
extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

Introduction to MPI-IO

Rob Latham

Research Software Developer, Argonne National Laboratory

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Hands on materials

• Code for available on our github site: https://github.com/radix-io/hands-on
• This session:

• “hello-io” basics

• Simple array I/O

• IOR recipes

• Other sessions today:
• Darshan

• HDF5

• “Bonus Content:”
• Game of Life I/O
• Sparse Matrix I/O

• Work through examples when you can. We’re going to do this “cooking
show” style…

https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on
https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

MPI-IO

• I/O interface specification for use in MPI apps

• Data model is same as POSIX: stream of bytes in a file
• Like classic POSIX in some ways…

• Open() →MPI_File_open()
• Pwrite() →MPI_File_write()
• Close() →MPI_File_close()

• Features many improvements over POSIX:
• Collective I/O
• Noncontiguous I/O with MPI datatypes and file views
• Nonblocking I/O
• Fortran bindings (and additional languages)

• Implementations available on most (all?) platforms
• I’ll be talking a lot about the ROMIO implementation

3

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: contiguous

/* an "Info object": these store key-value strings for tuning the

 * underlying MPI-IO implementation */

 MPI_Info_create(&info);

 snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs);

 len = strlen(buf);

 /* We're working with strings here but this approach works well

 * whenever amounts of data vary from process to process. */

 MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM_WORLD);

 MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

 MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

 /* _all means collective. Even if we had no data to write, we would

 * still have to make this call. In exchange for this coordination,

 * the underlyng library might be able to greatly optimize the I/O */

 MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

 &status));

 MPI_CHECK(MPI_File_close(&fh));

Hello from… Hello from…

Rank 0:
24 bytes at 0

Rank 1:
24 bytes at 24

…

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: non-contiguous in memory

MPI_Datatype memtype;

 MPI_Count memtype_size;

 …

 /* sample string:

 * Hello from rank 8 of 16

 * ------ ----------

 *

 * the '-' indicates which elements an indexed type with

 * lengths 6 and 10 at displacemnts 0 and

 * "10 from end of string" would select: */
 int lengths[2] = {6, 10};
 int displacements[2] = {0, len-10};
 MPI_Type_indexed(2, lengths, displacements, MPI_CHAR, &memtype);
 MPI_Type_commit(&memtype);
 MPI_Type_size_x(memtype, &memtype_size);
…
 MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, 1, memtype,
 &status));

Hello k 0 of 16 Hello k 1 of 16

Rank 0:
6+10 bytes at 0

Rank 1:
6+10 bytes at 16

…

Hello from rank 1 of 16

‘lengths” and “displacements”: each
rank sends first six and last ten
characters to file

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

“Hello World” MPI-IO style: non-contiguous in file

/* noncontiguous in file requres a "file view*/

 MPI_Datatype viewtype;

 int *displacements;

 displacements = malloc(len*sizeof(*displacements));

 /* each process will write to its own "view" of the file:

 * Rank 0:

 * H e l l o f r o m ...

 * Rank 1:

 * H e l l o f r o m ...

 */

 for (int i=0; i< len; i++)

 displacements[i] = rank+(i*nprocs);

 MPI_Type_create_indexed_block(len, 1, displacements, MPI_CHAR, &viewtype);

 MPI_Type_commit(&viewtype);

 free(displacements);

 MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],

 MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

 MPI_CHECK(MPI_File_set_view(fh, 0, MPI_CHAR, viewtype, "native", info));

 MPI_CHECK(MPI_File_write_at_all(fh, offset, buf, len, MPI_CHAR,

 &status));

H H e l le l l

Hello from rank 0 of 16 Hello from rank 1 of 16

o o

While this access describes lots of small
regions, the library sees it as one single
access and can optimize.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

RUNNING

• Submit to the ‘ATPESC2025’ queue (aurora)

• I’ve provided a ‘hello-aurora.sh’ shell script
• qsub hello-aurora.sh

• We’ll use the DAOS file system
• ALCF has made a “ATPESC2025_0” pool on the “daos_perf” service
• Job script will create your own container inside that pool

• daos container create --type POSIX $DAOS_POOL $DAOS_CONT

• DAOS is always running, but we have to “launch” the file system view of it
• launch-dfuse_perf.sh ${DAOS_POOL}:${DAOS_CONT}

• Now shell tools can operate on /tmp/${DAOS_POOL}/${DAOS_CONT}

• There’s a special “cpu binding” to place processes such that they
use all 8 Aurora network cards.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Output on Aurora

==== contiguous in memory and file
cat /tmp/ATPESC2025_0/robl-hello/hello.out
Hello from rank 0 of 16
Hello from rank 1 of 16
…
Hello from rank 15 of 16

==== noncontiguous in memory
cat /tmp/ATPESC2025_0/robl-hello/hello-
noncontig.out
Hello k 0 of 16
Hello k 1 of 16
…
Hello 15 of 16

Output of our hello programs

==== noncontiguous in file
cat /tmp/ATPESC2025_0/robl-hello/hello-
view.out
HHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeelllllll
llllllllllllllllllllllllloooooooooooooo
oo
ffffffffffffffffrrrrrrrrrrrrrrrrooooooo
ooooooooommmmmmmmmmmmmmmm
rrrrrrrrrrrrrrrraaaaaaaaaaaaaaaannnnnnn
nnnnnnnnnkkkkkkkkkkkkkkkk
1111110123456789012345
ooooooooooooooooffffffffffffffff
11111111111111116666666666666666

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Under the hood: DAOS (essentially)

…

DAOS servers

DAOS POOL

DAOS Container

container1

container2

robl-hello

daos pool list-containers ATPESC2025_0

daos container list-objects ATPESC2025_0

2814754062073856.0

2814754062073857.0

939571296501401038.192

939571297230848002.128

939571296817209422.64

Data objects

POSIX Container objects DKEYS:
Hello-io -> inodeX
hello-noncontig -> inodeY
Hello-view -> inodeZ
…

inodeX
- Mode
- Object id
- Uid
- Gid
- Mtime
- …

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Key takeaways

• Simple example but still captures important concepts
• Info objects: tuning parameters:

• enable/disable optimizations
• Adjust buffer sizes
• Select alternate strategies

• Data placement in file specified by user
• “shared file pointer” possible but not optimized

• Collective vs independent I/O
• Error checking!!!

• A lot of complexity of DAOS abstracted away under “DAOS file system” and
ROMIO’s DAOS driver

• DAOS optimizations like “resolve on one, broadcast to all”
• Portable to any supported file system: could write to lustre simply by changing the path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Operating on Arrays

• Arrays show up in many scientific
applications

• Matrix operations
• Particle maps
• Regions of space
• Time series
• Images

• Probably your real application more
complicated but an array or two (or
more) is in there somewhere, I’d wager.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Graphic from J. Tannahill, LLNL

Typical simulations divide up the region being
simulated into chunks, then group those
chunks into similar amounts of work.

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

When speed of
writing is the priority,
blobs of data are
written from each
node into individual
files that must then
be post-processed
for analysis.

To prepare data for
analysis, a code
can write in a
canonical view by
processing the data
while it is in
memory, resulting
in a better
organized dataset.

or

Decomposition

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Scientific I/O constraints

• Defensive I/O:
• Guard against node failures or program errors with checkpointing
• Application saves its own state
• With a bit of extra effort, can be a portable, canonical representation
• Ideally Independent of number of processes

• Restarting:
• Canonical representation aids restarting with a different number of processes

• Data analysis
• Who will consume this data?

• AI and Machine Learning
• “why is my [random small read] workload so slow?”

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Defining a Checkpoint

• Need enough to restart
• Header information

• Size of problem (e.g. matrix dimensions)
• Description of environment (e.g. input parameters)

• Program state
• Should represent the global (canonical) view of the data

• Ideally stored in a convenient container
• Single “thing” (file, object, keyval store...)

• If all processes checkpoint at once, naturally a parallel, collective
operation

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Collective I/O

• A critical optimization in parallel I/O
• All processes (in the communicator) must call the collective

I/O function
• Allows communication of “big picture” to file system

• Framework for I/O transformations/optimizations at the MPI-IO layer
• e.g., two-phase I/O

Small individual
requests

Large collective
access

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Collective MPI I/O Functions

• Not going to go through the MPI-IO API in excruciating detail
• Happy to discuss in slack, chat, email

• MPI_File_write_at_all, etc.
• _all indicates that all processes in the group specified by the communicator

passed to MPI_File_open will call this function
• _at indicates that the position in the file is specified as part of the call; this

provides thread-safety and clearer code than using a separate “seek” call

• Each process specifies only its own access information
• the argument list is the same as for the non-collective functions
• OK to participate with zero data

• All processes must call a collective
• Process providing zero data might participate behind the scenes anyway

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

HANDS-ON: writing with MPI-IO

• Write our toy checkpoint to a file in parallel (array/array-mpiio-write.c)
• Use MPI_File_open instead of open
• Only one process needs to write `header`

• Independent MPI_File_write
• Could combine, but header I/O small and checkpoint (typically) vastly

larger
• Every process sets a “file view”

• Need to skip over header – file view has an “offset” field just for this case
• The “file view” here is not complicated: we are operating on integers, not

bytes:
• MPI_File_set_view(fh, sizeof(header), MPI_INT,

MPI_INT, "native", info));

• Each process writes one slice/row of array
• MPI_File_write_at_all
• Offset: “rank*XDIM*YDIM” – no ‘sizeof’: specified ints in file view
• “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI_INT)

xdim

yd
im

rank 0 1 2 3 4

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Solution fragments

if (rank == 0) {

 MPI_CHECK(MPI_File_write(fh,

 &header, sizeof(header), MPI_BYTE,

 MPI_STATUS_IGNORE));

}

MPI_File_write_at_all(fh, rank*XDIM*YDIM,

 values, XDIM*YDIM, MPI_INT,

 MPI_STATUS_IGNORE));

Header I/O from rank 0:

Collective I/O from all ranks

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Hands-on continued: Darshan

• Let’s use Darshan
• Find Darshan log file, but don’t generate report right away

• What do you think the report will say?
• OK, now generate the report. Were you surprised?

• Counts of POSIX calls (POSIX_WRITES) vs MPI-IO calls
(MPIIO_COLL_WRITES)

• Sizes of POSIX calls vs sizes of MPI-IO calls

• MPI-IO “info” hints to guide optimizations

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Hands-on continued: Darshan
M

PI
-IO

D
AO

S

Default (independent) Hinted (collective)

Operation counts

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Managing Concurrent Access

• Files are treated like global shared memory regions. Locks are
used to manage concurrent access:

• Files are broken up into lock units
• Unit boundaries are dictated by the storage system, regardless of access pattern

• Clients obtain locks on units that they will access before I/O occurs
• Enables caching on clients as well (as long as client has a lock, it knows its

cached data is valid)
• Locks are reclaimed from clients when others desire access

If an access touches any data in a

lock unit, the lock for that region

must be obtained before access

occurs.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Implications of Locking in Concurrent Access

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

I/O Transformations

• Software between the application and the file system performs
transformations, primarily to improve performance.

Process 0 Process 1 Process 2

File foo

Process 0 Process 1 Process 2

Folder foo/

File data.0

File index.0

File data.1

File index.1

File data.2

File index.2

▪ Goals of transformations:
– Reduce number of operations to PFS

(avoiding latency)
– Avoid lock contention

(increasing level of concurrency)
– Hide number of clients

(more on this later)
▪ With “transparent” transformations,

data ends up in the same locations in
the file as it would have been
normally

– i.e., the file system is still aware of the
actual data organization

▪ I/O libraries do these for you already

When we think about I/O transformations,
we consider the mapping of data between
application processes and locations in file.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Reducing Number of Operations

• Because most operations go over multiple networks, I/O to a PFS incurs
more latency than with a local FS. Data sieving is a technique to address I/O
latency by combining operations:

• When reading, application process reads a large region holding all needed data
and pulls out what is needed

• When writing, three steps required (below)
• Somewhat counter-intuitive: do extra I/O to avoid contention

Step 1: Data in region to be modified

are read into intermediate buffer (1

read).

Step 2: Elements to be written to file

are replaced in intermediate buffer.

Step 3: Entire region is written back to

storage with a single write operation.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Data Sieving in Practice (Polaris, Lustre)

Naiive Data Sieving

MPI-IO writes 960 960

MPI-IO Reads 0 0

Posix Writes 4 800 000 4 800 000

Posix Reads 0 4 800 784

MPI-IO bytes written 8.9 GiB 8.9 GiB

MPI-IO bytes read 0 0

Posix bytes read 0 2334 GiB

Posix bytes written 8.9 GiB 2343 GiB

Runtime (sec) 68.8 404.2

Not always a win, particularly for writing:

• IOR benchmark, fixed file size, increasing segments
• Enabling data sieving instead made writes slower: why?

• Locking to prevent false sharing (not needed for reads)
• Multiple processes per node writing simultaneously
• Internal ROMIO buffer too small, resulting in write

amplification [1]

[1]

Selected Darshan statistics for 5000 segments

5 000 pieces
2 000 bytes each

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Data Sieving Alternative: scatter-gather (list-io)

• Same IOR experiment, this time on Aurora’s
DAOS

• DAOS provides an alternative approach:
describe the entire I/O request with a
scatter-gather list (d_sg_list_t):

• int dfs_write(dfs_t *dfs, dfs_obj_t *obj,
d_sg_list_t *sgl, daos_off_t off, daos_event_t
*ev);

• ROMIO driver does this for you
• Curve starts to bend at 50 000 elements:

• note y axis – still under one second
• We think due to server side processing of these

very long lists
• Some new optimizations in the pipeline as well

312 500 pieces
32 bytes each

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Avoiding Lock Contention

• We can reorder data among processes to avoid lock contention.
Two-phase I/O splits I/O into a data reorganization phase and an
interaction with the storage system (two-phase write depicted):

• Data exchanged between processes to match file layout
• 0th phase determines exchange schedule (not shown)

Phase 1: Data are exchanged between processes based

on organization of data in file.

Phase 2: Data are written to file (storage servers) with

large writes, no contention.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Two-Phase I/O Algorithms
(or, You don’t want to do this yourself…)

For more information, see W.K. Liao and

A. Choudhary, “Dynamically Adapting File

Domain Partitioning Methods for

Collective

I/O Based on Underlying Parallel File

System Locking Protocols,” SC2008,

November, 2008.

Today’s systems also
choose aggregators
that are “best” for
storage

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Naiive Data Sieving Two-phase

MPI-IO writes 960 960 960

MPI-IO Reads 0 0 0

Posix Writes 4 800 000 4 800 000 9156

Posix Reads 0 4 800 784 0

MPI-IO bytes written 8.9 GiB 8.9 GiB 8.9 GiB

MPI-IO bytes read 0 0 0

Posix bytes read 0 2334 GiB 0

Posix bytes written 8.9 GiB 2343 GiB 8.9 GiB

Runtime (sec) 68.8 404.2 1.56

Two-phase I/O in Practice (Polaris, Lustre)
• Consistent performance independent of access pattern

• Note re-scaled y axis [1]
• No write amplification, no read-modify-write
• Some network communication but networks are fast
• Requires “temporal locality” -- not great if writes “skewed”, imbalanced, or some process enter collective late.

[2]

[1]

Selected Darshan statistics, 5000 segments

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

More investigation: Darshan heatmaps (Polaris, Lustre)

Data sieving Data sieving disabled Collective buffering

M
PI

-IO
PO

SI
X

Effect of ROMIO optimizations on IOR benchmark: 5000 non-contiguous segments, three iterations. Note the x axis

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Two-
phase

Tuned
Two-
phase

List-IO

MPI-IO writes 1152 1152 1152

MPI-IO Reads 0 0 0

DAOS Writes 696 768 1152

DAOS Reads 0 0 0

MPI-IO bytes written 10.7 GiB 10.7 GiB 10.7 GiB

MPI-IO bytes read 0 0 0

DAOS bytes read 0 0 0

DAOS bytes written 10.7 GiB 10.7 GiB 10.7 GiB

Max MPI-IO write time 1.335 sec 0.35 sec 0.22 sec

Max DAOS write time 3.10
msec

3.485
msec

0.22 sec

DAOS: Collective I/O vs scatter-gather I/O
• Same IOR experiment but on Aurora this time

• 2 nodes, 96 processes per node
• List-IO lets us avoid two sources of overhead

• “rounds” of I/O – no buffering at intermediate aggregator
• No network exchange of data

• tuned: – asking for more aggregators per node lets us use all 8
network cards

• Since List-IO does not aggregate, could be a problem at larger
scale (evaluation “on my list”)

• Obviously, combining both approaches would be great
(that’s “on my list” now too…)

Selected Darshan statistics, 5000 segments

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

HANDS-ON: reading with MPI-IO

• Slightly different: all processes read one column
• For simplicity, same row

• File view will be more complicated, use MPI “Subarray”
datatype

• In C, array access is described in “row-major”
• array_size[0] = 5; array_size[1] = 4;

• File view uses derived ‘subarray’, not built-in MPI_INT
• Location in file given with subarray type; no offset in
MPI_File_read_all

• Still provide a “buffer, count, datatype” tuple for memory layout

4

N
pr

oc
s

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Solution fragments

/* In C-order the arrays are row-major:

 *

 * |-----|

 * |-----|

 * |-----|

 *

 * The 'sizes' of the above array would be 3,5

 * The last column would be a "subsize" of 3,1

 * And a "start" of 0,5 */

 sizes[0] = nprocs; sizes[1] = XDIM;

 sub[0] = nprocs; sub[1] = 1;

 starts[0] = 0; starts[1] = XDIM/2;

 MPI_Type_create_subarray(NDIMS,

 sizes, sub, starts,

 MPI_ORDER_C, MPI_INT, &subarray);

 MPI_Type_commit(&subarray);

MPI_CHECK(MPI_File_set_view(fh, sizeof(header),

 MPI_INT, subarray, "native", info));

MPI_Type_free(&subarray);

MPI_CHECK(MPI_File_read_all(fh,

 read_buf, nprocs, MPI_INT, MPI_STATUS_IGNORE);

Type creation File view and read

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Hands on continued: Darshan

• How does this workload differ from the write?
• Change the ‘read_all’ to an independent ‘read’

• What do you think the Darshan output will say? Find out.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Performance portability in I/O:

• Let's look more closely at file-
system specific optimizations

• Simple ior benchmark on
Polaris vs Ascent (baby
Summit) vs Aurora

• 1 000 000 bytes per process, 48
processes

• Collective I/O forced on Ascent
and Aurora

• Darshan confirms identical MPI-
IO workload

• Different transformations for
different file systems

• OST-oriented vs file block

Darshan Counter Polaris
(Lustre)

Ascent
(GPFS)

Aurora
(DAOS)

MPIIO_ACCESS1_ACCESS 1 000 000 1 000 000 1 000 000

POSIX_WRITES 46 3

DFS_WRITES 3

POSIX_BYTES_WRITTEN 48000000 48000000

DFS_BYTES_WRITTEN 48000000

POSIX_SIZE_WRITE_100K_1M 46 0

POSIX_SIZE_WRITE_10M_100M 0 3

DFS_SIZE_WRITE_10M_100M 3

POSIX_FILE_ALIGNMENT 4096 -1(*)

POSIX_SLOWEST_RANK_BYTES 2097152 96000000

DFS_SLOWEST_RANK_BYTES 49000000

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

MPI-IO Takeaway

• “Performance Portability”
• Describe your I/O pattern to MPI-IO and the library will sort out FS-specific

approaches/interfaces

• Sometimes it makes sense to build a custom library that uses MPI-IO (or
maybe even MPI + POSIX) to write a custom format

• e.g., a data format for your domain already exists, need parallel API

• We’ve only touched on the API here
• There is support for data that is noncontiguous in file and memory
• There are independent calls that allow processes to operate without coordination

• In general we suggest using data model libraries
• They do more for you
• Performance can be competitive

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

code etc: https://github.com/radix-io/hands-on

Additional Resources

• I/O Sleuthing: Another approach towards thinking
about tuning IO codes, including MPI-IO

• https://github.com/radix-io/io-sleuthing
• On Cray systems, “man intro_mpi” for 3,000 lines of

tuning parameters, debug configuration
• Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

• Chapter on MPI I/O routines covers entire API as well as
consistency semantics

• Mpi4py: Python bindings to MPI
• https://mpi4py.readthedocs.io/en/stable/index.html

https://github.com/radix-io/hands-on
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://github.com/radix-io/io-sleuthing
https://mpi4py.readthedocs.io/en/stable/index.html
https://mpi4py.readthedocs.io/en/stable/index.html

extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: Introduction to MPI-IO
	Slide 2: Hands on materials
	Slide 3: MPI-IO
	Slide 4: “Hello World” MPI-IO style: contiguous
	Slide 5: “Hello World” MPI-IO style: non-contiguous in memory
	Slide 6: “Hello World” MPI-IO style: non-contiguous in file
	Slide 7: RUNNING
	Slide 8: Output on Aurora
	Slide 9: Under the hood: DAOS (essentially)
	Slide 10: Key takeaways
	Slide 11: Operating on Arrays
	Slide 12: Decomposition
	Slide 13: Scientific I/O constraints
	Slide 14: Defining a Checkpoint
	Slide 15: Collective I/O
	Slide 16: Collective MPI I/O Functions
	Slide 17: HANDS-ON: writing with MPI-IO
	Slide 18: Solution fragments
	Slide 19: Hands-on continued: Darshan
	Slide 20: Hands-on continued: Darshan
	Slide 21: Managing Concurrent Access
	Slide 22: Implications of Locking in Concurrent Access
	Slide 23: I/O Transformations
	Slide 24: Reducing Number of Operations
	Slide 25: Data Sieving in Practice (Polaris, Lustre)
	Slide 26: Data Sieving Alternative: scatter-gather (list-io)
	Slide 27: Avoiding Lock Contention
	Slide 28: Two-Phase I/O Algorithms (or, You don’t want to do this yourself…)
	Slide 29: Two-phase I/O in Practice (Polaris, Lustre)
	Slide 30: More investigation: Darshan heatmaps (Polaris, Lustre)
	Slide 31: DAOS: Collective I/O vs scatter-gather I/O
	Slide 32: HANDS-ON: reading with MPI-IO
	Slide 33: Solution fragments
	Slide 34: Hands on continued: Darshan
	Slide 35: Performance portability in I/O:
	Slide 36: MPI-IO Takeaway
	Slide 37: Additional Resources
	Slide 38: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

