
extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

Beyond the Data Swamp –
Finding Order with HDF5

M. Scot Breitenfeld

The HDF Group

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.gov

Why?

You're a scientist with massive, complex data.
• Multi-dimensional arrays (particle trajectories)
• Images
• Metadata (experiment parameters, timestamps)

• Storing it in separate files is a mess.
• trajectories_run1.csv ... trajectories_runnth.csv
• metadata_run1.txt … metadata_runnth.txt
• images_run1_001.png… images_runnth_001.png

• Accessing data is slow and complicated.
• To find images from a specific run, you have to open and

parse multiple files

extremecomputingtraining.anl.gov

Talk Outline

• Foundations of HDF5
• Introduction to

• HDF5 data model, software, and architecture
• HDF5 programming model

• Overview of general best practices

• Overview of parallel HDF5
• Introduction to HDF5 parallel I/O

• New features

extremecomputingtraining.anl.gov

What is HDF5?

• Hierarchical Data Format version 5 (HDF5)
1. An extensible data model

• Uses structures for data organization and specification

2. Open source software (I/O library and tools)
• Performs I/O on data organized according to the data model
• Works with POSIX and other types of backing stores : Object

Stores (DAOS, AWS S3, AZURE, Ceph, etc.), memory
hierarchies and other storage devices

3. Open file format (POSIX storage only)

extremecomputingtraining.anl.gov

HDF5 is like …

extremecomputingtraining.anl.gov

HDF5 is designed for…

• High-volume and complex data
• HDF5 files of GB+ sizes are common

• Every size and type of system (portable)
• Works on embedded systems desktops/laptops  exascale systems

• Flexible, efficient storage and I/O
• Works for a variety of backing storage

• Enabling applications to evolve in their use of HDF5 and to accommodate
new models

• Data can be added, removed and reorganized in the file

• Supporting long-term data preservation
• Petabytes of remote sensing data including data for long-term climate research in

NASA archives now

extremecomputingtraining.anl.gov

HDF5 Ecosystem

F
il

e
 F

o
rm

a
t

L
ib

ra
ry

D
a
ta

 M
o

d
e
l

D
o

c
u

m
e
n

ta
ti

o
n

…

Supports
…

T
o

o
ls

Image result for
DoD

https://www.google.com/imgres?imgurl=https://www.defense.gov/Portals/1/Images/dodlogo.png?ver=2015-04-10-161041-127&imgrefurl=https://www.defense.gov/&h=94&w=94&tbnid=mhUNx68pDgI3-M:&q=DoD&tbnh=94&tbnw=94&usg=AI4_-kS85V6pMX8BblX0ysOVCbQBvWYhnQ&vet=1&docid=ROOYxe5OuwqIYM&itg=1&client=firefox-b-1&sa=X&ved=2ahUKEwj61v33id_fAhWr6IMKHan_AWUQ_B0wIHoECAQQEQ

HDF5 Data model

extremecomputingtraining.anl.gov

HDF5 as a Transition Layer

HDF5
Symbols

Signs

Variables

Encodings

Concepts

Representations

Contexts

Self-describing

Data

extremecomputingtraining.anl.gov

HDF5 File

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

An HDF5 file is a
container that

holds data objects.

extremecomputingtraining.anl.gov

HDF5 Data Model

HDF5 Objects

Group –
Organize data objects

Link –
Organize data objects

Datatype –
Describes individual data elements

Dataspace –
Describes logical layout of the data elements

File

Dataset –
Organize and contain data elements

Attribute –
User-defined metadata

extremecomputingtraining.anl.gov

HDF5 Dataset

HDF5 Dataset

• HDF5 datasets organize and contain data elements

• HDF5 datatype describes individual data elements

• HDF5 dataspace describes the logical layout of the data elements

Integer: 32-bit, LE

HDF5 Datatype

Multi-dimensional array of

identically typed data elements

Specifications for single data

element and array dimensions

3

Rank

Dim[2] = 5

Dimensions

Dim[0] = 7

Dim[1] = 4

HDF5 Dataspace

extremecomputingtraining.anl.gov

HDF5 Dataspace

Two roles:
(1) Spatial information for Datasets and Attributes
• Empty sets and scalar values
• Multidimensional arrays

• Rank and dimensions
• A permanent part of object definition

(2) Partial I/O: Dataspace and subset describe the application’s data buffer and
data elements participating in I/O

Rank = 2
Dimensions = 4 x 6

Rank = 1
Dimension = 10

extremecomputingtraining.anl.gov

How to describe a subset in HDF5?

• Before writing and reading a subset of data, one must describe it to
the HDF5 Library.

• The HDF5 APIs and documentation refer to a subset as a
“selection,” for example “hyperslab selection.”

• If specified, HDF5 performs I/O on a selection only and not on all
dataset elements.

extremecomputingtraining.anl.gov

Describing elements for I/O: HDF5 Hyperslab

• Everything is “measured” in the number of elements; 0-based

• Example 1-dim:
• Start - starting location of a hyperslab (5)

• Block - block size (3)

• Example 2-dim:
• Start - starting location of a hyperslab (1,1)

• Stride - number of elements that separate each block (3,2)

• Block - block size (2,1)

• Count - number of blocks (2,6)

• All other selections are built using set operations

extremecomputingtraining.anl.gov

HDF5 Datatypes

• Describe individual data elements in an HDF5 dataset

• A wide range of datatypes is supported

• Atomic types: integer, floats

• User-defined (e.g., 12-bit integer, 16-bit float)

• Enum

• References to HDF5 objects and selected elements of datasets

• Variable-length types (e.g., strings, vectors)

• Compound (similar to C’s structures or Fortran’s derived types)

• Array (similar to matrix)

• HDF5 library provides predefined variables to describe atomic datatypes

Extreme Scale Computing HDF5

extremecomputingtraining.anl.gov

HDF5 Dataset with Compound Datatype

uint16 char int32 2x3x2 array of float32

Compound

Datatype:

Dataspace: Rank = 2

 Dimensions = 5 x 3

3

5

VVV
V V V
V V V

extremecomputingtraining.anl.gov

How are data elements stored? (1/2)

Chunked

Chunked &

Compressed

Better access time

for subsets;

extendible

Improves storage

efficiency,

transmission speed

Contiguous

(default)

Data elements

stored physically

adjacent to each

other

Buffer in memory Data in the file

extremecomputingtraining.anl.gov

Compression and filters in HDF5

• GZIP and SZIP (free version is available from German Climate Computing Center)
• Other compression methods registered with The HDF Group

• https://github.com/HDFGroup/hdf5_plugins/blob/master/docs/RegisteredFilterPlugins.md
• BZIP2, JPEG, LZF, BLOSC, MAFISC, LZ4, Bitshuffle, SZ and ZFP, etc.
• The ones listed above are available as dynamically loaded plugins

• Filters:
• Fletcher32 (checksum)
• Shuffle
• Scale+offset
• n-bit

https://www.mpg.de/dkrz_en
https://github.com/HDFGroup/hdf5_plugins/blob/master/docs/RegisteredFilterPlugins.md
https://github.com/HDFGroup/hdf5_plugins/blob/master/docs/RegisteredFilterPlugins.md

extremecomputingtraining.anl.gov

How are data elements stored? (2/2)

External

Virtual

Data elements

stored outside the

HDF5 file, possibly

in another file

format

Data elements are

stored in “source

datasets,” using

selections to map

Compact
Data elements

stored directly

within object’s

metadata < 64K

Buffer in memory Data in the file

Dataset
Object Header

Dataset
Object Header

extremecomputingtraining.anl.gov

HDF5 Attributes

• Attributes “decorate” HDF5 objects

• Contain user-defined metadata

• Similar to Key-Values:

• Have a unique name (for that object) and a value

• Analogous to a dataset

• “Value” is described by a datatype and a dataspace

• Do not support partial I/O operations; nor can they be compressed or extended

extremecomputingtraining.anl.gov

HDF5 Groups and Links

lat	lon	temp
 12 | 23 | 3.1
 15 | 24 | 4.2
 17 | 21 | 3.6

Experiment Notes:
Serial Number: 99378920
Date: 3/13/09
Configuration: Standard 3

/

SimOutViz

HDF5 groups and links

organize data objects.

Every HDF5 file

 has a root group

Parameters
10;100;1000

Timestep
36,000

HDF5 software and architecture

extremecomputingtraining.anl.gov

HDF5 Software

HDF5 home page: http://hdfgroup.org/HDF5/
• Latest releases: 1.14.6 (Retired versions 1.8, 1.10, 1.12), Coming Soon 2.0

HDF5 source code:
• Available on GitHub: https://github.com/HDFGroup/hdf5

• Written in C and includes optional C++, Fortran, Java APIs, and High-Level APIs

• Contains command-line utilities (h5dump, h5repack, h5diff, ..) and compile scripts

HDF5 pre-built binaries:
• Include C, C++, Fortran, Java, and High-Level libraries when possible. Check ./lib/libhdf5.settings file.

• Built with the SZIP and ZLIB external libraries

3rd party software:

• h5py (Python)

• Contemporary C++, including support for MPI I/O

• https://github.com/ess-dmsc/h5cpp, https://github.com/steven-varga/h5cpp

http://hdfgroup.org/HDF5/
https://github.com/HDFGroup/hdf5
https://github.com/ess-dmsc/h5cpp
https://github.com/ess-dmsc/h5cpp
https://github.com/ess-dmsc/h5cpp
https://github.com/ess-dmsc/h5cpp
https://github.com/steven-varga/h5cpp
https://github.com/steven-varga/h5cpp
https://github.com/steven-varga/h5cpp

extremecomputingtraining.anl.gov

Useful Tools For New Users

h5dump
 Command line tool to “dump” or display the contents of HDF5 files

Scripts to compile applications:
 h5cc, h5c++, h5fc (h5pcc, h5pfc – parallel variants)

HDFView:
 Java browser to view HDF5 file
 https://www.hdfgroup.org/downloads/hdfview/

HDF5 Examples (C, Fortran, Java, Python, Matlab, ...)
https://github.com/HDFGroup/hdf5/tree/develop/HDF5Examples

https://www.hdfgroup.org/downloads/hdfview/
https://github.com/HDFGroup/hdf5/tree/develop/HDF5Examples

extremecomputingtraining.anl.gov

HDF5 Library Architecture (1.12.0 +)

M
PI

 I/
O

HDF5 API and language bindings
Virtual Object Layer (VOL) [1]

Pass-through VOL connectors

Native Connector

RE
ST

D
AO

S

AD
IO

S

PO
SI

X

S3

H
D

FS…. ….
SW

M
R

VFDs

HDF5 Core
Library

Terminal VOL
connectors

AS
YN

C

C
AC

H
E

LO
G

BA

SE
D

….

[1] https://support.hdfgroup.org/documentation/hdf5-docs/registered_vol_connectors.html

HDF5 Programming model and API

extremecomputingtraining.anl.gov

The General HDF5 API

• C, FORTRAN, Java, and C++

• The APIs begin with the prefix: H5
 _ corresponds to the type of object the function acts on

• The language wrappers follow the same trend

• There are more than 300 APIs – but one can start with less than 50

Example Functions:

 H5D : Dataset interface e.g., H5Dread

 H5F : File interface e.g., H5Fopen

 H5S : dataSpace interface e.g., H5Sclose

extremecomputingtraining.anl.gov

General Programming Paradigm
• Object is opened or created

• Creation properties applied
• Access properties applied
• Supporting objects are

defined (datatype, dataspace)

• Object is accessed possibly
many times

• Access property can be
changed

• Object is closed

• Properties (H5P) of an object
are optionally defined

• Creation properties (e.g., use
chunking storage)

• Access properties (e.g., using
MPI I/O driver to access file)

H5Fcreate (H5Fopen) create (open) File

 H5Screate_simple/H5Screate create dataSpace

 H5Dcreate (H5Dopen) create (open) Dataset

 H5Dread, H5Dwrite access Dataset

 H5Dclose close Dataset

 H5Sclose close dataSpace

H5Fclose close File

General best practices

extremecomputingtraining.anl.gov

HDF5 Dataset I/O

• Issue large I/O requests
• At least as large as the file system block size

• Avoid datatype conversion
• Use the same data type in the file as in memory
• If conversion is necessary, increase datatype conversion buffer size (default 1MB) with

H5Pset_buffer()

• Avoid dataspace conversion
• One-dimensional buffer in memory to a two-dimensional array in the file

 Can break collective operations; check what mode was used
H5Pget_mpio_actual_io_mode, and why
H5Pget_mpio_no_collective_cause

https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-GetMpioActualIoMode
https://support.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-GetMpioNoCollectiveCause

extremecomputingtraining.anl.gov

HDF5 Dataset - Storage

• Use contiguous storage if no data will be added and compression is
not used

• HDF5 will not cache data

• Use compact storage when working with small data (<64K)
• Data becomes part of HDF5 internal metadata and is cached (metadata cache)

• Avoid data duplication to reduce file sizes
• Use links to point to datasets stored in the same or external HDF5 file
• Use VDS to point to data stored in other HDF5 datasets

extremecomputingtraining.anl.gov

HDF5 Dataset – Chunked Storage

• Chunking is required when using extendibility and/or compression and other filters
• I/O is always performed on a whole chunk

• Make your chunks the “right” size
• Goldilocks Principle: Not too big, nor too small

• Understand how chunking cache works
https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/chunking_in_hdf5.html

Consider –
• Do you access the same chunk often?
• What is the best chunk size (especially when using compression)?
• Do you need to adjust chunk cache size (1 MB default; can be set up per file or per dataset),

H5Pset_chunk_cache()?
• H5Pset_chunk_cache sets raw data chunk cache parameters for a dataset

- H5Pset_chunk_cache (dapl, …);

• H5Pset_cache sets raw data chunk cache parameters for all datasets in a file
- H5Pset_cache (fapl, …);

• Investigate other parameters to control chunk cache

https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/chunking_in_hdf5.html
https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/chunking_in_hdf5.html
https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/chunking_in_hdf5.html

extremecomputingtraining.anl.gov

Terminology

• DATA – “problem-size” data, e.g., large arrays
• METADATA – is an overloaded term
• In this presentation:

Metadata “=“ HDF5 metadata
• For each piece of application metadata, there are many associated pieces of HDF5

metadata
• There are also other sources of HDF5 metadata

• Chunk indices, heaps to store group links and indices to look them up, object
headers, etc.

extremecomputingtraining.anl.gov

General HDF5 Efficiency

• Faster HDF5 Performance: Metadata
• Use the “latest” file format features

• H5Pset_libver_bounds()
• Increase the size of metadata data

structures
• H5Pset_istore_k(), H5Pset_sym_k(), etc.

• Aggregate metadata into larger blocks
• H5Pset_meta_block_size()

• Align objects in the file
• H5Pset_alignment()

• Control metadata cache
• Paged allocation and page buffering (serial

only)
• Aggregate and align metadata and small data, perform

I/O in aligned pages
• See File Space Management Documentation

https://support.hdfgroup.org/documentation/hdf5-
docs/advanced_topics/FileSpaceManagement.html

8/7/2025 35

https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/FileSpaceManagement.html
https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/FileSpaceManagement.html
https://support.hdfgroup.org/documentation/hdf5-docs/advanced_topics/FileSpaceManagement.html

Parallel I/O with HDF5

extremecomputingtraining.anl.gov

PHDF5 implementation layers

DPLR computational fluid
dynamics simulation of
instantaneous heating on
the Space Shuttle.
(Todd White,
NASA/Ames)

HDF5 LIBRARY

MPI I/O LIBRARY

HDF5 FILE ON PARALLEL FILE SYSTEM

DISK ARCHITECTURE AND LAYOUT OF DATA ON DISK

COMPUTE NODE COMPUTE NODE COMPUTE NODE

APPLICATION

INTERCONNECT NETWORK + I/O SERVERS

https://www.nas.nasa.gov/SC10/images.html

extremecomputingtraining.anl.gov

Types of Application I/O to Parallel File Systems

extremecomputingtraining.anl.gov

• Take advantage of high-performance parallel I/O while reducing
complexity
• Use a well-defined high-level I/O layer instead of POSIX or MPI-IO
• Use only a single or a few shared files

• Maintained code base, performance and data portability
• Rely on HDF5 to optimize for the underlying storage system

Why Parallel HDF5?

extremecomputingtraining.anl.gov

Parallel HDF5 (PHDF5) vs. Serial HDF5

• PHDF5 allows multiple MPI processes in an MPI application
to perform I/O to a single HDF5 file

• PHDF5 uses a standard parallel I/O interface (MPI-IO)
• Portable to different platforms
• PHDF5 files ARE HDF5 files conforming to the HDF5 file

format specification
• The PHDF5 API consists of:

• The standard HDF5 API
• A few extra knobs and calls
• A parallel “schema”

https://www.hdfgroup.org/HDF5/doc/H5.format.html
https://www.hdfgroup.org/HDF5/doc/H5.format.html

extremecomputingtraining.anl.gov

• PHDF5 opens a shared file with an MPI communicator
• Returns a file ID (as usual)
• All future access to the file via that file ID

• Different files can be opened via different communicators
• All processes must participate in collective PHDF5 APIs
• All HDF5 APIs that modify the HDF5 namespace and structural

metadata are collective!
• File ops., group structure, dataset dimensions, object life-cycle, etc.
• Raw data operations can either be collective or independent

• For collective, all processes must participate, but they don’t need to read/write data.

Parallel HDF5 Schema

https://support.hdfgroup.org/documentation/hdf5/latest/collective_calls.html#sec_collective_calls_func

https://support.hdfgroup.org/documentation/hdf5/latest/collective_calls.html#sec_collective_calls_func

extremecomputingtraining.anl.gov

Object Creation (Collective vs. Single Process)

extremecomputingtraining.anl.gov

Collective vs. Independent Operations

• MPI Collective Operations:
• All processes of the communicator must participate in the right order. E.g.,

 Process1 Process2

 call A(); call B(); call A(); call B(); …CORRECT

 call A(); call B(); call B(); call A(); …WRONG

• Collective I/O attempts to combine multiple smaller independent I/O
ops into fewer larger ops; neither mode is preferable a priori

extremecomputingtraining.anl.gov

General HDF5 Programming Parallel Model for raw data I/O

• Distributed memory model: data is split among processes
• Each process defines selections in memory and in file (aka HDF5 hyperslabs) using
H5Sselect_hyperslab

• The hyperslab parameters define the portion of the dataset to write to
- Contiguous hyperslab, Regularly spaced data (column or row), Pattern, or Blocks

• Each process executes a write/read call using selections, which can be either collective or
independent

extremecomputingtraining.anl.gov

Examples of irregular selection

Internally…
1. The HDF5 library creates an MPI datatype for

each lower dimension in the selection
2. It then combines those types into one large

structured MPI datatype

P0: MPI_Type_create_stuct

P1: MPI_Type_create_stuct

P2: MPI_Type_create_stuct

extremecomputingtraining.anl.gov

Example 1: Writing dataset by rows

P0

P1

P2

P3

Memory File

extremecomputingtraining.anl.gov

Example 1: Writing dataset by rows

count[0] = dimsf[0]/mpi_size
count[1] = dimsf[1];
offset[0] = mpi_rank * count[0]; /* = 2 */
offset[1] = 0;

count[0]

count[1]

offset[0]

offset[1]Process P1

Memory File

extremecomputingtraining.anl.gov

Example 1: Writing dataset by rows

71 /*
 72 * Each process defines dataset in memory and
 * writes it to the hyperslab
 73 * in the file.
 74 */
 75 count[0] = dimsf[0]/mpi_size;
 76 count[1] = dimsf[1];
 77 offset[0] = mpi_rank * count[0];
 78 offset[1] = 0;
 79 memspace = H5Screate_simple(RANK,count,NULL);
 80
 81 /*
 82 * Select hyperslab in the file.
 83 */
 84 filespace = H5Dget_space(dset_id);
 85 H5Sselect_hyperslab(filespace,
 H5S_SELECT_SET,offset,NULL,count,NULL);

extremecomputingtraining.anl.gov

C Example: Collective write and read

95 /*
 96 * Create property list for collective dataset write.
 97 */
 98 plist_id = H5Pcreate(H5P_DATASET_XFER);
 ->99 H5Pset_dxpl_mpio(plist_id, H5FD_MPIO_COLLECTIVE);
 100
 101 status = H5Dwrite(dset_id, H5T_NATIVE_INT,
 102 memspace, filespace, plist_id, data);

103 /*
 104 * Collective dataset read.
 105 */
 106
 ->107 status = H5Dread(dset_id, H5T_NATIVE_INT,
 108 memspace, filespace, plist_id, data);
 109

extremecomputingtraining.anl.gov

Writing by rows: Output of h5dump

HDF5 "SDS_row.h5" {

GROUP "/" {

 DATASET "IntArray" {

 DATATYPE H5T_STD_I32BE

 DATASPACE SIMPLE { (8, 5) / (8, 5

) }

 DATA {

 10, 10, 10, 10, 10,

 10, 10, 10, 10, 10,

 11, 11, 11, 11, 11,

 11, 11, 11, 11, 11,

 12, 12, 12, 12, 12,

 12, 12, 12, 12, 12,

 13, 13, 13, 13, 13,

 13, 13, 13, 13, 13

 }

 }

}

The Main Event: DAOS and HDF5

extremecomputingtraining.anl.gov

DAOS VOL Connector

• HDF5 VOL connector for I/O to
Distributed Asynchronous Object
Storage (DAOS)

https://github.com/HDFGroup/vol-daos

https://github.com/HDFGroup/vol-daos
https://github.com/HDFGroup/vol-daos
https://github.com/HDFGroup/vol-daos

extremecomputingtraining.anl.gov

VOL vs. MPI-IO Driver

Feature HDF5 DAOS VOL DOAS MPI-IO Driver

Performance Highest (low-latency, high throughput) Good(limited by MPI-IO overhead)

Data Path Direct: HDF5  DAOS Indirect: HDF5  MPI-IO  DAOS

DAOS Features Full Access (Native Async, etc.) Limited Access (Generic Interface)

Code Changes Recommended for new/modernized code Minimal to None for existing code

Primary Use Case Performance-critical applications Legacy application compatibility

Crash Handling Direct & Native: Leverages DAOS's robust,
transparent recovery.

Indirect & Abstracted: Relies on the
MPI layer, complicating recovery.

extremecomputingtraining.anl.gov

DAOS VOL – Data placement and Replication

• Multiple options
• Chunking enabled by default for

contiguous datasets, controlled
with:

 H5Pset_chunk()

• Set DAOS object class per DAOS
object to control number of targets
used for storing object (= sharding)
as well as the number of replicas (for
recovery) :

 H5daos_set_object_class()
• Default for datasets is to shard across all

available targets, with no replication

Application …

Target

1

Target

4

3-way replica

(3+1 DAOS

server nodes)

target ≠ storage node:

multiple storage targets per node

extremecomputingtraining.anl.gov

DAOS VOL – HDF5 Objects and Features

• The majority of HDF5 features are
currently supported, except:

• Native file format specific APIs
• Compression filters

• Additional features implemented
• Map objects (enabled by K/V objects)
• File deletion
• Independent metadata

• HDF5 objects can be created independently
• Enabled with:

 H5daos_set_all_ind_metadata_ops()

• Asynchronous I/O

HDF5 File (Container)

Root

Group

Group 1 … … Group N

Dataset Map Attribute Datatype

Atomic, compound, VL, reference type data, etc.

extremecomputingtraining.anl.gov

DAOS VOL – Async I/O with DAOS

• Enables asynchrony using an Event Set API
• Implemented at the DAOS connector level
• Uses DAOS task engine (does not necessarily need additional progress thread)
• HDF5 API can return before the operation completes, placing the operation in an

“event set”

• Asynchrony must be explicitly controlled by the application
• Similar to existing async APIs, such as MPI non-blocking
• Place async tasks in an Event Set (H5ES)
• Use async versions of all routines that may block
• Applications are expected to rework/optimize their code to avoid memcpy, avoid

memory modifications of async buffers, and correct async error handling.

extremecomputingtraining.anl.gov

DAOS VOL – Getting started

• Buil t using HDF5 version1.14.x, compatible with v2.0 coming soon.
 CC=mpicc configure --enable-parallel --disable-static --enable-map-api

• Build the DAOS VOL
 #!/bin/bash

 export HDF5_ROOT=$HOME/packages/hdf5/build/hdf5

 cmake -D CMAKE_BUILD_TYPE=Release -D BUILD_EXAMPLES=TRUE \

 -D CMAKE_INSTALL_PREFIX=$PWD -D CMAKE_C_COMPILER=mpicc ..

 make -j 8 install

extremecomputingtraining.anl.gov

DAOS VOL – Getting started – Using it

• Creation and use of HDF5 files in DAOS
• Minimal or no code changes for the application developer (if only looking for

compatibility)
• Two ways to select the DAOS connector:

1. HDF5 file access property list (recommended for new files or when manipulating multiple VOLs)

1. H5Pset_fapl_daos()

2. Include daos_vol.h and daos.h, link to libhdf5_vol_daos.so

2. Environment variable
 HDF5_VOL_CONNECTOR=daos

 HDF5_PLUGIN_PATH=/path/to/connector/folder/lib

 DAOS_POOL = <pool uuid>

GO TO Aurora;

extremecomputingtraining.anl.gov

Subfiling

• An MPI-based parallel file driver is used to split an HDF5 file across a collection of subfiles
in equally sized data segment stripes.

• Data stripe size is the amount of data (in bytes) that can be written to a subfile before data is
placed in the next subfile in a round-robin (default) fashion

• Defaults to 1 subfile per machine node with 32MiB data stripes

Subfiling is a compromise between file-per-process (fpp) and a single shared file (ssf)

Minimize the locking issues of ssf approach

Avoid some complexity and reduce total number of files compared to fpp approach

Designed to be flexible and configurable for different machines

extremecomputingtraining.anl.gov

What is it? (continued)

• Uses "I/O concentrators" - a subset of
available MPI ranks that control subfiles and
operate I/O worker thread pools.

• N-to-1 mapping from subfiles -> I/O
concentrator ranks

• I/O from non-I/O-concentrator MPI ranks is
forwarded to the appropriate I/O concentrator
based on offset in the logical HDF5 file

• Default: Subfiles are assigned round-robin
across the available I/O concentrator ranks

extremecomputingtraining.anl.gov

Subfiling Output Files per Logical HDF5 File

• HDF5 stub file
• Appears as a normal HDF5 file; only
contains HDF5 superblock information and
subfiling parameter information

• Useful for compatibility with HDF5
applications that read initial bytes of file,
e.g., CGNS, NetCDF4

• Inode value of stub file used to generate
unique filenames for configuration file and
subfiles

extremecomputingtraining.anl.gov

Subfiling Output Files per Logical HDF5 File

Subfiling configuration text file

• A simple configuration file detailing the
subfiling parameters for an existing file

• Validated against subfiling parameters
stored in HDF5 stub file once logical HDF5
file has been opened

• Useful for external tooling to get subfiling
parameter information

Subfiles
Contains all the file data, including superblock

information duplicated in HDF5 stub file

extremecomputingtraining.anl.gov

Subfiling

• Subfiling file driver is set on a File Access Property List

• Environment variables control options:
• H5FD_SUBFILING_IOC_PER_NODE– Number of I/O concentrators per node.
• H5FD_SUBFILING_STRIPE_SIZE – Maximum contiguous block of data that can be written to a single I/O Concentrator

before moving on to the next IOC.
• H5FD_IOC_THREAD_POOL_SIZE – Sets the number of I/O Concentrator helper threads. The default is four pool

threads.
• H5FD_SUBFILING_CONFIG_FILE_PREFIX — Sets the prefix of the configuration file. Useful when using node-local

storage.
• H5FD_SUBFILING_SUBFILE_PREFIX – Sets the prefix for the subfiles. Useful when using node-local storage

1. plist_id = H5Pcreate(H5P_FILE_ACCESS);
2. status = H5Pset_fapl_subfiling(plist_id, vfd_config);
3. file_id = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, plist_id);
4. H5Pclose(plist_id);

extremecomputingtraining.anl.gov

Subfiling

• (CGNS[1]
benchmark_hdf5)

• The default settings for
Subfiling were used, one
subfile per node.

[1] CGNS = Computational Fluid Dynamics (CFD) General Notation System, cgns.org

Number
of
Ranks

HDF5
File Size

21504 53 GiB
10752 27 GiB
5376 14 GiB
2688 6.6 GiB

extremecomputingtraining.anl.gov

 0

 2

 4

 6

 8

 10

 12

 14

 16

128 256 512 1024 2048 4096

W
ʀ
ɪᴛ
ᴇ

 P
ᴇ
ʀ
ꜰ
ᴏ
ʀ
ᴍ
ᴀ
ɴ
ᴄ
ᴇ

 (
T
ɪB

/ꜱ
)

Nᴜᴍ ʙᴇʀ ᴏ ꜰ Nᴏ ᴅᴇꜱ

Sᴜʙꜰɪʟɪɴ ɢ , Nᴏᴅᴇ -ʟᴏᴄᴀʟ Sᴛᴏʀᴀɢᴇ

Sᴜʙꜰɪʟɪɴ ɢ , Lᴜꜱ ᴛʀᴇ Sᴛᴏʀᴀɢᴇ

Subfiling – ExaMPM [1] (Cabana [2]) on Frontier (OLCF)

• GPU computation engine

⏤ Kokkos is used to transfer memory between GPU and CPUs

• Subfilings pwrite throughput for 4096 nodes

[1] https://github.com/ECP-copa/ExaMPM ,
[2] https://github.com/ECP-copa/Cabana

extremecomputingtraining.anl.gov

Subfiling

• (Cabana/ExaMPM)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 t=0
0 t=1
0 t=2
0 t=3
1 t=0
1 t=1
1 t=2
1 t=3
2 t=0
2 t=1
2 t=2
2 t=3
3 t=0
3 t=1
3 t=2
3 t=3
4 t=0
4 t=1
4 t=2
4 t=3
0 t=-1
0 t=0
0 t=1
0 t=2
0 t=3
1 t=0
1 t=1
1 t=2
1 t=3
2 t=0
2 t=1
2 t=2
2 t=3
3 t=0
3 t=1
3 t=2
3 t=3
4 t=0
4 t=1

Progressive File Layout

Stripe Count=64, Stripe Size=16MiB

h
5
fu

se
 t

im
e

(s
)

Run Number

ExaMPM-H5fuse, Frontier, Node-local -> Lustre storage

HDF-FORUM – https://forum.hdfgroup.org/

HDF Helpdesk – help@hdfgroup.org

Call the Doctor – Weekly HDF Clinic
 https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb

Need Help?

https://forum.hdfgroup.org/
mailto:help@hdfgroup.org
https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb
https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb
https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb

extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: Beyond the Data Swamp – Finding Order with HDF5
	Slide 2
	Slide 3: Talk Outline
	Slide 4: What is HDF5?
	Slide 5: HDF5 is like …
	Slide 6: HDF5 is designed for…
	Slide 7: HDF5 Ecosystem
	Slide 8: HDF5 Data model
	Slide 9: HDF5 as a Transition Layer
	Slide 10: HDF5 File
	Slide 11: HDF5 Data Model
	Slide 12: HDF5 Dataset
	Slide 13: HDF5 Dataspace
	Slide 14: How to describe a subset in HDF5?
	Slide 15: Describing elements for I/O: HDF5 Hyperslab
	Slide 16: HDF5 Datatypes
	Slide 17: HDF5 Dataset with Compound Datatype
	Slide 18: How are data elements stored? (1/2)
	Slide 19: Compression and filters in HDF5
	Slide 20: How are data elements stored? (2/2)
	Slide 21: HDF5 Attributes
	Slide 22: HDF5 Groups and Links
	Slide 23: HDF5 software and architecture
	Slide 24: HDF5 Software
	Slide 25: Useful Tools For New Users
	Slide 26: HDF5 Library Architecture (1.12.0 +)
	Slide 27: HDF5 Programming model and API
	Slide 28: The General HDF5 API
	Slide 29: General Programming Paradigm
	Slide 30: General best practices
	Slide 31: HDF5 Dataset I/O
	Slide 32: HDF5 Dataset - Storage
	Slide 33: HDF5 Dataset – Chunked Storage
	Slide 34: Terminology
	Slide 35: General HDF5 Efficiency
	Slide 36: Parallel I/O with HDF5
	Slide 37: PHDF5 implementation layers
	Slide 38: Types of Application I/O to Parallel File Systems
	Slide 39: Why Parallel HDF5?
	Slide 40: Parallel HDF5 (PHDF5) vs. Serial HDF5
	Slide 41: Parallel HDF5 Schema
	Slide 42: Object Creation (Collective vs. Single Process)
	Slide 43: Collective vs. Independent Operations
	Slide 44: General HDF5 Programming Parallel Model for raw data I/O
	Slide 45: Examples of irregular selection
	Slide 46: Example 1: Writing dataset by rows
	Slide 47: Example 1: Writing dataset by rows
	Slide 48: Example 1: Writing dataset by rows
	Slide 49: C Example: Collective write and read
	Slide 50: Writing by rows: Output of h5dump
	Slide 51: The Main Event: DAOS and HDF5
	Slide 52: DAOS VOL Connector
	Slide 53: VOL vs. MPI-IO Driver
	Slide 54: DAOS VOL – Data placement and Replication
	Slide 55: DAOS VOL – HDF5 Objects and Features
	Slide 56: DAOS VOL – Async I/O with DAOS
	Slide 57: DAOS VOL – Getting started
	Slide 58: DAOS VOL – Getting started – Using it
	Slide 59: GO TO Aurora;
	Slide 60: Subfiling
	Slide 61: What is it? (continued)
	Slide 62: Subfiling Output Files per Logical HDF5 File
	Slide 63: Subfiling Output Files per Logical HDF5 File
	Slide 64: Subfiling
	Slide 65: Subfiling
	Slide 66: Subfiling – ExaMPM [1] (Cabana [2]) on Frontier (OLCF)
	Slide 67: Subfiling
	Slide 68: HDF-FORUM – https://forum.hdfgroup.org/ HDF Helpdesk – help@hdfgroup.org Call the Doctor – Weekly HDF Clinic https://zoom.us/meeting/register/tJwvf--gpjsqEtV0NSexRspn0NUjcNhZFmFb
	Slide 69: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

