DISTRIBUTED DEEP
LEARNING

NATHAN NICHOLS & KAUSHIK VELUSAMY

Al/ML Team
Argonne National

ATPESC2025 Laboratory rrgorne

OUTLINE

The need for distributed training
Communication libraries

State-of-the-art parallelization schemes
Data-parallel training in detail

/O and data management in distributed training
Hands-on

THE NEED FOR DISTRIBUTED
TRAINING ON HPC

“Since 2012, the amount of compute
used in the largest Al training runs has
been increasing exponentially with a
3.4-month doubling time (by
comparison, Moore’s Law had a 2-year
doubling period).”

Dario Amodei & Danny Hernandez, Al and compute,
OpenAl Blog, May 16 2018

Training compute (FLOP)

TRAINING COMPUTE OF
FRONTIER MODELS

—_

S
[S)
=N

—_

S
)
=

—_

S
S
[

—_

S
)
S

—_

S
—
0

10]6

Publication date

Epoch Al: Key Trends and Figures in Machine Learning

TRANSFORMER ARCHITECTURE
INTRODUCED!

ATTENTION IS ALL YOU NEED

e Introduced by Vaswani et al. at NeurlPS 2017

e Replaced recurrence/convolutions with
self-attention

e Enabled massive parallelization & modeling of
long contexts

MODEL SIZE OF FRONTIER
MODELS

Publication date

Epoch Al: Key Trends and Figures in Machine Learning

DISTRIBUTED TRAINING: RESNET-50

YET ANOTHER ACCELERATED SGD

Scaling data-parallel SGD slashes ResNet-50/ImageNet training from
days to seconds.

Year Batch Size Hardware Library Time Accuracy
2015 256 P100 x 8 Caffe 29 hrs 75.3%
2017 8,192 P100 x 256 Caffe2 1hr 76.3%
2018 8,192->16,384 Full TPU x Pod TensorFlow 30 mins 76.1%
2017 32,768 P100 x 1,024 Chainer 15mins 74.9%
2018 65,536 P40 x 2048 TensorFlow 6.6 mins 75.8 %
2018 65,536 TPU v3 x 1,024 TensorFlow 1.8 mins 75.2%
2019 55,296 V100 x 3,456 NNL 2.0 mins 75.29%
2019 81,920 V100 x 2048 MXNet 1.2 mins 75.08 %

TRAINING COST OF FRONTIER
MODELS

t (2023 USD)

ompute cos

Training ¢

Publication date

Epoch Al: Key Trends and Figures in Machine Learning

WHY DISTRIBUTED TRAINING?

Exascale compute: 1018 FLOP workloads need
multi-node parallelism.

Model scale: Millions - trillions of parameters—beyond
single-device RAM.

Data volumes: Petabyte-scale datasets saturate

node I/O and storage.

HPC & ML: Coupling large simulations with Al drives
heterogeneous scaling.

Efficiency: Distributed frameworks maximize utilization
and power on exascale systems.

ALCF, Aurora Exascale Supercomputer

Representative publications showcasing scientific deep learning at exascale.

SCIENTIFIC DL AT SCALE

Climate Analytics: Exascale DL for extreme weather
modeling (2018)

Cancer Research: Accelerating cancer pathology
analysis (2019)

Inverse Problems: Exascale DL for inverse
problems (2019)

Flood-Filling Networks: Scaling FEN training on
HPC (2019)

Dark Energy Survey: DL at scale for galaxy

catalogs (2019)

Megatron-LM: Large-scale transformer training (2021)

COMMUNICATION LIBRARIES

e Collective ops (all-reduce, all-gather) underpin
distributed DL.

e Latency & bandwidth optimizations dictate
scaling efficiency.

e Plugins bridge DL frameworks to HPC fabrics
transparently.

ONECCL IN DISTRIBUTED TRAINING

e Intel oneAPI Collective Communications Library
(oneCCL).

e Optimized for Intel GPUs and CPUs.

e Implements MPI-like collectives with Level Zero &
SYCL/DPC++ back-ends.

e Deep integration with PyTorch, TensorFlow,

Horovod, IPEX.

e High-throughput collectives over OFI & MP]

transport layers.

ONECCL — FEATURE HIGHLIGHTS

e Default hierarchical algorithm (topo) optimizes
intra-node (scale-up) and inter-node (scale-out)
communication

e Collective operations on low-precision datatypes

e Asynchronous progress threads overlap
computation and communication

e Unified C and C++ API for host (CPU) and device
(GPU) memory buffers

// Minimal C++ all-reduce with oneCCL
#include <oneapi/ccl.hpp>

int main(int argc, char** argv) {
ccl::init();
auto comm = ccl::create_communicator();
std::vector send(1024, comm.rank()), recv(1024);
comm.allreduce(send, recv, ccl::reduction::sum).wait();
return 0;

COMMUNICATION LIBRARY LANDSCAPE

e MPI: Portable, mature; rich semantics;
CPU-centric.

e NCCL: NVIDIA GPU collectives; PCle/NVLink
topology-aware.

e RCCL: AMD ROCm counterpart to NCCL;
HIP-enabled.

e Gloo: Simple API; CPU/GPU; best <1 k ranks.

LIBRARY TRADE-OFFS & SELECTION
GUIDE

Vendor lock-in: NCCL (NVIDIA), RCCL (AMD),
oneCCL (Intel).

Heterogeneous support: MPI/UCX & oneCCL span
CPU + GPU.

Ease of integration: Gloo simple; NCCL/oneCCL
have framework plugins.

Scalability: MPI & *CCL proven to 10 k+ GPUs;
Gloo<1Kk.

STATE-OF-THE-ART PARALLELISM
SCHEMES

e Data Parallelism

= Distributed Data-Parallel (DDP)
e Model Parallelism

= Tensor (intra-layer) Parallelism

= Pipeline (inter-layer) Parallelism
e Hybrid (“3D”) Parallelism

MODEL PARALLELISM OVERVIEW

Splits a model’s parameters or ops across devices to
handle very large networks.

e Tensor Parallelism: shard weight tensors within
each layer; all devices work on the same batch.
e Pipeline Parallelism: cut the model into

sequential stages; devices process different
micro-batches in flight.

TENSOR (INTRA-LAYER)
PARALLELISM

Shards each layer’s weight tensors across
multiple GPUs.
GPUs collaborate on the same mini-batch.
Fine-grained all-reduce ops.
Key benefits:

= Train layers too large for a single device.

= Maintains low pipeline latency (no bubbles).
Best for models with extremely large dense layers.

PIPELINE PARALLELISM

Stages: e.g., layers 1-10 on GPU 0, 11-20

on GPU1, ...

Micro-batches: chunk the batch and stream
pieces through stages.

Overlap: compute on one micro-batch overlaps
communication of another.

Pipeline bubbles: startup/shutdown idle periods
when ramping up/down.

COMPARING PARALLELISM
FORMS

Aspect Tensor Parallelism Pipeline Parallelism
Per-| hards; Only at st
Granularity er-layer shards; nly a s.age
sync every op boundaries

All devices on same Different micro-batches

concurrency batch on each stage
Fine-grained

Overhead ne-graine Startup/drain bubbles
all-reduces

Best for Huge layers, heavy Deep models, balanced

tensor ops stage compute

DATA PARALLEL

Replicate full model on each worker.

Each rank processes unique mini-batch shard.
Gradients all-reduced after backward pass.
Simple; scales to 10 k+ GPUs.
Bandwidth-bound at very large scale.

Data Parallel Group 0

3/

c

(]

m .5

(0]

=

c

' =

m E

Computing g
Node o
(4 GPUs) e
(S

)

¢

=

[}

)

m E

e

>
35
2
§
[7.)

<
2
S

-

lage
0
3,

_——— A T T === ===
Data Parallel Communication

Data Parallel Group 1

Computing
Node
(4 GPUs)

Inter-stage Communication

&@Ba

\
&
)

]

DATA PARALLEL TRAINING:
PYTORCH DDP

LINEAR SCALING RULE

When global batch size multiplies by k, scale the
learning rate by k.

_ 1
Wi+1 = We — 1 7g7 2 zep VL(z, wy)
Irnew = IFpase X World_size

e Keep local batch size per worker.
e |ncrease global batch size & learning rate
proportionally.

LARGE-BATCH
CHALLENGES & SOLUTIONS

e Optimization Instability — use LR warm-up
(cosine or linear).

e Generalization Gap - apply LR decay,
regularization, longer warm-up.

Training Loss

10

OPTIMIZATION INSTABILITY

Optimization Instability: Training Loss vs Epochs

Stable LR (0.01)
—e— High LR (0.1)
Very High LR (0.5)

Epoch

Validation Loss - Training Loss

0.08

0.06

0.04

32

GENERALIZATION GAP
(LOG SCALE)

Generalization Gap vs Batch Size

64 128 256 512 1024 2048

Batch Size (log scale)

PYTORCH DDP WORKFLOW

import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

dist.init process _group('nccl')

model = DDP(MyModel().cuda(), device _ids=[local_rank])
optimizer = torch.optim.Adam(model.parameters(), lr=base_1lr * world_

for inputs, targets in loader:
outputs = model(inputs.cuda())
loss = criterion(outputs, targets.cuda())
loss.backward()

nntimi7er ctaoan()

DATA MANAGEMENT & 1/0
CHALLENGES

e Growing data volumes (TB-PB) demand efficient
ingestion pipelines.

o Complex workflows: preprocessing,
augmentation, caching, staging.

e Balancing throughput, latency & compute
utilization.

DL I/O TRAITS

Read-Intensive:

Sustained high-throughput reads.
Metadata-Hungry:

Millions of small files & frequent directory ops.
Random & Sparse Access:

Non-sequential reads across dataset.
Multi-format:

Images, JSON, TFRecord, HDF5, custom archives.
Hierarchical Storage:

Leveraging DRAM, SSD/NVMe, parallel file

svstems.

/O VS COMPUTE BOTTLENECKS
IN DL WORKLOADS

UNet3D

3-D convolutional U-Net for volumetric data.
BERT

Transformer-based language model pre-training
on large text corpora.

UNET3D I/O BOTTLENECK
ON GPFS

e I/O-bound: Storage limits throttle sustained
reads.

e GPU/CPU idle: Frequent I/O stalls leave compute
under-utilized.

e Weak scaling: Throughput plateaus as cluster size
INncreases.

BERT PRE-TRAINING SCALING

e Compute-bound: Floating-point workloads
saturate GPUs before I/0.

e Linear weak scaling: Performance grows nearly
linearly with GPUs.

e |/O overhead: Well below storage limits, so not
the bottleneck.

COMPUTE VS 1/O BOUND: KEY
TAKEAWAYS

e Data-intensive (UNet3D): Prioritize I/O
optimizations—caching, parallel reads.

e Compute-intensive (BERT): Scale GPU capacity &
optimize kernels.

e Choose your focus: Storage tuning vs
hardware/algorithmic scaling.

Bandwidth (GiB/s)

UNET3D I/O THROUGHPUT &
UTILIZATION

800 100 < — '\
—&— Lustre —&— Lustre
—.— _._ L
200 o NVMe o T®" NVMe
90

Accelerator Usage (%)

Number of nodes Number of nodes

ALCF, DLIO Benchmark (Polaris)

OPTIMIZING DATA PIPELINES

Efficient Formats: preprocess to TFRecord/LMDB
or binary archives.

Sharding & Layout: pack samples per file, bucket
by size, shard across workers.

Parallel I/O: async prefetch, multi-thread/process
workers.

Caching & Staging: in-memory buffers, SSD/NVMe
lanes, burst buffers.

Filesystem Tuning: stripe count/size, object-store
optimizations.

SUMMARY

Scaling: Multi-node training for ever-larger
models

Communication: Optimized collectives & hybrid
parallelism

Best Practices: LR scaling, overlap & low-
precision ops

Data Pipeline: Sharding, caching & parallel /O

