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Understanding Uncertainty in Scientific Computing

What is Uncertainty?
• Uncertainty represents the degree of confidence, or lack thereof, in data, 

models, or predictions.
• It arises from:

• Incomplete data
• Approximate models
• Measurement noise
• Simulation variability

Types of Uncertainty
• Aleatoric (Data-driven): Inherent randomness in the system (e.g., noise).
• Epistemic (Model-driven): Uncertainty due to limited knowledge or 

approximation errors (e.g., neural network predictions)
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Agenda 

• Accelerating Uncertainty Visualization with 
Deep Learning

• Level-set positional uncertainty
• Surface boxplots  

• Visualizing Uncertainty in Deep Learning-
Based Particle Tracing

• Uncertainty-Aware Neural Pathline Tracing
• Uncertainty tube visualization

Visualization of positional uncertainty of 
level sets for a wind temperature dataset 

[Han et al. 2022] 
Surface Boxplots 

[Genton et al. 2014] 

Visualization of particle tracing neural 
network uncertainty [under review]
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Part 1: Deep Learning to Accelerate Uncertainty 
Visualization

• Positional Uncertainty of Level Sets for Ensemble Simulations
Collaborated with Tushar Athawale1, David Pugmire1, Chris R Johnson2

• Surface Boxplots for Ensemble Simulations
Collaborated with Tushar Athawale1, Jixian Li2, Chris R Johnson2

1. Oak Ridge National Laboratory 2. Scientific Computing and Imaging Institute

http://extremecomputingtraining.anl.gov/
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Uncertainty of Ensembles: Positional Uncertainty of Level Sets

• Level sets (isosurfaces) represent important 
features in scalar fields

• In ensembles, level set positions vary across 
members

• Positional uncertainty: how likely is the 
isosurface to pass through a voxel?

• Traditional method: Probabilistic Marching 
Cubes (PMC)

• Uses Monte Carlo sampling 
• Very expensive!

The level-set crossing probabilities for temperature = 0

The ensemble means of the 
temperature field from climate 

simulations
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Probabilistic Marching Cubes (PMC): Use Monte Carlo Sampling

M ensemble members
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Probabilistic Marching Cubes (PMC): Use Monte Carlo Sampling
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M ensemble members
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Means:

Covariance Matrix:

  

       Where  

𝜇 = [𝜇0, 𝜇1, 𝜇2, 𝜇3]

𝐶𝑜𝑣𝑖,𝑗 =
1

𝑀 − 1

𝑀

∑
1

(𝑦𝑚
𝑖   − 𝜇𝑖)(𝑦𝑚

𝑗 − 𝜇𝑗)

𝑖, 𝑗 = 0, 1, 2, 3

Drawing r samples from a multivariate Gaussian distribution

LCP if a level set passes through k samples𝑝 =
𝑘
𝑟

 



extremecomputingtraining.anl.gov

Accelerating PMC with Deep Learning 

• Goal: replace Monte Carlo sampling with a fast neural prediction
• Predict Level-Crossing Probability (LCP) for ensemble datasets
• Key idea: 

• Inputs: mean, variance, isovalue 
• Output: LCP (probability that the level set crosses a voxel)

• One training sample represents one grid cell with a one-dimensional vector of 
size 16

[𝜇0, 𝜇1, 𝜇2, 𝜇3, 𝜎2
0 , 𝜎2

1 , 𝜎2
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3 , 𝐶𝑜𝑣0,1, 𝐶𝑜𝑣0,2, 𝐶𝑜𝑣0,3, 𝐶𝑜𝑣1,2, 𝐶𝑜𝑣1,3, 𝐶𝑜𝑣2,3,  𝑠,  𝑝]

Means
(vector_mean)

Variances and Covariance
(vector_cov)

isovalue 
(vector_iso)

LCP
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Training Data Generation 

• Training samples are generated from PMC on time-varying ensemble datasets 

… …Ensemble Members

Training Prediction
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Network Architecture 
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Datasets 

• Wind [240 x 121]:  
• 45 time steps, 15 members for each time step 
• 17 time steps for training 

• Red Sea [500 x 500]: 
• 60 time steps, 50 members for each time step 
• 10 time steps for training 

(a) Visualization of level-set corssing 
probability for temperature in Wind 

dataset at time step 22 with iso-value 
0.8

(b) Visualization of level-set corssing 
probability for velocity in Red Sea 

dataset at time step 51 with iso-value 
0.1
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Results: Predicted LCPs are Indistinguishable from the Ground 
Truth

Ground Truth Model Predicted

Visualizations of the level-set crossing probability for isovalue 0.1 in the Red Sea dataset.
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Results: Parallel Computation is 17X Faster than Serial Computation
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Marching Cube Serial Computation
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Results: 10X Faster than the Parallel PMC

Wind. Time step = 33, isovalue = 0.2 Red Sea. Time step = 53, isovalue = 0.1 
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Extending the Idea: Surface Boxplots for Ensemble Fields

Outlying surfaces or images

Outlying surfaces or images

Most representative sample

• Surface boxplots compute central 
representation sample and 
outliers in ensembles

• Traditional approach: depth-
based ranking (e.g., band depth)
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Cost of Computation Increases Cubically with the Number of 
Ensemble Members

• Cost increases cubically with ensemble size

• Can we again replace this with a neural predictor?

The main three-nested for loop in the algorithm 



extremecomputingtraining.anl.gov

MLP-Based Neural Network

The figure shows three ensemble members at 
a single time step.  Each sample includes the 

data values from the ensemble members 
along with the depth 𝑃𝑖(𝑥,𝑦)
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Prediction Accuracy: Rank Preserved with Occasional Order Flips

Comparison between the order using the depth predicted from NN  
(pred) and the ground truth (GT) for Red Sea dataset
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Computational Performance: 15X Speed-Up with GPU and 6X with 
CPU

Computational time of using the traditional approach with CPU, our 
trained deep learning model with both CPU and GPU
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Conclusion and Future Work

• First study to apply a deep neural network for 
uncertainty computation

• Fast inference 
• Visual quality preservation

• Future:
• Generalized models across datasets! 
• Integration with HPC platforms like Aurora!

Picture of Aurora exascale supercomputer at Argonne

Reference: [1] Han, Mengjiao, et al. "Accelerated probabilistic marching cubes by deep learning for time-varying scalar 
ensembles." 2022 IEEE Visualization and Visual Analytics (VIS). IEEE, 2022. 
                   [2] Han, Mengjiao, et al. "Accelerated Depth Computation for Surface Boxplots with Deep Learning." 2024 IEEE 
Workshop on Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks. IEEE, 2024. 
Github: [1] https://github.com/MengjiaoH/DeepLearning_LCP 
             [2] https://github.com/MengjiaoH/SurfaceBoxplot_CXX

https://github.com/MengjiaoH/DeepLearning_LCP
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Part 2: Quantifying and Visualizing Uncertainty 
in Particle Tracing Neural Network

Visualizing the uncertainty of a neural-network-based particle tracing 
model

Collaborated with Jixian Li1 and Timbwaoga Aime Judicael Ouermi1

1. Scientific Computing and Imaging Institute

http://extremecomputingtraining.anl.gov/
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The Need for Uncertainty-Aware Models in Particle Tracing Neural 
Network

• Visualizing particle trajectories are critical in 
understanding fluid dynamics 

• I/O limitations 
• Memory constraints 

• Neural networks (NNs) offer computational 
efficiency in predicting trajectories. 

• Visualizing prediction uncertainty is crucial 
for reliable decision-making

BMW Motorsport, Computational Fluid 
Dynamics simulation, BMW M4 DTM. 

2017

Visualization of streamlines of 
a tornado [Han et al. 2019]

References 
• Deep Particle Tracker: Automatic Tracking of Particles in 

Fluorescence Microscopy Images Using Deep Learning 
[Spilger et al 2018]

• Exploratory Lagrangian-based Particle Tracing using 
Deep Learning [Han et al. 2022]

• Neural Flow Map Reconstruction [Sahoo et al. 2022]
• Interactive Visualization of Time-Varying Flow Fields
• Using Particle Tracing Neural Networks [Han et al. 2024]
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Challenges in Visualizing Uncertainty in Flow Field
Dynamic Uncertainty is Difficult to Visualize

• cluttered • Assume 
symmetric 
uncertainty 
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Research Objectives 

• Develop uncertainty tube: an 
intuitive, efficient uncertainty 
visualization method for flow data 

• Integrate uncertainty quantification 
methods for neural networks: 
• Deep Ensembles
• Monte Carlo (MC) Dropout
• Stochastic Weight Averaging-

Gaussian (SWAG)

Uncertainty tube visualizations of one pathline using (a) 
deep ensemble, (b) MC dropout, and (c) Stochastic 

Weight Averaging-Gaussian (SWAG) methods. 
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Uncertainty Tube: Visualizing Directional Uncertainty 

• Addresses non-symmetric uncertainty 

effectively.

• Employs superellipse geometry to 

represent uncertainty.
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Uncertainty Tube: Visualizing Directional Uncertainty 

• Start with an ensemble of N 
pathlines from  to   

• Project each point onto the 
orthogonal plane of mean point 

• Compute covariance and eigen-
decomposition and generate 
superellipse to visualize 
uncertainty distribution 

• Align tubes to minimize twisting 
and distortion

𝑡 𝑡 +  𝛿

(A) Raw Sample Trajectories

(C) UncertaintyTube Mesh after Alignment

(B) Uncertainty Superellipse
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• Inspired by value-suppressing 
uncertainty palettes (VSUP)

• Color map:
• Gray: Low uncertainty. The colormap does 

not distinguish between the levels of 
symmetry.

• Blue: High asymmetric uncertainty.
• Yellow: High symmetric uncertainty.

Uncertainty Tube: Color Representation

Asymmetric uncertainty colormap in our method  
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Uncertainty Tube: Computational Efficiency 

          Seeds
Steps

10 50 100 150 200

10 0.26 0.31 0.46 0.41 0.51

100 0.54 0.64 0.73 0.88 0.99

300 0.80 1.03 1.58 1.70 2.04

500 1.09 1.48 1.96 2.43 3.08

The performance (seconds) on AMD Ryzen Threadripper 3970X 32-Core Processor 
using 32 cores. 50 uncertainty samples per trajectory are used. 
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Background: Particle Tracing Neural Network 
Interactive Visualization of Dynamic Flow Fields

• Models trained from Lagrangian-
based flow maps: 

• Input:  Output:  
• Fast inference and small model 

size that can be deployed on a 
web-based viewer

𝑥0,  𝑡  → 𝑥𝑡

The web-based visualization interface, integrated with the particle 
tracing neural networks, enables users to visualize 

and explore large 3D time-varying flow fields interactively.

Model Architecture

Reference: Han, Mengjiao, et al. "Interactive visualization of time-
varying flow fields using particle tracing neural networks." 2024 IEEE 
17th Pacific Visualization Conference (PacificVis). IEEE, 2024. 
Github: https://github.com/MengjiaoH/FlowMap_Web_Viewer
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Prediction Errors Are Inevitable

Gerris Flow. The ground truth is colored as red. 
The predicted pathlines are colored as blue.

Hurricane Flow. The ground truth is colored as 
red. The predicted pathlines are colored as blue.
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Uncertainty Quantification Methods for Neural Network 

Method Approach Strengths Limitations 
Deep Ensembles Multiple, independent 

NNs with different random 
initializations and varied 

data shuffling orders 
High accuracy, reliable 
uncertainty estimation High computational cost

Monte Carlo Dropout Random deactivation of 
neurons Computationally efficient, 

minimal overhead
Approximation may 

underestimate uncertainty

Stochastic Weight 
Averaging-Gaussian

Average the network’s 
weights throughout 
training, then fitting 

a multivariate Gaussian 
distribution to these 

weights

Good balance of 
efficiency and accuracy

Requires careful 
hyperparameter tuning
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Controlled Experiment with Synthetic Dataset 

•Setup: Synthetic flow field with known increasing complexity
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Deep Ensembles 

• Deep Ensembles identified increasing 

asymmetric uncertainty

• Results visually confirmed error 

distributions 

• 3 hours to train 50 ensembles using 

two RTX 3090s 

Z
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Monte Carlo Dropout 

• Slightly overestimates low uncertainty 

regions

• Underestimates high uncertainty 

regions compared to Deep Ensembles

• Less than 0.4 s for 50 ensembles 

Z
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Stochastic Weight Averaging-Gaussian (SWAG)

• Requires minimal additional training

• Hyperparameter tuning is necessary 

(learning rate, number of samples, 

rank) 

• 15 s for 50 ensembles using two RTX 

3090s

• Good balance between accuracy and 

efficiency Z
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SWAG: Hyperparameter Study 
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Tornado Dataset 
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Uncertainty Estimates Don't Always Match Prediction Errors

Uncertainty visualization from a model trained 
in Han et al. 2024

Uncertainty visualization from a model trained 
with spatially uniform scaling

Prediction Accuracy Increased

Model Uncertainty Increased 
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Contributions 

• Introduction of Uncertainty Tube
• Utilizes superelliptical tubes to accurately represent asymmetric uncertainty
• Addresses limitations of conventional symmetric methods (e.g., circular tubes)
• Represents the direction and evolution of uncertainty along trajectories 
• Improves the interpretability and accuracy of uncertainty visualization

• Integration of Uncertainty Quantification Methods
• Successfully applied with Deep Ensembles, MC Dropout, and SWAG
• Provide model confidence of the pathline predictions 

• Enhanced Visual Encoding
• Uses VSUP-inspired color mapping to distinguish uncertainty levels and 

symmetry
• Effective in visualizing complex 3D trajectory uncertainties
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Future Work

• Capture Velocity Uncertainty: Extend the current method to represent 

uncertainty in velocity, not just position

• Visual Encoding Enhancements: Explore advanced representations such as 

textures or glyphs for richer, more intuitive uncertainty cues.

• Advanced Uncertainty Quantification: Investigate fully Bayesian neural 

networks and other rigorous methods for deeper uncertainty modeling.

• Error–Uncertainty Relationship: Analyze the correlation and divergence 

between prediction error and estimated uncertainty.
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ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING 
 
 

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory 
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. 

 
Special thanks to the National Energy Research Scientific Computing Center (NERSC) and 
Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources during the 

training event. 
 

The U.S. Government retains for itself and others acting on its behalf a nonexclusive, 
royalty-free license in this video, with the rights to reproduce, to prepare derivative works, 

and to display publicly.

http://extremecomputingtraining.anl.gov/
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Questions
Reference:  
[1] Han, Mengjiao, et al. "Accelerated probabilistic marching cubes by deep learning for time-varying scalar 
ensembles." 2022 IEEE Visualization and Visual Analytics (VIS). IEEE, 2022. 
[2] Han, Mengjiao, et al. "Accelerated Depth Computation for Surface Boxplots with Deep Learning." 2024 IEEE 
Workshop on Uncertainty Visualization: Applications, Techniques, Software, and Decision Frameworks. IEEE, 2024. 
[3] Han, Mengjiao, et al. "Interactive visualization of time-varying flow fields using particle tracing neural 
networks." 2024 IEEE 17th Pacific Visualization Conference (PacificVis). IEEE, 2024. 

Github:  
[1] https://github.com/MengjiaoH/DeepLearning_LCP 
[2] https://github.com/MengjiaoH/SurfaceBoxplot_CXX 
[3] https://github.com/MengjiaoH/FlowMap_Web_Viewer

http://extremecomputingtraining.anl.gov/
https://github.com/MengjiaoH/DeepLearning_LCP
https://github.com/MengjiaoH/SurfaceBoxplot_CXX

