
extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

Higher-level I/O libraries:
PnetCDF and friends

Rob Latham
Math and Computer Science Divison,

Argonne National Laboratory

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Reminder: HPC I/O Software Stack

The software used to provide data model support and to transform I/O to better
perform on today’s I/O systems is often referred to as the I/O stack.

Data Model Libraries map application
abstractions onto storage abstractions and
provide data portability.

HDF5, Parallel netCDF, ADIOS

I/O Middleware organizes accesses from many
processes, especially those using collective
I/O.

MPI-IO

I/O Forwarding transforms I/O from many
clients into fewer, larger request; reduces lock
contention; and bridges between the HPC
system and external storage.

IBM ciod, Cray DVS

Parallel file system maintains logical file model
and provides efficient access to data.

DAOS, PanFS, GPFS, Lustre
I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Data Model Libraries

Scientific applications work with structured data and desire
more self-describing file formats
PnetCDF and HDF5 are two popular “higher level” I/O
libraries

• Abstract away details of file layout
• Provide standard, portable file formats
• Include metadata describing contents

For parallel machines, these use MPI and probably MPI-IO
• MPI-IO implementations are sometimes poor on specific

platforms, in which case libraries might directly call POSIX calls
instead

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

In Practice: The Parallel netCDF Interface and File
Format

• Thanks to Wei-Keng Liao, Alok Choudhary, and Kaiyuan Hou (NWU) for their
help in the development of PnetCDF.

• https://parallel-netcdf.github.io/

https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/
https://parallel-netcdf.github.io/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Parallel NetCDF (PnetCDF)

Based on original “Network Common Data Format” (netCDF) work from Unidata
• Derived from their source code

Data Model:
• Collection of variables in single file
• Typed, multidimensional array variables
• Attributes on file and variables

Features:
• C, Fortran, and F90 interfaces (no python)
• Portable data format (identical to netCDF)
• Noncontiguous I/O in memory using MPI datatypes
• Noncontiguous I/O in file using sub-arrays
• Collective I/O
• Non-blocking I/O

Unrelated to netCDF-4 work

Parallel-NetCDF tutorial:
• https://parallel-netcdf.github.io/wiki/QuickTutorial.html

Interface guide:
• http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
• ‘man pnetcdf’ on polaris (after loading module)

https://github.com/radix-io/hands-on
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
https://parallel-netcdf.github.io/wiki/QuickTutorial.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html
http://cucis.ece.northwestern.edu/projects/PnetCDF/doc/pnetcdf-c/index.html

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Parallel netCDF (PnetCDF)

(Serial) netCDF
• API for accessing multi-dimensional data sets
• Portable file format
• Popular in both fusion and climate communities

Parallel netCDF
• Very similar API to netCDF
• Tuned for better performance in today’s computing

environments
• Retains the file format so netCDF and PnetCDF

applications can share files
• PnetCDF builds on top of any MPI-IO

implementation

ROMIO

PnetCDF

Lustre

Cluster

Spectrum-MPI

PnetCDF

IBM AC922 (Summit)

GPFS

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

netCDF Data Model

The netCDF model provides a means for storing multiple,
multi-dimensional arrays in a single file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Record Variables in netCDF

Record variables are defined to have a single
“unlimited” dimension

• Convenient when a dimension size is unknown at time of
variable creation

Record variables are stored after all the other
variables in an interleaved format

• Using more than one in a file is likely to result in poor
performance due to number of noncontiguous accesses

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Pre-declaring I/O

netCDF / Parallel-NetCDF: bimodal write interface
• Define mode: “here are my dimensions, variables, and

attributes”
• Data mode: “now I’m writing out those values”

Decoupling of description and execution shows up
several places

• MPI non-blocking communication
• Parallel-NetCDF “write combining” (talk more in a few

slides)
• MPI datatypes to a collective routines (if you squint really

hard)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

HANDS-ON: writing with Parallel-NetCDF

Like MPI-IO example: 2-D array in file, each rank writes ‘YDIM’ (1) rows

Many details managed by pnetcdf library
• File views
• offsets

Be mindful of define/data mode: call ncmpi_enddef()

Library will take care of header i/o for you

1. Define two dimensions
• ncmpi_def_dim()

2. Define one variable
• ncmpi_def_var()

3. Collectively put variable
• ncmpi_put_vara_int_all()
• ‘start’ and ‘count’ arrays: each process selects different regions

4. Check your work with ‘ncdump <filename>’
• Hey look at that: serial tool reading parallel-written data: interoperability at work

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Solution fragments for Hands-on

/* row-major ordering */

NC_CHECK(ncmpi_def_dim(ncfile, "rows", YDIM*nprocs, &(dims[0])));

NC_CHECK(ncmpi_def_dim(ncfile, "elements", XDIM, &(dims[1])));

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

iterations=1;

NC_CHECK(ncmpi_put_att_int(ncfile, varid_array,

 "iteration", NC_INT, 1, &iterations));

start[0] = rank*YDIM; start[1] = 0;

count[0] = YDIM; count[1] = XDIM;

NC_CHECK(ncmpi_put_vara_int_all(ncfile, varid_array, start, count, values));

Defining dimension: give name, size; get ID

Defining variable: give name, “rank” and dimensions (id); get ID
Attributes: can be placed globally, on variables, dimensions

I/O: ‘start’ and ‘count’ give location, shape of subarray. ‘All’ means collective

0 1 2 3

10 11 12 13

20 21 22 23

30 31 32 33

40 41 42 43

Hdr

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Inside PnetCDF Define Mode

In define mode (collective)
• Use MPI_File_open to create file at create time
• Set hints as appropriate (more later)
• Locally cache header information in memory

o All changes are made to local copies at each process

At ncmpi_enddef
• Process 0 writes header with MPI_File_write_at
• MPI_Bcast result to others
• Everyone has header data in memory, understands placement of all variables

o No need for any additional header I/O during data mode!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Inside PnetCDF Data Mode

■Inside ncmpi_put_vara_all (once per variable)
– Each process performs data conversion into internal buffer
– Uses MPI_File_set_view to define file region
– MPI_File_write_all collectively writes data

■At ncmpi_close
– MPI_File_close ensures data is written to storage

■MPI-IO performs optimizations
– Two-phase possibly applied when writing variables

■MPI-IO makes DAOS calls
– Many DAOS details hidden – tuning possible but hopefully not often needed

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Inside PnetCDF: Darshan heatmap analysis
M

P
I-

IO
D

A
O

S

IOR writing Parallel-NetCDF: each process writes 1x10^6 bytes then reads it back (see hands-
on/ior/aurora/ior-pnetcdf.sh)

DEFAULT Forced collective

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Hands-on continued

• Take a look at the Darshan report for your “writing
with pnetcdf” job (array-pnetcdf-write)

• Account for the number of MPI-IO and DAOS write
operations

• MPIIO_COLL_WRITES and MPIIO_INDEP_WRITES
• DFS_WRITES

• Did ROMIO chose to use collective calls here?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Parallel-NetCDF Inquiry routines

Talked a lot about writing, but what about reading?
Parallel-NetCDF QuickTutorial contains examples of several approaches to
reading and writing
General approach

1. Obtain simple counts of entities (similar to MPI datatype “envelope”)
2. Inquire about length of dimensions
3. Inquire about type, associated dimensions of variable

Real application might assume convention, skip some steps
A full parallel reader would, after determining shape of variables, assign
regions of variable to each rank (“decompose”).

• Next slide focuses only on inquiry routines. (See website for I/O code)

https://github.com/radix-io/hands-on

17
extremecomputingtraining.anl.gov

Parallel NetCDF Inquiry Routines

1

3

2

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

HANDS-ON: reading with pnetcdf

Similar to MPI-IO reader: just read one row
Operate on netcdf arrays, not MPI datatypes
Shortcut: can rely on “convention”

• One could know nothing about file as in previous slide
• In our case we know there’s a variable called “array” (id of

0) and an attribute called “iteration”
Routines you’ll need:

• ncmpi_inq_dim to turn dimension id to dimension length
• ncmpi_get_att_int to read “iteration” attribute
• ncmpi_get_vara_int_all to read column of array

4

N
p
ro

c
s

https://github.com/radix-io/hands-on

19
extremecomputingtraining.anl.gov

Solution fragments: reading with pnetcdf

NC_CHECK(ncmpi_inq_var(ncfile, 0, varname, &vartype, &nr_dims,

 dim_ids,&nr_attrs));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[0], NULL, &(dim_lens[0])));

NC_CHECK(ncmpi_inq_dim(ncfile, dim_ids[1], NULL, &(dim_lens[1])));

NC_CHECK(ncmpi_get_att_int(ncfile, 0, "iteration", &iterations));

count[0] = dim_lens[0]; count[1] = 1;

starts[0] = 0; starts[1] = XDIM/2;

NC_CHECK(ncmpi_get_vara_int_all(ncfile, 0, starts, count, read_buf));

Making inquiry about variable, dimensions

The “Iteration” attribute

No file views or datatypes: just a starting coordinate and size – everyone reads same slice in this case

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Parallel-NetCDF write-combining
optimization

netCDF variables laid out contiguously
Applications typically store data in
separate variables

• temperature(lat, long, elevation)
• Velocity_x(x, y, z, timestep)

Operations posted independently,
completed collectively

• Defer, coalesce synchronization
• Increase average request size

ncmpi_iput_vara(ncfile, varid1, &start, &count, &data,

 count, MPI_INT, &requests[0]);

ncmpi_iput_vara(ncfile, varid2, &start, &count, &data,

 count, MPI_INT, &requests[1]);

ncmpi_wait_all(ncfile, 2, requests, statuses);

HEADER VAR1 VAR2

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Example: FLASH Astrophysics

FLASH is an astrophysics code for
studying events such as supernovae
• Adaptive-mesh hydrodynamics
• Scales to 1000s of processors
• MPI for communication

Frequently checkpoints:
• Large blocks of typed variables

from all processes
• Portable format
• Canonical ordering (different than

in memory)
• Skipping ghost cells Ghost cell

Stored element

…
Vars 0, 1, 2, 3, … 23

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

FLASH Astrophysics and the write-combining optimization

FLASH writes one variable at a
time
Could combine all 4D variables
(temperature, pressure, etc) into
one 5D variable

• Altered file format (conventions)
requires updating entire analysis
toolchain

Write-combining provides
improved performance with
same file conventions

• Larger requests, less
synchronization.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

HANDS-ON: pnetcdf write-combining

1. Define a second variable, changing only the name
2. Write this second variable to the netcdf file
3. Convert to the non-blocking interface

(ncmpi_iput_vara_int)
• not collective – “collectiveness” happens in

ncmpi_wait_all

• takes an additional ‘request’ argument

4. Wait (collectively) for completion

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Solution fragments for write-combining

NC_CHECK(ncmpi_def_var(ncfile, "array", NC_INT, NDIMS, dims,

 &varid_array));

NC_CHECK(ncmpi_def_var(ncfile, "other array", NC_INT, NDIMS, dims,

 &varid_other));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_array, start, count,

 values, &(reqs[0])));

NC_CHECK(ncmpi_iput_vara_int(ncfile, varid_other, start, count,

 values, &(reqs[1])));

/* all the I/O actually happens here */

NC_CHECK(ncmpi_wait_all(ncfile, 2, reqs, status));

Defining a second variable

The non-blocking interface: looks a lot like MPI

Waiting for I/O to complete

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Hands-on continued

Look at the darshan output. Compare to darshan
output for single-variable writing or reading

• MPIIO_COLL_OPENS vs DFS_READS
• Which optimization did ROMIO select?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

PnetCDF Wrap-Up

PnetCDF gives us
• Simple, portable, self-describing container for data
• Collective I/O
• Data structures closely mapping to the variables described

If PnetCDF meets application needs, it is likely to give good performance
• Type conversion to portable format does add overhead

Some limits on (old, common CDF-2) file format:
• Fixed-size variable: < 4 GiB
• Per-record size of record variable: < 4 GiB
• 232 -1 records
• Contributed extended file format to relax these limits (CDF-5, released in pnetcdf-1.1.0,

November 2009, integrated in Unidata NetCDF-4.4)

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

https://github.com/radix-io/hands-on

Data Model I/O libraries

▪ Parallel-NetCDF: http://www.mcs.anl.gov/pnetcdf
▪ HDF5: http://www.hdfgroup.org/HDF5/
▪ NetCDF-4: http://www.unidata.ucar.edu/software/netcdf/netcdf-4/

– netCDF API with HDF5 back-end

▪ ADIOS: http://adiosapi.org
– Configurable (xml) I/O approaches

▪ SILO: https://wci.llnl.gov/codes/silo/
– A mesh and field library on top of HDF5 (and others)

▪ H5part: http://vis.lbl.gov/Research/AcceleratorSAPP/
– simplified HDF5 API for particle simulations

▪ GIO: https://svn.pnl.gov/gcrm
– Targeting geodesic grids as part of GCRM

▪ PIO:
– climate-oriented I/O library; supports raw binary, parallel-netcdf, or serial-netcdf (from master)

▪ … Many more: consider existing libs before deciding to make your own.

https://github.com/radix-io/hands-on
http://www.mcs.anl.gov/pnetcdf
http://www.hdfgroup.org/HDF5/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://www.unidata.ucar.edu/software/netcdf/netcdf-4/
http://adiosapi.org/
https://wci.llnl.gov/codes/silo/
https://svn.pnl.gov/gcrm

extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: Higher-level I/O libraries: PnetCDF and friends
	Slide 2: Reminder: HPC I/O Software Stack
	Slide 3: Data Model Libraries
	Slide 4: In Practice: The Parallel netCDF Interface and File Format
	Slide 5: Parallel NetCDF (PnetCDF)
	Slide 6: Parallel netCDF (PnetCDF)
	Slide 7: netCDF Data Model
	Slide 8: Record Variables in netCDF
	Slide 9: Pre-declaring I/O
	Slide 10: HANDS-ON: writing with Parallel-NetCDF
	Slide 11: Solution fragments for Hands-on
	Slide 12: Inside PnetCDF Define Mode
	Slide 13: Inside PnetCDF Data Mode
	Slide 14: Inside PnetCDF: Darshan heatmap analysis
	Slide 15: Hands-on continued
	Slide 16: Parallel-NetCDF Inquiry routines
	Slide 17: Parallel NetCDF Inquiry Routines
	Slide 18: HANDS-ON: reading with pnetcdf
	Slide 19: Solution fragments: reading with pnetcdf
	Slide 20: Parallel-NetCDF write-combining optimization
	Slide 21: Example: FLASH Astrophysics
	Slide 22: FLASH Astrophysics and the write-combining optimization
	Slide 23: HANDS-ON: pnetcdf write-combining
	Slide 24: Solution fragments for write-combining
	Slide 25: Hands-on continued
	Slide 26: PnetCDF Wrap-Up
	Slide 27: Data Model I/O libraries
	Slide 28: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

