can have many millions of 

files/directory/data
• Configuration for object class/redundancy, checksums, 

cell size, etc.
• Many options
• Determines distribution across pool

• ACLs
• Determine access rights, not POSIX permissions



DAOS Data Model
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Aurora Pools and Containers

• ALCF will assign pools to projects
• Large allocations will receive pools with ~80% of 

available targets
• Number of targets proportional to performance

• Pools are a physical allocation (guaranteed 
allocation of storage)

• Users of the project will be given full rights to the pool
• Users create their own containers with their desired 

settings
• The initial pool will have the suggested defaults from ALCF

• POSIX containers must be mounted by the user
• dfuse started by the user

• Lustre/DAOS integration should allow easy POSIX 
container access
• Access DAOS POSIX containers via existing Lustre 

mount points

Containers

• User created

• Ability to select

⏤Data protection

▪ Checksums

▪ Redundancy factor

⏤EC Cell size

⏤Features

▪ compression

▪ encryption

⏤Security

▪ ACLs



APIs for POSIX Containers

• POSIX
• Provides POSIX API but not full POSIX semantics
• Most POSIX semantics supported

• MPI-IO
• Native DAOS backend

• DFS (DAOS File System)
• POSIX-like API
• Provides more control over file/object configuration



Further Reading

• https://daos.io
• https://docs.daos.io/v2.6/

• https://docs.daos.io/v2.6/user/workflow/

• https://docs.alcf.anl.gov/aurora/data-management/daos/daos-
overview/

• https://github.com/daos-stack/daos
• README.md contain information about structure and design
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Hands-on



DAOS @ ALCF

• daos_user
• ~128 servers
• Primary storage system where projects that request storage are allocated
• Peak performance around ~4 TB/s with EC16+2

• daos_perf
• ~256 servers
• Experimental storage system – used for testing with certain users

• Some risk to using
• Pools only allocated here if you’re working with ALCF



Setup

• ATPESC2025
• DAOS pool created for all attendees
• Within “daos_user” instance
• All attendees have access, only put data within that you are willing to share 

with everyone
• Someone could also delete your data

• Container
• Create your own container, name with your user name so it is clear

• Using “daos-test” just invites issues with confusion for other attendees



Container Creation

• From the login node…
• Load modules

• module use /soft/modulefiles
• module load daos/base

• Check the pool is accessible
• daos pool query ATPESC2025

• Create a container
• daos cont create --type=POSIX --dir-oclass=RP_3G1 --file-oclass=EC_16P2GX --

chunk-size=2097152 --
properties=rd_fac:2,cksum:crc32,cksum_size:131072,srv_cksum:on ATPESC2025 
${USER}_cont

• daos cont query ATPESC2025 ${USER}_cont

harms@aurora-uan-0009:~> daos cont query ATPESC2025 ${USER}_cont
 Container UUID        : 03081c8f-a34d-4888-9f05-e0c6bc526f20            
 Container Label       : harms_cont                         
 Container Type        : POSIX                            
 Pool UUID          : 23afd63a-9571-43d1-9cf4-03b55eaa7141            
 Container redundancy factor : 2                              
 Number of open handles    : 1                              
 Latest open time       : 0x20353e8d42cc0000 (2025-08-06 20:11:12.463208448 +0000 UTC)
 Latest close/modify time   : 0x20353e8d59800000 (2025-08-06 20:11:12.4870144 +0000 UTC) 
 Number of snapshots     : 0                              
 Object Class         : UNKNOWN                           
 Dir Object Class       : RP_3G1                           
 File Object Class      : EC_16P2GX                          
 Chunk Size          : 2.0 MiB 



Mount DAOS (Login)

• Mount DAOS container
• mkdir $HOME/${USER}_cont
• dfuse --disable-caching $HOME/${USER}_cont ATPESC2025 ${USER}_cont 
• mount | grep $USER
• ls $HOME/${USER}_cont
• touch $HOME/${USER}_cont/this_is_daos

• Unmount DAOS container (optional)
• fusermount3 –u $HOME/${USER}_cont 
• ls $HOME/${USER}_cont

NOTE:
You only did this on one UAN



Setup Container

• Clone the example job scripts and code to your $HOME
• git clone https://github.com/radix-io/hands-on.git

• Copy examples into your container
• cp -R $HOME/hands-on/daos $HOME/${USER}_cont/.
• ls $HOME/${USER}_cont
• mount | grep $USER

• Modify the job script(s) if you wish to point to your own application



Job Script

• qsub must include the --filesystems=daos_user_fs
• This tells the prologue to start the appropriate daos agent process

• Load the DAOS module
• launch-dfuse.sh

• This will launch ”dfuse” on all the jobs compute nodes
• dfuse is the userspace component of Linux FUSE which connects to DAOS servers
• This will mount your specific container at a known location

• Running mpiexec must use the ‘--no-vni’ option
• This enables the DAOS client to talk the DAOS servers

• Clean-up of the mount point is handled by the epilogue of the job script
• vi -R $HOME/hands-on/daos/job-posix.sh



Show Job Script



Test Cases

• Simple write/read tests coded different ways which are all compatible and 
all use a POSIX container

• Assumes target data file is in the root of the container
• Note about format

• Binary file
• repeated

• small header
• data “frame”

• Can change the size of the data written by modifying src/array.h
• adjusting the XDIM and YDIM -> I/O request size and file size increased
• ITER -> increase the file size
• cd $HOME/${USER}_cont/daos/src && make clean && make



Run the test

• Submit the job
• qsub -q ATPESC -v 

DAOS_POOL=ATPESC2025,DAOS_CONT=${USER}_cont 
$HOME/hands-on/daos/job-posix.sh

• qstat -u $USER
• tail -f job-posix.sh.[eo]*
• ls -l $HOME/${USER}_cont

write
total time; 0.029693 second
data size: 3 KiB
total size: 141 KiB
BW: 4.640393 MiB/s
IOps 2.694244 Kops
read
total time; 0.003773 second
data size: 3 KiB
total size: 141 KiB
BW: 36.516270 MiB/s
IOps 21.201597 Kops
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