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THE NEED FOR DISTRIBUTED
TRAINING ON HPC

“Since 2012, the amount of compute
used in the largest Al training runs has
been increasing exponentially with a
3.4-month doubling time (by
comparison, Moore’s Law had a 2-year
doubling period).”

Dario Amodei & Danny Hernandez, Al and compute,
OpenAl Blog, May 16 2018



Training compute (FLOP)

TRAINING COMPUTE OF
FRONTIER MODELS
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TRANSFORMER ARCHITECTURE
INTRODUCED!

ATTENTION IS ALL YOU NEED

e Introduced by Vaswani et al. at NeurlPS 2017

e Replaced recurrence/convolutions with
self-attention

e Enabled massive parallelization & modeling of
long contexts



MODEL SIZE OF FRONTIER
MODELS
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DISTRIBUTED TRAINING: RESNET-50

YET ANOTHER ACCELERATED SGD

Scaling data-parallel SGD slashes ResNet-50/ImageNet training from
days to seconds.

Year Batch Size Hardware Library Time Accuracy
2015 256 P100 x 8 Caffe 29 hrs 75.3%
2017 8,192 P100 x 256 Caffe2 1hr 76.3%
2018 8,192->16,384 Full TPU x Pod TensorFlow 30 mins 76.1%
2017 32,768 P100 x 1,024 Chainer 15mins 74.9%
2018 65,536 P40 x 2048 TensorFlow 6.6 mins 75.8 %
2018 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2%
2019 55,296 V100 x 3,456 NNL 2.0 mins 75.29%
2019 81,920 V100 x 2048 MXNet 1.2 mins 75.08 %



TRAINING COST OF FRONTIER
MODELS
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WHY DISTRIBUTED TRAINING?

Exascale compute: 1018 FLOP workloads need
multi-node parallelism.

Model scale: Millions - trillions of parameters—beyond
single-device RAM.

Data volumes: Petabyte-scale datasets saturate

node I/O and storage.

HPC & ML: Coupling large simulations with Al drives
heterogeneous scaling.

Efficiency: Distributed frameworks maximize utilization
and power on exascale systems.

ALCF, Aurora Exascale Supercomputer



Representative publications showcasing scientific deep learning at exascale.

SCIENTIFIC DL AT SCALE

Climate Analytics: Exascale DL for extreme weather
modeling (2018)

Cancer Research: Accelerating cancer pathology
analysis (2019)

Inverse Problems: Exascale DL for inverse
problems (2019)

Flood-Filling Networks: Scaling FEN training on
HPC (2019)

Dark Energy Survey: DL at scale for galaxy

catalogs (2019)

Megatron-LM: Large-scale transformer training (2021)



COMMUNICATION LIBRARIES

e Collective ops (all-reduce, all-gather) underpin
distributed DL.

e Latency & bandwidth optimizations dictate
scaling efficiency.

e Plugins bridge DL frameworks to HPC fabrics
transparently.



ONECCL IN DISTRIBUTED TRAINING

e Intel oneAPI Collective Communications Library
(oneCCL).

e Optimized for Intel GPUs and CPUs.

e Implements MPI-like collectives with Level Zero &
SYCL/DPC++ back-ends.

e Deep integration with PyTorch, TensorFlow,

Horovod, IPEX.

e High-throughput collectives over OFI & MP]

transport layers.




ONECCL — FEATURE HIGHLIGHTS

e Default hierarchical algorithm (topo) optimizes
intra-node (scale-up) and inter-node (scale-out)
communication

e Collective operations on low-precision datatypes

e Asynchronous progress threads overlap
computation and communication

e Unified C and C++ API for host (CPU) and device
(GPU) memory buffers



// Minimal C++ all-reduce with oneCCL
#include <oneapi/ccl.hpp>

int main(int argc, char** argv) {
ccl::init();
auto comm = ccl::create_communicator();
std::vector send(1024, comm.rank()), recv(1024);
comm.allreduce(send, recv, ccl::reduction::sum).wait();
return 0;



COMMUNICATION LIBRARY LANDSCAPE

e MPI: Portable, mature; rich semantics;
CPU-centric.

e NCCL: NVIDIA GPU collectives; PCle/NVLink
topology-aware.

e RCCL: AMD ROCm counterpart to NCCL;
HIP-enabled.

e Gloo: Simple API; CPU/GPU; best <1 k ranks.



LIBRARY TRADE-OFFS & SELECTION
GUIDE

Vendor lock-in: NCCL (NVIDIA), RCCL (AMD),
oneCCL (Intel).

Heterogeneous support: MPI/UCX & oneCCL span
CPU + GPU.

Ease of integration: Gloo simple; NCCL/oneCCL
have framework plugins.

Scalability: MPI & *CCL proven to 10 k+ GPUs;
Gloo<1Kk.



STATE-OF-THE-ART PARALLELISM
SCHEMES

e Data Parallelism

= Distributed Data-Parallel (DDP)
e Model Parallelism

= Tensor (intra-layer) Parallelism

= Pipeline (inter-layer) Parallelism
e Hybrid (“3D”) Parallelism



MODEL PARALLELISM OVERVIEW

Splits a model’s parameters or ops across devices to
handle very large networks.

e Tensor Parallelism: shard weight tensors within
each layer; all devices work on the same batch.
e Pipeline Parallelism: cut the model into

sequential stages; devices process different
micro-batches in flight.



TENSOR (INTRA-LAYER)
PARALLELISM

Shards each layer’s weight tensors across
multiple GPUs.
GPUs collaborate on the same mini-batch.
Fine-grained all-reduce ops.
Key benefits:

= Train layers too large for a single device.

= Maintains low pipeline latency (no bubbles).
Best for models with extremely large dense layers.



PIPELINE PARALLELISM

Stages: e.g., layers 1-10 on GPU 0, 11-20

on GPU1, ...

Micro-batches: chunk the batch and stream
pieces through stages.

Overlap: compute on one micro-batch overlaps
communication of another.

Pipeline bubbles: startup/shutdown idle periods
when ramping up/down.



COMPARING PARALLELISM
FORMS

Aspect Tensor Parallelism Pipeline Parallelism
Per-| hards; Only at st
Granularity er-layer shards; nly a s.age
sync every op boundaries

All devices on same  Different micro-batches

concurrency batch on each stage
Fine-grained

Overhead ne-graine Startup/drain bubbles
all-reduces

Best for Huge layers, heavy Deep models, balanced

tensor ops stage compute



DATA PARALLEL

Replicate full model on each worker.

Each rank processes unique mini-batch shard.
Gradients all-reduced after backward pass.
Simple; scales to 10 k+ GPUs.
Bandwidth-bound at very large scale.



Data Parallel Group 0
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DATA PARALLEL TRAINING:
PYTORCH DDP



LINEAR SCALING RULE

When global batch size multiplies by k, scale the
learning rate by k.

_ 1
Wi+1 = We — 1 7g7 2 zep VL(z, wy)
Irnew = IFpase X World_size

e Keep local batch size per worker.
e |ncrease global batch size & learning rate
proportionally.



LARGE-BATCH
CHALLENGES & SOLUTIONS

e Optimization Instability — use LR warm-up
(cosine or linear).

e Generalization Gap - apply LR decay,
regularization, longer warm-up.



Training Loss
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OPTIMIZATION INSTABILITY

Optimization Instability: Training Loss vs Epochs

Stable LR (0.01)
—e— High LR (0.1)
Very High LR (0.5)

Epoch



Validation Loss - Training Loss
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Generalization Gap vs Batch Size
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PYTORCH DDP WORKFLOW

import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init process _group('nccl')

model = DDP(MyModel().cuda(), device _ids=[local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=base_1lr * world_

for inputs, targets in loader:
outputs = model(inputs.cuda())
loss = criterion(outputs, targets.cuda())
loss.backward()

nntimi7er ctaoan()



DATA MANAGEMENT & 1/0
CHALLENGES

e Growing data volumes (TB-PB) demand efficient
ingestion pipelines.

o Complex workflows: preprocessing,
augmentation, caching, staging.

e Balancing throughput, latency & compute
utilization.



DL I/O TRAITS

Read-Intensive:

Sustained high-throughput reads.
Metadata-Hungry:

Millions of small files & frequent directory ops.
Random & Sparse Access:

Non-sequential reads across dataset.
Multi-format:

Images, JSON, TFRecord, HDF5, custom archives.
Hierarchical Storage:

Leveraging DRAM, SSD/NVMe, parallel file

svstems.



/O VS COMPUTE BOTTLENECKS
IN DL WORKLOADS

UNet3D

3-D convolutional U-Net for volumetric data.
BERT

Transformer-based language model pre-training
on large text corpora.



UNET3D I/O BOTTLENECK
ON GPFS

e I/O-bound: Storage limits throttle sustained
reads.

e GPU/CPU idle: Frequent I/O stalls leave compute
under-utilized.

e Weak scaling: Throughput plateaus as cluster size
INncreases.



BERT PRE-TRAINING SCALING

e Compute-bound: Floating-point workloads
saturate GPUs before I/0.

e Linear weak scaling: Performance grows nearly
linearly with GPUs.

e |/O overhead: Well below storage limits, so not
the bottleneck.



COMPUTE VS 1/O BOUND: KEY
TAKEAWAYS

e Data-intensive (UNet3D): Prioritize I/O
optimizations—caching, parallel reads.

e Compute-intensive (BERT): Scale GPU capacity &
optimize kernels.

e Choose your focus: Storage tuning vs
hardware/algorithmic scaling.
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UNET3D I/O THROUGHPUT &
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OPTIMIZING DATA PIPELINES

Efficient Formats: preprocess to TFRecord/LMDB
or binary archives.

Sharding & Layout: pack samples per file, bucket
by size, shard across workers.

Parallel I/O: async prefetch, multi-thread/process
workers.

Caching & Staging: in-memory buffers, SSD/NVMe
lanes, burst buffers.

Filesystem Tuning: stripe count/size, object-store
optimizations.



SUMMARY

Scaling: Multi-node training for ever-larger
models

Communication: Optimized collectives & hybrid
parallelism

Best Practices: LR scaling, overlap & low-
precision ops

Data Pipeline: Sharding, caching & parallel /O



