Introduction to MPI-I0O

Rob Latham
Research Software Developer, Argonne National Laboratory

extremecomputingtraining.anl.gov

http://extremecomputingtraining.anl.gov/

Hands on materials

* Code for available on our github site: https://github.com/radix-io/hands-on

* This session:
* “hello-i0” basics
« Simple array I/O
* IOR recipes
* Other sessions today:
« Darshan
« HDF5
« “Bonus Content:”
e Game of Life I/0
e Sparse Matrix 1/0

* Work through examples when you can. We're going to do this “cooking
show” style...

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

* |/Ointerface specification for use in MPl apps

 Data modelis same as POSIX: stream of bytes in a file

* Like classic POSIXin some ways...
 Open() = MPI_File_open()
* Pwrite() > MPI_File_write()
* Close() 2 MPI_File_close()

* Features many improvements over POSIX:
 Collective I/O
* Noncontiguous I/O with MPI datatypes and file views
* Nonblocking I/O
* Fortran bindings (and additional languages)

* Implementations available on most (all?) platforms
* I’ll be talking a lot about the ROMIO implementation

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: contiguous

/* an "Info object": these store key-value strings for tuning the
* underlying MPI-IO implementation */
MPI_Info_create(&info);

snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs); Rank 0:

len = strlen(buf); 24 bytes at 0

/* We're working with strings here but this approach works well

* whenever amounts of data vary from process to process. */ Rank 1:
MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM WORLD); 24 bytes at 24

MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],
MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

/* _all means collective. Even if we had no data to write, we would
* still have to make this call. 1In exchange for this coordination, Hello from... Hello from...
* the underlyng library might be able to greatly optimize the I/0 */

MPI_CHECK(MPI_File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));

MPI_CHECK(MPI_File_close(&fh));

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ArgonneO

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: non-contiguous in memory

MPI_Datatype memtype;
MPI_Count memtype_size;

/* sample string:
* Hello from rank 8 of 16

*

the '-' indicates which elements an indexed type with
Lengths 6 and 16 at displacemnts @ and
* "10 from end of string"” would select: */
int lengths[2] = {6, 10};
int displacements[2] = {0, len-10};
MPI_Type_indexed(2, lengths, displacements, MPI_CHAR, &memtype);
MPI Type commit(&memtype);
MPI Type size x(memtype, &memtype size);

* ¥ %

MPI_ CHECK(MPI File write_at all(fh, offset, buf, 1, memtype,
&status));

ATPESC2@25 code etc: https://github.com/radix-io/hands-on

Helloifrom rank'6f 16

‘lengths” and “displacements”: each
rank sends first six and last ten
characters to file

Rank O:
6+10 bytes at 0

Rank 1:
6+10 bytes at 16

A 4

Hellok 0 of 16 | Hellok 1 of 16

extremecomputingtraining.anl.gov Argonne O

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: non-contiguous in file

/* noncontiguous in file requres a "file view*/
MPI_Datatype viewtype;
int *displacements; Hello from rank O of 16 Hello from rank 1 of 16

displacements = malloc(len*sizeof(*displacements));

/* each process will write to its own "view" of the file:

* Rank ©:

*Hel Lo from
Rank 1:

*Hel Lo from.

*/
for (int i=0; i< len; i++)

displacements[i] = rank+(i*nprocs); H H

MPI Type create_indexed block(len, 1, displacements, MPI_CHAR, &viewtype);
MPI_Type_commit(&viewtype);
free(displacements);

*

MPI_CHECK(MPL_File open(MPI COMM WORLD, argv[1], While this access describes lots of small

MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh)); regions, the library sees it as one single
MPI_CHECK(MPI_File_set_view(fh, @, MPI_CHAR, viewtype, "native", info)); access and can optimize.
MPI_CHECK(MPI_File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ArgonneO

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

« Submit to the ‘ATPESC2025" queue (aurora)

* I've provided a ‘hello-aurora.sh’ shell script
e qsub hello-aurora.sh

« We'll use the DAOS file system
 ALCF has made a “ATPESC2025 0" pool on the “daos_perf”’ service

 Job script will create your own container inside that pool
* daos container create --type POSIX $DAOS_POOL $DAOS_CONT

« DAOS is always running, but we have to “launch” the file system view of it
* launch-dfuse_perf.sh ${DAOS_POOL}:${DAOS_CONT}

* Now shell tools can operate on /tmp/${DA0S_POOL}/${DAOS_CONT}

* There’s a special “cpu binding” to place processes such that they
use all 8 Aurora network cards.

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Output on Aurora

==== contiguous in memory and file ==== noncontiguous in file

cat /tmp/ATPESC2025 0/robl-hello/hello.out cat /tmp/ATPESC2025 0/robl-hello/hello-
Hello from rank 0 of 16 view.out

Hello from rank 1 of 16 HHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeelllllll
. 111111111111111111111111100000000000000
Hello from rank 15 of 16 00

fffffffffffffffreeeeeeeerrerrrrroooo0000
00000000OMmMmmMmMmMmmmmmmmmmmm

==== noncontiguous in memory rrererrerererrerrrraaaaaaaaaaaaaaaannnnnnn
cat /tmp/ATPESC2025 ©/robl-hello/hello- nnnnnnnnnkkkkkkkkkkkkkkkk

noncontig.out 1111110123456789012345

Hello k @ of 16 0000000000000000fFFfFfffffffffff

Hello k 1 of 16 11111111111111116666666666666666

Hello 15 of 16

Output of our hello programs

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Under the hood: DAOS (essentially)

DAQOS servers

container2

POSIX Container objects DKEYS:

container1 2814754062073856.0
2814754062073857.0

025571296501401038.152

939571297230848002.128

robl-hello 939571296817209422 .64

DAOS Container

Data objects

daos container list-objects ATPESC2025 ©

DAOS POOL

daos pool list-containers ATPESC2025 ©

ATPESC2025

code etc: https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Hello-io -> inode
hello-noncontig/-> inodeY
Hello-view -> inodeZ

inodeX

Mode
Objectid
Uid

Gid
Mtime

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Key takeaways

* Simple example but still captures important concepts

* |Info objects: tuning parameters:
* enable/disable optimizations
* Adjust buffer sizes
* Select alternate strategies

 Data placementin file specified by user

* “shared file pointer” possible but not optimized
* Collective vsindependent1/0O
* Error checking!!!

* Alot of complexity of DAOS abstracted away under “DAQOS file system” and
ROMIQO’s DAOS driver
* DAQOS optimizations like “resolve on one, broadcast to all”
* Portable to any supported file system: could write to lustre simply by changing the path

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Operating on Arrays

* Arrays show up in many scientific
applications

Matrix operations

Particle maps

Regions of space

* Time series

* Images

* Probably your real application more
complicated but an array or two (or
more) is in there somewhere, I’'d wager.

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Decomposition

Typical simulations divide up the region being

simulated into chunks, then group those /\ Whgn s.peﬁd Of. .
chunks into similar amounts of work. w Writing IS the priority,
blobs of data are

L e | Written from each

BN ([T TTTTTI| nodeinto individual
OO [T T 77 S| files that must then

I T T T 77 be post_processed
\/ for analysis.

To prepare data for
analysis, a code
canwritein a
canonical view by
processing the data
while itisin
memory, resulting
in a better
organized dataset.

Graphic from J. Tannahill, LLNL

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

- .
Ii
- AN AN AN j

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Scientific 1/0 constraints

* Defensive I/0:
* Guard against node failures or program errors with checkpointing
* Application saves its own state
* With a bit of extra effort, can be a portable, canonical representation
* |deally Independent of number of processes

* Restarting:
* Canonical representation aids restarting with a different number of processes

 Data analysis
 Who will consume this data?

Al and Machine Learning
 “whyis my[random small read] workload so slow?”

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Defining a Checkpoint

* Need enough to restart

* Header information
* Size of problem (e.g. matrix dimensions)
* Description of environment (e.g. input parameters)

* Program state
* Should represent the global (canonical) view of the data

* |deally stored in a convenient container
e Single “thing” (file, object, keyval store...)

* |f all processes checkpoint at once, naturally a parallel, collective
operation

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ArgonneO

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Collective I/O

* A critical optimization in parallel I/0

* All processes (in the communicator) must call the collective
|/0 function

* Allows communication of “big picture” to file system
* Framework for I/0 transformations/optimizations at the MPI-IO layer

* e.g.,two-phase /O R
L —
— Large collective
access
//?

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

Smallindividual
requests

https://github.com/radix-io/hands-on

Collective MPI I/O Functions

* Not going to go through the MPI-10 APl in excruciating detail
* Happy to discuss in slack, chat, email

* MPI File write_at all, etc.

 _allindicates that all processes in the group specified by the communicator
passed to MPI_File_open will call this function

 _atindicates that the position in the file is specified as part of the call; this
provides thread-safety and clearer code than using a separate “seek” call

* Each process specifies only its own access information
* the argument list is the same as for the non-collective functions

 OK to participate with zero data
* All processes must call a collective
* Process providing zero data might participate behind the scenes anyway

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

HANDS-ON: writing with MPI-1O

* Write our toy checkpoint to a file in parallel (array/array-mpiio-write.c)
e UseMPI File openinstead of open
* Only one process needs to write “ header”

* IndependentMPI File write xdim)
* Could combine, but header I/0 small and checkpoint (typically) vastly =
larger £ o
. . » -O
* Every process sets a “file view > -
* Need to skip over header —file view has an “offset” field just for this case
. Ehe “file view” here is not complicated: we are operating on integers, not N
ytes:
e MPI File set view(fh, sizeof (header), MPI INT,
MPI INT, "native", info)); N w

* Each process writes one slice/row of array
* MPIL_File_write_at_all
e Offset: “rank*XDIM*YDIM” — no ‘sizeof’: specified ints in file view
* “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI INT)

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Solution fragments

Header I/O from rank O:
if (rank == 0) {
MPI CHECK (MPI File write (fh,
&header, sizeof (header), MPI BYTE,
MPI STATUS IGNORE));

Collective I/O from all ranks

MPI File write at all(fh, rank*XDIM*YDIM,
values, XDIM*YDIM, MPI INT,
MPI STATUS IGNORE)) ;

ATPESC2@25 code etc: https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Hands-on continued: Darshan

Let’s use Darshan
* Find Darshan log file, but don’t generate report right away

What do you think the report will say?

OK, now generate the report. Were you surprised?

* Counts of POSIX calls (POSIX_WRITES) vs MPI-IO calls
(MPIIO_COLL_WRITES)

e Sizes of POSIX calls vs sizes of MPI-IO calls
MPI-1O “info” hints to guide optimizations

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Aonsagmi
TN
BAOWSHAN
uzdond
INdAA
REST]
Aonsag iy
Yaunding
sy
7SS LY
BZISIPOLY
%, I >0y

L
PeayLy
1s1x224/90
snAayia
1s14exalqo
YoundAsNgigo
wunghialao
wpunglao
%, I, 12400
@1epdnigo
& | unsdlao

ufs

N uado ‘o3

N UM 100

pesy ‘103

uado "pul

~

APl

peay pul

200
175
150
125
00
75
50
25
0
400
350

g 2 8
R &

150
100
50

o
unoy unoy

2)lIM ‘peal i(g) ejeq 23m ‘peal :(g) ele
~

~

-].DD
4x10%

107
6x 10
-2x10?

™~ Time bins: 20
-3x10

-

Time bins: 20

™~
-

LTI -

Time (s)
Time (s)

Hinted (collective)

L 90 90

T T 00

196 A
154 -
119 -
77
42
0
196 -
154
119
7
4

Aonsagpi
TN
BAOWSHAN
uadom
AN
REST]
. sadg 103 konsaguy
Yaunding
sy
N 2 193 ZSRPSLY
BZISIPOLY
usdouy
peayLy
1s0osulE0
snAayigo
1s14exalqo
& [pul youndhaxylao
younghaxglao
yaunglao

ey 2, I, >0/90
-

Suis

peay 103

N
£

uado “put

-
(©
<
o
S
(©
Q

@1epdnigo
ymedlan

200
175
150
125
100
7
50
2

unoy

o
=1

R
M ‘peas i(g) eieq IJum ‘peal .u”m.wumumn_

o o
A

250
150
100

- —

3.2x10%
3x 10!
2.8 %10
2.6x10
2.4x10
-2.2x 10t
2x 10!
3x 10
-2x10*

102
6x10
4x10

™~ Time bins: 90

[-+]
d
™ Time bins: 90

Fres rS's

Time (s)
Time (s)

Default (independent)

FLe FLe

T T 00 T T 00

196 -
154 -
119 4

7

A
196 -
154 4
119 4

7

A

Auey quey

Hands-on continued

Ol-IdW sovd

NATIONAL LABORATORY

Argonne &

extremecomputingtraining.anl.gov

//github.com/radix-io/hands-on

Operation counts

https

code etc

ATPESC2025

https://github.com/radix-io/hands-on

Managing Concurrent Access

* Files are treated like global shared memory regions. Locks are
used to manage concurrent access:

* Files are broken up into lock units
* Unit boundaries are dictated by the storage system, regardless of access pattern

* Clients obtain locks on units that they will access before I/0O occurs

* Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

e | ocks are reclaimed from clients when others desire access

If an access touches any data in a Offset in File
lock unit, the lock for that region | | | | | | | | - ‘ | ""‘
must be obtained before access o I
} |
occurs. Lock Lock File Access
Boundary Unit

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo

https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

The left diagram shows a row-
block distribution of data for
three processes. On the right
we see how these accesses
map onto locking units in the
file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray).This results in many
interleaved accesses in the file.

ATPESC2025

2D View of Data

code etc: https://github.com/radix-io/hands-on

Offset in File

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

Y

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

extremecomputingtraining.anl.gov

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

/0O Transformations

* Software between the application and the file system performs
transformations, primarily to improve performance.

= (Goals of transformations:

— Reduce number of operations to PFS
(avoiding latency)
— Avoid lock contention

Process O Process | Process 2

LR EFA

(increasing level of concurrency)
— Hide number of clients
(more on this later)

= With “transparent” transformations,
data ends up in the same locations in
the file as it would have been

normally

— i.e., the file system is still aware of the
actual data organization

= |/O libraries do these for you already

ATPESC2@25 code etc: https://github.com/radix-io/hands-on

When we think about I/0 transformations,
we consider the mapping of data between
application processes and locations in file.

extremecomputingtraining.anl.gov Argonne 6

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Reducing Number of Operations

* Because most operations go over multiple networks, 1/0 to a PFS incurs
more latency than with a local FS. Data sieving is a technique to address I/0

latency by combining operations:

* When reading, application process reads a large region holding all needed data
and pulls out what is needed

* When writing, three steps required (below)
* Somewhat counter-intuitive: do extra I/O to avoid contention

Application Process
vemory | [[[[HEEEBR
Bufer | I.;I..-».ﬂlll
%1 B e B AR B
1T F 1 1] ‘ ‘
File [[[T T I [T [I] 1 | LT I L[[l
Step |: Data in region to be modified Step 2 EIements to be written to file Step 3: Er.1t|re r.egion is .written b?Ck to
are read into intermediate buffer (| are replaced in intermediate buffer. storage with a single write operation.
read).

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ArgonneO

https://github.com/radix-io/hands-on

Data Sieving in Practice (Polaris, Lustre)

Not always a win, particularly for writing:

* |OR benchmark, fixed file size, increasing segments
* Enabling data sieving instead made writes slower: why?

* Lockingto prevent false sharing (not needed for reads) . —

 Multiple processes per node writing simultaneously _

* Internal ROMIO buffer too small, resulting in write MPI-10 writes 960 960
amplification [1]

Noncontiguous Writes with IOR MPI-10 Reads 0 0
200 — T T
Data Siéving Ensbled —s— B Posix Writes 4800 000 4800 000
Posix Reads 0 4 800784
150 | i
- MPI-10 bytes written 8.9 GiB 8.9 GiB
e W MPI-IO bytes read 0 0
E I » .
" 4_ 5000 pieces Posix bytes read 0 2334 GiB
2 000 bytes each
50 |- 1 [1] Posix bytes written 8.9GiB 2343 GiB
Runtime (sec) 68.8 404.2
o% = == s o000 Selected Darshan statistics for 5000 segments

Pieces

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Data Sieving Alternative: scatter-gather (list-io)

« Same IOR experiment, this time on Aurora’s :
DAQOS 312 500 pieces

. . 32 bytes each
* DAOS provides an alternative approach:

describe the en.tire /0 requeSt with a IOR write time as degree of noncontig increases /
scatter-gather list (d_sg_list_t): 03

« int dfs_write(dfs_t *dfs, dfs_obj_t *obj,
$_5§_11$t_t *sgl, daos_off_ t off, daos_event t 0.7 7
ev);

* ROMIQO driver does this for you 06 1

e Curve starts to bend at 50 000 elements:
* notey axis - stillunder one second

* We think due to server side processing of these
very long lists

« Some new optimizations in the pipeline as well

0.5 1

Time (seconds)

0.4

0.3

J—
0.2 1 _\

T T T T T T T T T T LRI AR T
10° 10! 102 10* 10)_/105

Pieces

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Avoiding Lock Contention

* We can reorder data among processes to avoid lock contention.
Two-phase I/0 splits I/0O into a data reorganization phase and an
interaction with the storage system (two-phase write depicted):

 Data exchanged between processes to match file layout
* 0" phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | Process 2
Memory B [__ N H B B HE B BN Ul O
e —r] [.=

Server 0 Server | Server 2 S ro0 Server| | Seerr;?/

File [T 1] [T 1] LI
Phase I: Data are exchanged between processes based Phase 2: Data are written to file (storage servers) with
on organization of data in file. large writes, no contention.
ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Two-Phase /O Algorithms

(or, You don’t want to do this yourself...)

Imagine a collective /O access Offset in File >
using four aggregators to a file [T T oo [[[N [[[DOy [[[[
striped over four file servers P A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly Aggregato"'-i-AggregatO"z?Aggfegato"3-i-A88"egat°"4
divide the region accessed CT T T D /T T | s T [[i [
across aggregators. OO T T - T

Aligning regions with lock —> —>

boundaries eliminates lock U Acorecatar | T Acorasatar T Acormontar 2 U Acoraoarar 4 :

contention. “ + Aggregator | Aggregator2 | Aggregator3 . Aggregator4 ;
[L 1

Mapping aggregators to servers
reduces the nhumber of
concurrent operations on a
single server and can be helpful _‘ Cal A2 A3 I A4 Al T A TTTAI A4
when locks are handed out on : ' : ' : ' : :
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and
A. Choudhary, “Dynamically Adapting File
Domain Partitioning Methods for
Collective

I/O Based on Underlying Parallel File
System Locking Protocols,” SC2008,
November, 2008.

Today’s systems also
choose aggregators
that are “best” for
storage

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

Two-phase /O in Practice (Polaris, Lustre)

 Consistent performance independent of access pattern
* Note re-scaledy axis [1]
* No write amplification, no read-modify-write
 Some network communication but networks are fast
* Requires “temporal locality” -- not great if writes * skewed” imbalanced, or some Erocess enter collectlve late.

960 960

Noncontiguous Writes with IOR MPI- |O writes

No Data Sieving ——
[1] 70 - DataSieving Enabled —— MPI-10 Reads 0 0 0

Two-phase —#—
60 - Posix Writes 4800 000 4800 000 9156
50 L Posix Reads 0 4800784 0
T a0l MPI-IO bytes written 8.9 GiB 8.9 GiB 8.9 GiB

£
a0l MPI-IO bytes read 0 0 0
20 | Posix bytes read 0 2334 GiB 0
0l Posix bytes written 8.9GiB 2343 GiB 8.9GiB
Runtime (sec) 68.8 404.2 1.56
Wl — : I -
1 10 100 1000 \J 10000 —
Pieces Selected Darshan statistics, 5000 segments

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

More investigation: Darshan heatmaps (Polaris, Lustre)

Data sieving Data sieving disabled Collective buffering

[T T[S 1117111 e 1
—

319

10°

Data (B): read, write

MPI-10

: _
g
@
= = = =
o o o (=]
o = = ES
Data (B): read, write

= -]
o (=1
< =]

Tmels) Time (s)

—
o
=

Data (B): read, write

POSIX
Dataﬂ(B): read, write

1.6

r~ Time bins: 47
=

31

Time (s)

Effect of ROMIO optimizations on IOR benchmark: 5000 non-contiguous segments, three iterations. Note the x axis

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

DAOS: Collective I/O vs scatter-gather I/O

Same IOR experiment but on Aurora this time
2 nodes, 96 processes per node
List-10 lets us avoid two sources of overhead

tuned: — asking for more aggregators per node lets us use all 8

“rounds” of I/0 — no buffering at intermediate aggregator

No network exchange of data

network cards

Since List-10 does not aggregate, could be a problem at larger

scale (evaluation “on my list”)
Obviously, combining both approaches would be great
(that’s “on my list” now too...)

Time [seconds)

IOR write time as degree of noncontig increases

= collective

1 —— tuned collective
| = list-io

e

10t 10! 10d

ATPESC2025

——
10

103 10t

code etc: https://github.com/radix-io/hands-on

MPI-IO writes 1152
MPI-10 Reads 0
DAOS Writes 696
DAOS Reads 0
MPI-10 bytes written 10.7 GiB
MPI-10 bytes read 0
DAOS bytes read 0
DAOS bytes written 10.7 GiB
Max MPI-10 write time 1.335 sec
Max DAOS write time 3.10

msec

10.7 GiB

0.35 sec

3.485
msec

1152

10.7 GiB

0.22 sec

0.22 sec

Selected Darshan statistics, 5000 segments

extremecomputingtraining.anl.gov

Argonne &

NATIONAL LABORATORY

https://github.com/radix-io/hands-on

HANDS-ON: reading with MPI-IO

e Slightly different: all processes read one column
* For simplicity, same row

* File view will be more complicated, use MPI “Subarray”
datatype

* |n C, array access is described in “row-major”
* array_size[@] = 5; array_size[l] = 4;

* File view uses derived ‘subarray’, not built-in MPL_INT

* Location in file given with subarray type; no offset in
MPI File read all

 Sitill provide a “buffer, count, datatype” tuple for memory layout

<—— Nprocs —

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

Solution fragments

Type creation File view and read

/* In C-order the arrays are row-major: MPI CHECK(MPI File set view(fh, sizeof (header),
* MPI INT, subarray, "native", info));
A Bt | MPI Type free (&subarray);
¥ lmmm | MPI CHECK (MPI File read all (fh,
Sl | read buf, nprocs, MPI INT, MPI STATUS IGNORE);
* The 'sizes' of the above array would be 3,5
* The last column would be a '"subsize" of 3,1
* And a "start" of 0,5 */

sizes[0] = nprocs; sizes[l] = XDIM;
sub[0] = nprocs; sub[1l] = 1;
starts[0] = 0; starts([1l] = XDIM/2;

MPI Type create subarray (NDIMS,
sizes, sub, starts,
MPI ORDER C, MPI INT, &subarray);
MPI Type commit (&subarray);

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo

https://github.com/radix-io/hands-on

Hands on continued: Darshan

e How does this workload differ from the write?

* Change the ‘read_all’ to an independent ‘read’
* What do you think the Darshan output will say? Find out.

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Performance portability in 1/O:

* Let's look more closely at file-

» Simple ior benchmark on (Lustre) (DAOS)

Polaris vs Ascent (baby MPIIO_ACCESS1_ACCESS 1000000 1000000 1000000
Summit) vs Aurora POSIX_WRITES 46 3
« 1000 000 bytes per process, 48 prs wrITES 3
o %ﬁfee;?\/eesllo forced on Ascent | oo oY TESWRITTEN B
and Aurora DFS_BYTES_WRITTEN 48000000
« Darshan confirms identical MPI- POSX_SIZE_WRITE_100K_1M 46 0
|O workload POSIX_SIZE_WRITE_10M_100M 0 3
* Different transformations for DFS_SIZE_WRITE_10M_100M 3
different file systems POSIX_FILE_ALIGNMENT 4096 (%)
e OST-oriented vs file block POSIX_SLOWEST RANK_BYTES 2097152 96000000
DFS_SLOWEST_RANK_BYTES 49000000

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne G

NNNNNNNNNNNNNNNN

https://github.com/radix-io/hands-on

MPI-IO Takeaway

* “Performance Portability”

* Describe your I/0O pattern to MPI-10 and the library will sort out FS-specific
approaches/interfaces

* Sometimes it makes sense to build a custom library that uses MPI-10 (or
maybe even MPI| + POSIX) to write a custom format

* e.g., adata format for your domain already exists, need parallel API

* We’ve only touched on the APl here
* There is support for data that is noncontiguous in file and memory
* There are independent calls that allow processes to operate without coordination

* In general we suggest using data model libraries
* They do more for you
* Performance can be competitive

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on

Additional Resources

I/0 Sleuthing: Another approach towards thinking
about tuning IO codes, including MPI-10

https://github.com/radix-io/io-sleuthing

* On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

 Chapter on MPI I/0O routines covers entire APl as well as
consistency semantics

* Mpidpy: Python bindings to MPI
* https://mpidpy.readthedocs.io/en/stable/index.html

Message-Passing Interface

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD

https://github.com/radix-io/hands-on
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://mpi4py.readthedocs.io/en/stable/index.html
https://mpi4py.readthedocs.io/en/stable/index.html

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources
during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative
works, and to display publicly.

Argonne Leadership . DEPARTMENT OF

Computing Facility extremecomputingtraining.anl.gov

http://extremecomputingtraining.anl.gov/

	Slide 1: Introduction to MPI-IO
	Slide 2: Hands on materials
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style: contiguous
	Slide 5: “Hello World” MPI-IO style: non-contiguous in memory
	Slide 6: “Hello World” MPI-IO style: non-contiguous in file
	Slide 7: RUNNING
	Slide 8: Output on Aurora
	Slide 9: Under the hood: DAOS (essentially)
	Slide 10: Key takeaways
	Slide 11: Operating on Arrays
	Slide 12: Decomposition
	Slide 13: Scientific I/O constraints
	Slide 14: Defining a Checkpoint
	Slide 15: Collective I/O
	Slide 16: Collective MPI I/O Functions
	Slide 17: HANDS-ON: writing with MPI-IO
	Slide 18: Solution fragments
	Slide 19: Hands-on continued: Darshan
	Slide 20: Hands-on continued: Darshan
	Slide 21: Managing Concurrent Access
	Slide 22: Implications of Locking in Concurrent Access
	Slide 23: I/O Transformations
	Slide 24: Reducing Number of Operations
	Slide 25: Data Sieving in Practice (Polaris, Lustre)
	Slide 26: Data Sieving Alternative: scatter-gather (list-io)
	Slide 27: Avoiding Lock Contention
	Slide 28: Two-Phase I/O Algorithms (or, You don’t want to do this yourself…)
	Slide 29: Two-phase I/O in Practice (Polaris, Lustre)
	Slide 30: More investigation: Darshan heatmaps (Polaris, Lustre)
	Slide 31: DAOS: Collective I/O vs scatter-gather I/O
	Slide 32: HANDS-ON: reading with MPI-IO
	Slide 33: Solution fragments
	Slide 34: Hands on continued: Darshan
	Slide 35: Performance portability in I/O:
	Slide 36: MPI-IO Takeaway
	Slide 37: Additional Resources
	Slide 38: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

