

Introduction to Large Language Models

Huihuo Zheng

Argonne Leadership Computing Facility, Argonne National Laboratory

July 31, 2025

Some contents were generated with the help of ChatGPT / Gemini.

Outline

History of language model

How LLMs works

Transformer
Architecture

Training pipeline

- Dataset
- Training
- Evaluation

What Is a large language model?

A large language model (LLM) is a language model trained with self-supervised learning on a vast amount of text, designed for natural language processing tasks, especially language generation.

Evolution of language models

The Power of LLMs

Text understanding

- Comprehension
- Classification
- Sentiment analysis

Text Generation

- Paraphrasing
- Translation
- Summarization
- Editing

Specialized tasks

- Retrieval augmented QA
- Scientific QA
- Code generation
- Data analysis

Reasoning & Planning

- Commonsense reasoning
- Solving Math problems
- Chain of thoughts

Agentic tasks

- Tool Use
- Function calling
- Autonomous Agents

The Power of LLMs – GenAl?

Large Language Models for Batteries

Wenhua Zuo¹, Huihuo Zheng², Tanjin He³, Venkatram Vishwanath², Maria K. Y. Chan³, Rick L. Stevens², Gui-Liang Xu¹.8*, Khalil Amine¹.8*

¹Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA

²Leadership Computing Facility, Argonne National Laboratory, Lemont, IL 60439, USA

³Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA

*Corresponding authors. Email: xug@anl.gov, amine@anl.gov

81 ead contact

*Correspondence: xug@anl.gov

Accepted to Joule

The efficacy of language models in tackling a wide range of problems lies in the intimate connection between language and knowledge: Language is not only a communicative medium but also a repository, where collective human knowledge and logical inference are deposited. As a result, LLMs, by accurately capturing and reproducing these patterns implicitly conveyed in language, have a profound capacity to handle various tasks and challenges. [Quote from Large Language Models for Batteries]

els (LLMs) are advanced artificial intelligence (AI) models various tools to address diverse tasks. Despite their increasing ia and industry, the potential of LLMs is still underutilized

Fundamental principle behind LLMs

Two ways of learning English

- Through learning grammatic rules (deterministic)
- Through hearing a lot of speaking (data driven)

Power of data driven way

Fundamental principle behind LLMs

LLMs function by pre-training on extensive datasets to learn language patterns

- I got a big present; I am very happy
- I will go to UK this weekend; I am very excited.
- My mom brought me new shoes; I am very happy.
- · I got a new car; I am very happy.
- · I failed my calculus class; it makes me very sad.
- My iPad Pro got water damage; I am very upset. Should I get a new one?

I got an A+; I am verv

happy pleased proud

You

What should I fill in the blank?

I got an A+; I am very ____

ChatGPT

I got an A+; I am very proud.

You

What should I fill in the blank?

I got an A+; I am very ____

ChatGPT

I got an A+; I am very pleased.

< 3/3

You

What should I fill in the blank?

I got an A+; I am very ____

ChatGPT

I got an A+; I am very ecstatic.

The Transformer Architecture: A Paradigm Shift

Main breakthroughs

- Captures global context using self-attention
- All tokens in a sequence can be processed in parallel

Attention Is All You Need, Ashish Vaswani, et al, arXiv:1706.03762

Self-attention, multihead attention

Self-attention allows a model to weigh the importance of **each word** in a sequence relative to the **others**, enabling it to capture contextual relationships.

$$\operatorname{Attention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

Main operations involved

Efficient Large-Scale Language Model Training on GPU Clusters Using Megatron-LM, Deepak Narayanan et al, arXiv:2104.04473

Training pipeline – Data Collection

Blending of different corpora

Web crawls: Common Crawl, CCNet, C4 (used by T5, PaLM)

Books: Books1 & Books2 (used by GPTs), The Pile: Books3

Wikipedia: High-quality curated text, multilingual

Code: GitHub data via The Stack, CodeSearchNet

Scientific papers: arXiv, PubMed, S2ORC

Dialog & QA: OpenWebText, Reddit, StackExchange, Quora

Multilingual corpora: CCMatrix, OPUS, mC4

Training pipeline – Data Preprocessing

Training pipeline – Model Architecture

Encoder-only (BERT)

- Pre-training: Masked Language Modeling (MLM)
- Great for classification tasks, but hard to do generation

Decoder-only (GPT)

- Pre-training: Auto-regressive Language Modeling
- Stable training, faster convergence
- Better generalization after pre-training

Encoder-decoder (T0/T5)

- Pre-training: Masked Span Prediction
- Good for tasks like MT, summarization

Training pipeline – Distributed Training

Efficient Training of Large Language Models on Distributed Infrastructures: A Survey, Jiangfei Duan et al, arXiv:2407.20018

Training pipeline

Evaluation Benchmarks

General Language Understanding

GLUE GLUE

SuperGLUE

Math & STEM

HumanEval

MBPP

CodeEval

BIG-bench Hard

Knowledge & Reasoning

MMLU

ARC OpenBookQA

BoolQ

Coding & Alignment

MT-Bench

AlpacaEval

Helpful, Honest, Harmless (HHH) Dialogue & Alignment

MT-Bench AlpacaEval

AlpacaEval Helful, Honest,

Harmless (HHH)

ToxiGen

Multilingual & Multimodal

XGLUE XTREME

FLORES MMMU

MathVista MathVista

Why do we need large models?

Why do we need large models?

Emergent abilities are skills or behaviors that do not appear in smaller models but suddenly emerge once a model crosses a certain scale threshold.

Examples of Emergent Abilities

- Chain-of-thought reasoning
- In-context learning (e.g., few-shot learning without fine-tuning)
- Multistep mathematical reasoning
- Code synthesis
- Tool use (e.g., calculators, search engines)

Scaling Laws & Trends

Model performance improves predictably with increased: **Model size** (parameters); **Dataset size** (tokens); **Compute** (FLOPs) (**DeepMind**, **2022**)

Chinchilla Scaling

- Overtraining large models on small datasets is inefficient.
- Optimal tradeoff: Reduce model size, increase training tokens.
- Chinchilla (70B params, 1.4T tokens) > Gopher (280B, 300B tokens)

Hallucination in LLM

LLM generates confident but false or unverifiable information.

Query: Please provide a submission script on ALCF Aurora to run a python job on 1024 nodes.

Answer from GPT-4 Turbo:

```
#!/bin/bash
                                  # Number of nodes
#COBALT -n 1024
#COBALT -t 30
                                  # Walltime in minutes
#COBALT -q default
                                  # Queue name
#COBALT -A your_project_account # Project allocation
#COBALT -O my_python_job
                                  # Output file prefix
# Load necessary modules
module load conda/2023-10
conda activate myenv
# Optional: Load Intel oneAPI, if needed
# module load intel-oneapi-mpi
# Path to your Python script
SCRIPT=your_script.py
# Launch the job using mpirun
mpirun -np 1024 python $SCRIPT
```

Answers that are completely incorrect and are out of the trained information

- Outdated training dataset
 - COBALT for Aurora
- Unable to understand the specific context
 - Wrong conda module
 - Wrong suggestion of oneapi module
 - Number of nodes
 - Slurm instead of PBS

A Survey on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open Questions; arXiv:2311.05232 Detecting hallucinations in large language models using semantic entropy; Nature volume 630, pages625–630 (2024) Hallucination is Inevitable: An Innate Limitation of Large Language Models; arXiv:2401.11817

Retrieval Augmented Generation

RAG is a technique where a language model retrieves relevant external documents before generating an answer, grounding its output in factual, up-to-date information.

A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models, arXiv:2405.06211

Query: Please provide a submission script on ALCF Aurora to run a python job on 1024 nodes

```
#!/bin/bash -1
#PBS -1 select=1024
                             # selecting 1024 Nodes
#PBS -1 place=scatter
#PBS ...[Other PBS settings are omitted]
NNODES=`wc -1 < $PBS_NODEFILE`
NRANKS_PER_NODE=12
let NRANKS=${NNODES}*${NRANKS_PER_NODE}
module use /soft/modulefiles
module load frameworks
# ...[oneCCL and Slingshot environment settings are omitted]
mpiexec -np ${NRANKS} -ppn ${NRANKS_PER_NODE} \
--cpu-bind ${CPU_BIND} \
python path/to/application.py
References:
- [1] https://github.com/argonne-lcf/user-guides/blob/main/
      docs/aurora/data-science/frameworks/tensorflow.md
```

AskALCF: A RAG empowered ChatBot for ALCF user support

Multi-Agent LLM System

A multi-agent system is a collection of AI agents—often LLMs—that interact, collaborate, or compete to solve complex tasks beyond the capability of a single model.

The landscape of emerging ai agent architectures for reasoning, planning, and tool calling: A survey, Tula Masterman et al, arxiv:2404.11584 Large Language Model based Multi-Agents: A Survey of Progress and Challenges, Taicheng Guo et al, arXiv:2402.01680

Multi-Agent RAG system

What are the differences between the fastest supercomputers at ALCF and OLCF?

Reasoning trace from the multi-agent RAG

LLM trends over time

Exponential Growth in Model Size

• GPT-2 (1.5B, 2019) → GPT-3 (175B, 2020) — GPT-4 (est. >1T, 2023)

Rise of Open LLMs

• LLaMA, Falcon, Mistral, Mixtral, Gemma, DeepSeek, etc.

Shifts in Architecture

Dense → Mixture of Experts (MoE): Switch, Mixtral

Efficient Fine-tuning: LoRA, QLoRA Multi-agent collaboration

- Retrieval-Augmented Generation (RAG)
- Energy & Compute Efficiency

Hands on example

MiniLLM example

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/02_intro_to_LLMs/03_languagemodels.ipynb

AskALCF ChatBot: https://anl.box.com/s/cap42vxtk91tk4k0xjk5qckq1bqztpjn

Access AskALCF

The ChatBot is currently hosted on Crux and accessible via SSH tunneling. To access, please set up the following in your config file in your ~/.ssh/config file on your local laptop

Host askalcf-user

User "username"

HostName crux-uan-0001

ProxyJump username@crux.alcf.anl.gov

LocalForward 9505 localhost:9505

Then do ssh askalcf-user and open a browser and type below: http://localhost:9505

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National Laboratory and is based on research supported by the U.S. DOE Office of Science-Advanced Scientific Computing Research Program, under Contract No. DE-AC02-06CH11357.

