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Hands on materials

* Code for available on our github site: https://github.com/radix-io/hands-on

* This session:
* “hello-i0” basics
« Simple array I/O
* IOR recipes
* Other sessions today:
« Darshan
« HDF5
« “Bonus Content:”
e Game of Life I/0
e Sparse Matrix 1/0

* Work through examples when you can. We're going to do this “cooking
show” style...
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* |/Ointerface specification for use in MPl apps

 Data modelis same as POSIX: stream of bytes in a file

* Like classic POSIXin some ways...
 Open() = MPI_File_open()
* Pwrite() > MPI_File_write()
* Close() 2 MPI_File_close()

* Features many improvements over POSIX:
 Collective I/O
* Noncontiguous I/O with MPI datatypes and file views
* Nonblocking I/O
* Fortran bindings (and additional languages)

* Implementations available on most (all?) platforms
* I’ll be talking a lot about the ROMIO implementation
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“Hello World” MPI-IO style: contiguous

/* an "Info object": these store key-value strings for tuning the
* underlying MPI-IO implementation */
MPI_Info_create(&info);

snprintf(buf, BUFSIZE, "Hello from rank %d of %d\n", rank, nprocs); Rank 0:

len = strlen(buf); 24 bytes at 0

/* We're working with strings here but this approach works well

* whenever amounts of data vary from process to process. */ Rank 1:
MPI_Exscan(&len, &offset, 1, MPI_OFFSET, MPI_SUM, MPI_COMM WORLD); 24 bytes at 24

MPI_CHECK(MPI_File_open(MPI_COMM_WORLD, argv[1],
MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh));

/* _all means collective. Even if we had no data to write, we would
* still have to make this call. 1In exchange for this coordination, Hello from... Hello from...
* the underlyng library might be able to greatly optimize the I/0 */

MPI_CHECK(MPI_File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));

MPI_CHECK(MPI_File_close(&fh));
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“Hello World” MPI-IO style: non-contiguous in memory

MPI_Datatype memtype;
MPI_Count memtype_size;

/* sample string:
* Hello from rank 8 of 16

*

the '-' indicates which elements an indexed type with
Lengths 6 and 16 at displacemnts @ and
* "10 from end of string"” would select: */
int lengths[2] = {6, 10};
int displacements[2] = {0, len-10};
MPI_Type_indexed(2, lengths, displacements, MPI_CHAR, &memtype);
MPI Type commit(&memtype);
MPI Type size x(memtype, &memtype size);

* ¥ %

MPI_ CHECK(MPI File write_at all(fh, offset, buf, 1, memtype,
&status));

ATPESC2@25 code etc: https://github.com/radix-io/hands-on

Helloifrom rank'6f 16

‘lengths” and “displacements”: each
rank sends first six and last ten
characters to file

Rank O:
6+10 bytes at 0

Rank 1:
6+10 bytes at 16

A 4

Hellok 0 of 16 | Hellok 1 of 16

extremecomputingtraining.anl.gov Argonne O
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“Hello World” MPI-IO style: non-contiguous in file

/* noncontiguous in file requres a "file view*/
MPI_Datatype viewtype;
int *displacements; Hello from rank O of 16 Hello from rank 1 of 16

displacements = malloc(len*sizeof(*displacements));

/* each process will write to its own "view" of the file:

* Rank ©:

*Hel Lo from
Rank 1:

*Hel Lo from.

*/
for (int i=0; i< len; i++)

displacements[i] = rank+(i*nprocs); H H

MPI Type create_indexed block(len, 1, displacements, MPI_CHAR, &viewtype);
MPI_Type_commit(&viewtype);
free(displacements);

*

MPI_CHECK(MPL_File open(MPI COMM WORLD, argv[1], While this access describes lots of small

MPI_MODE_CREATE|MPI_MODE_WRONLY, info, &fh)); regions, the library sees it as one single
MPI_CHECK(MPI_File_set_view(fh, @, MPI_CHAR, viewtype, "native", info)); access and can optimize.
MPI_CHECK(MPI_File write_at_all(fh, offset, buf, len, MPI_CHAR,

&status));
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« Submit to the ‘ATPESC2025" queue (aurora)

* I've provided a ‘hello-aurora.sh’ shell script
e qsub hello-aurora.sh

« We'll use the DAOS file system
 ALCF has made a “ATPESC2025 0" pool on the “daos_perf”’ service

 Job script will create your own container inside that pool
* daos container create --type POSIX $DAOS_POOL $DAOS_CONT

« DAOS is always running, but we have to “launch” the file system view of it
* launch-dfuse_perf.sh ${DAOS_POOL}:${DAOS_CONT}

* Now shell tools can operate on /tmp/${DA0S_POOL}/${DAOS_CONT}

* There’s a special “cpu binding” to place processes such that they
use all 8 Aurora network cards.

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD



https://github.com/radix-io/hands-on

Output on Aurora

==== contiguous in memory and file ==== noncontiguous in file

cat /tmp/ATPESC2025 0/robl-hello/hello.out cat /tmp/ATPESC2025 0/robl-hello/hello-
Hello from rank 0 of 16 view.out

Hello from rank 1 of 16 HHHHHHHHHHHHHHHHeeeeeeeeeeeeeeeelllllll
. 111111111111111111111111100000000000000
Hello from rank 15 of 16 00

fffffffffffffffreeeeeeeerrerrrrroooo0000
00000000OMmMmmMmMmMmmmmmmmmmmm

==== noncontiguous in memory rrererrerererrerrrraaaaaaaaaaaaaaaannnnnnn
cat /tmp/ATPESC2025 ©/robl-hello/hello- nnnnnnnnnkkkkkkkkkkkkkkkk

noncontig.out 1111110123456789012345

Hello k @ of 16 0000000000000000fFFfFfffffffffff

Hello k 1 of 16 11111111111111116666666666666666

Hello 15 of 16

Output of our hello programs
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Under the hood: DAOS (essentially)

DAQOS servers

container2

POSIX Container objects DKEYS:

container1 2814754062073856.0
2814754062073857.0

025571296501401038.152

939571297230848002.128

robl-hello 939571296817209422 .64

DAOS Container

Data objects

daos container list-objects ATPESC2025 ©

DAOS POOL

daos pool list-containers ATPESC2025 ©

ATPESC2025

code etc: https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov

Hello-io -> inode
hello-noncontig/-> inodeY
Hello-view -> inodeZ

inodeX

Mode
Objectid
Uid

Gid
Mtime
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Key takeaways

* Simple example but still captures important concepts

* |Info objects: tuning parameters:
* enable/disable optimizations
* Adjust buffer sizes
* Select alternate strategies

 Data placementin file specified by user

* “shared file pointer” possible but not optimized
* Collective vsindependent1/0O
* Error checking!!!

* Alot of complexity of DAOS abstracted away under “DAQOS file system” and
ROMIQO’s DAOS driver
* DAQOS optimizations like “resolve on one, broadcast to all”
* Portable to any supported file system: could write to lustre simply by changing the path

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Operating on Arrays

* Arrays show up in many scientific
applications

Matrix operations

Particle maps

Regions of space

* Time series

* Images

* Probably your real application more
complicated but an array or two (or
more) is in there somewhere, I’'d wager.
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Decomposition

Typical simulations divide up the region being

simulated into chunks, then group those /\ Whgn s.peﬁd Of. .
chunks into similar amounts of work. w Writing IS the priority,
blobs of data are

L e | Written from each

BN ([T TTTTTI| nodeinto individual
OO [T T 77 S| files that must then

I T T T 77 be post_processed
\/ for analysis.

To prepare data for
analysis, a code
canwritein a
canonical view by
processing the data
while itisin
memory, resulting
in a better
organized dataset.

Graphic from J. Tannahill, LLNL

These regions are then
distributed to cores
(columns) on nodes
(grey boxes) for
computation.

- .
Ii
- AN AN AN j
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Scientific 1/0 constraints

* Defensive I/0:
* Guard against node failures or program errors with checkpointing
* Application saves its own state
* With a bit of extra effort, can be a portable, canonical representation
* |deally Independent of number of processes

* Restarting:
* Canonical representation aids restarting with a different number of processes

 Data analysis
 Who will consume this data?

Al and Machine Learning
 “whyis my[random small read] workload so slow?”

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Defining a Checkpoint

* Need enough to restart

* Header information
* Size of problem (e.g. matrix dimensions)
* Description of environment (e.g. input parameters)

* Program state
* Should represent the global (canonical) view of the data

* |deally stored in a convenient container
e Single “thing” (file, object, keyval store...)

* |f all processes checkpoint at once, naturally a parallel, collective
operation
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Collective I/O

* A critical optimization in parallel I/0

* All processes (in the communicator) must call the collective
|/0 function

* Allows communication of “big picture” to file system
* Framework for I/0 transformations/optimizations at the MPI-IO layer

* e.g.,two-phase /O R
L —
— Large collective
access
//?

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Collective MPI I/O Functions

* Not going to go through the MPI-10 APl in excruciating detail
* Happy to discuss in slack, chat, email

* MPI File write_at all, etc.

 _allindicates that all processes in the group specified by the communicator
passed to MPI_File_open will call this function

 _atindicates that the position in the file is specified as part of the call; this
provides thread-safety and clearer code than using a separate “seek” call

* Each process specifies only its own access information
* the argument list is the same as for the non-collective functions

 OK to participate with zero data
* All processes must call a collective
* Process providing zero data might participate behind the scenes anyway

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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HANDS-ON: writing with MPI-1O

* Write our toy checkpoint to a file in parallel (array/array-mpiio-write.c)
e UseMPI File openinstead of open
* Only one process needs to write “ header”

* IndependentMPI File write xdim )
* Could combine, but header I/0 small and checkpoint (typically) vastly =
larger £ o
. . » -O
* Every process sets a “file view > -
* Need to skip over header —file view has an “offset” field just for this case
. Ehe “file view” here is not complicated: we are operating on integers, not N
ytes:
e MPI File set view(fh, sizeof (header), MPI INT,
MPI INT, "native", info)); N w

* Each process writes one slice/row of array
* MPIL_File_write_at_all
e Offset: “rank*XDIM*YDIM” — no ‘sizeof’: specified ints in file view
* “(bufer, count, datatype)” tuple: (values, XDIM*YDIM, MPI INT)

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o
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Solution fragments

Header I/O from rank O:
if (rank == 0) {
MPI CHECK (MPI File write (fh,
&header, sizeof (header), MPI BYTE,
MPI STATUS IGNORE) );

Collective I/O from all ranks

MPI File write at all(fh, rank*XDIM*YDIM,
values, XDIM*YDIM, MPI INT,
MPI STATUS IGNORE)) ;

ATPESC2@25 code etc: https://github.com/radix-io/hands-on
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Hands-on continued: Darshan

Let’s use Darshan
* Find Darshan log file, but don’t generate report right away

What do you think the report will say?

OK, now generate the report. Were you surprised?

* Counts of POSIX calls (POSIX_WRITES) vs MPI-IO calls
(MPIIO_COLL_WRITES)

e Sizes of POSIX calls vs sizes of MPI-IO calls
MPI-1O “info” hints to guide optimizations

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Managing Concurrent Access

* Files are treated like global shared memory regions. Locks are
used to manage concurrent access:

* Files are broken up into lock units
* Unit boundaries are dictated by the storage system, regardless of access pattern

* Clients obtain locks on units that they will access before I/0O occurs

* Enables caching on clients as well (as long as client has a lock, it knows its
cached data is valid)

e | ocks are reclaimed from clients when others desire access

If an access touches any data in a Offset in File
lock unit, the lock for that region | | | | | | | | - ‘ | ""‘
must be obtained before access o I
} |
occurs. Lock Lock File Access
Boundary Unit

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo
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Implications of Locking in Concurrent Access

The left diagram shows a row-
block distribution of data for
three processes. On the right
we see how these accesses
map onto locking units in the
file.

In this example a header
(black) has been prepended to
the data. If the header is not
aligned with lock boundaries,
false sharing will occur.

In this example, processes
exhibit a block-block access
pattern (e.g.accessing a
subarray).This results in many
interleaved accesses in the file.

ATPESC2025

2D View of Data

code etc: https://github.com/radix-io/hands-on

Offset in File

When accesses are to large contiguous
regions, and aligned with lock boundaries,
locking overhead is minimal.

Y

These two regions exhibit false sharing:

no bytes are accessed by both processes, but
because each block is accessed by more than
one process, there is contention for locks.

When a block distribution is used, sub-rows
cause a higher degree of false sharing,
especially if data is not aligned with lock
boundaries.

extremecomputingtraining.anl.gov
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/0O Transformations

* Software between the application and the file system performs
transformations, primarily to improve performance.

= (Goals of transformations:

— Reduce number of operations to PFS
(avoiding latency)
— Avoid lock contention

Process O Process | Process 2

LR EFA

(increasing level of concurrency)
— Hide number of clients
(more on this later)

= With “transparent” transformations,
data ends up in the same locations in
the file as it would have been

normally

— i.e., the file system is still aware of the
actual data organization

= |/O libraries do these for you already

ATPESC2@25 code etc: https://github.com/radix-io/hands-on

When we think about I/0 transformations,
we consider the mapping of data between
application processes and locations in file.

extremecomputingtraining.anl.gov Argonne 6
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Reducing Number of Operations

* Because most operations go over multiple networks, 1/0 to a PFS incurs
more latency than with a local FS. Data sieving is a technique to address I/0

latency by combining operations:

* When reading, application process reads a large region holding all needed data
and pulls out what is needed

* When writing, three steps required (below)
* Somewhat counter-intuitive: do extra I/O to avoid contention

Application Process
vemory | [ [ [ [ HEEEBR
Bufer | I.;I..-».ﬂlll
%1 B e B AR B
1T F 1 1] ‘ ‘
File [ [ [T T I [T [I] 1 | LT I L[ [ l
Step |: Data in region to be modified Step 2 EIements to be written to file Step 3: Er.1t|re r.egion is .written b?Ck to
are read into intermediate buffer (| are replaced in intermediate buffer. storage with a single write operation.
read).

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov ArgonneO
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Data Sieving in Practice (Polaris, Lustre)

Not always a win, particularly for writing:

* |OR benchmark, fixed file size, increasing segments
* Enabling data sieving instead made writes slower: why?

* Lockingto prevent false sharing (not needed for reads) . —

 Multiple processes per node writing simultaneously _

* Internal ROMIO buffer too small, resulting in write MPI-10 writes 960 960
amplification [1]

Noncontiguous Writes with IOR MPI-10 Reads 0 0
200 — T T
Data Siéving Ensbled —s— B Posix Writes 4800 000 4800 000
Posix Reads 0 4 800784
150 | i
- MPI-10 bytes written 8.9 GiB 8.9 GiB
e W MPI-IO bytes read 0 0
E I » .
" 4_ 5000 pieces Posix bytes read 0 2334 GiB
2 000 bytes each
50 |- 1 [1] Posix bytes written 8.9GiB 2343 GiB
Runtime (sec) 68.8 404.2
o% = == s o000 Selected Darshan statistics for 5000 segments

Pieces

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne o
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Data Sieving Alternative: scatter-gather (list-io)

« Same IOR experiment, this time on Aurora’s :
DAQOS 312 500 pieces

. . 32 bytes each
* DAOS provides an alternative approach:

describe the en.tire /0 requeSt with a IOR write time as degree of noncontig increases /
scatter-gather list (d_sg_list_t): 03

« int dfs_write(dfs_t *dfs, dfs_obj_t *obj,
$_5§_11$t_t *sgl, daos_off_ t off, daos_event t 0.7 7
ev);

* ROMIQO driver does this for you 06 1

e Curve starts to bend at 50 000 elements:
* notey axis - stillunder one second

* We think due to server side processing of these
very long lists

« Some new optimizations in the pipeline as well

0.5 1

Time (seconds)

0.4

0.3

J—
0.2 1 _\

T T T T T T T T T T LRI AR T
10° 10! 102 10* 10)\_/105

Pieces

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Avoiding Lock Contention

* We can reorder data among processes to avoid lock contention.
Two-phase I/0 splits I/0O into a data reorganization phase and an
interaction with the storage system (two-phase write depicted):

 Data exchanged between processes to match file layout
* 0" phase determines exchange schedule (not shown)

Process 0 Process | Process 2 Process 0 Process | Process 2
Memory B [ __ N H B B HE B BN Ul O
e —r ] [ .=

Server 0 Server | Server 2 S ro0 Server| | Seerr;?/

File [T 1] [T 1] LI
Phase I: Data are exchanged between processes based Phase 2: Data are written to file (storage servers) with
on organization of data in file. large writes, no contention.
ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Two-Phase /O Algorithms

(or, You don’t want to do this yourself...)

Imagine a collective /O access Offset in File >
using four aggregators to a file [T T oo [ [ [ N [ [ [ DOy [ [ [ [
striped over four file servers P A |
(indicated by colors): Stripe Unit Lock Extent of Accesses

Boundary
One approach is to evenly Aggregato"'-i-AggregatO"z?Aggfegato"3-i-A88"egat°"4
divide the region accessed CT T T D /T T | s T [ [ i [
across aggregators. OO T T - T

Aligning regions with lock —> —>

boundaries eliminates lock U Acorecatar | T Acorasatar T Acormontar 2 U Acoraoarar 4 :

contention. “ +  Aggregator | Aggregator2 |  Aggregator3 . Aggregator4 ;
[ L 1

Mapping aggregators to servers
reduces the nhumber of
concurrent operations on a
single server and can be helpful _‘ Cal A2 A3 I A4 Al T A TTTAI A4
when locks are handed out on : ' : ' : ' : :
a per-server basis (e.g., Lustre).

For more information, see W.K. Liao and
A. Choudhary, “Dynamically Adapting File
Domain Partitioning Methods for
Collective

I/O Based on Underlying Parallel File
System Locking Protocols,” SC2008,
November, 2008.

Today’s systems also
choose aggregators
that are “best” for
storage

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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Two-phase /O in Practice (Polaris, Lustre)

 Consistent performance independent of access pattern
* Note re-scaledy axis [1]
* No write amplification, no read-modify-write
 Some network communication but networks are fast
* Requires “temporal locality” -- not great if writes * skewed” imbalanced, or some Erocess enter collectlve late.

960 960

Noncontiguous Writes with IOR MPI- |O writes

No Data Sieving ——
[1] 70 -  DataSieving Enabled —— MPI-10 Reads 0 0 0

Two-phase —#—
60 - Posix Writes 4800 000 4800 000 9156
50 L Posix Reads 0 4800784 0
T a0l MPI-IO bytes written 8.9 GiB 8.9 GiB 8.9 GiB

£
a0l MPI-IO bytes read 0 0 0
20 | Posix bytes read 0 2334 GiB 0
0l Posix bytes written 8.9GiB 2343 GiB 8.9GiB
Runtime (sec) 68.8 404.2 1.56
Wl — : I -
1 10 100 1000 \J 10000 —
Pieces Selected Darshan statistics, 5000 segments
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More investigation: Darshan heatmaps (Polaris, Lustre)

Data sieving Data sieving disabled Collective buffering

[T T[S 1117111 e 1
—

319

10°

Data (B): read, write

MPI-10

: _
g
@
= = = =
o o o (=]
o = = ES
Data (B): read, write

= -]
o (=1
< =]

Tmels) Time (s)

—
o
=

Data (B): read, write

POSIX
Dataﬂ(B): read, write

1.6

r~ Time bins: 47
=

31

Time (s)

Effect of ROMIO optimizations on IOR benchmark: 5000 non-contiguous segments, three iterations. Note the x axis
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DAOS: Collective I/O vs scatter-gather I/O

Same IOR experiment but on Aurora this time
2 nodes, 96 processes per node
List-10 lets us avoid two sources of overhead

tuned: — asking for more aggregators per node lets us use all 8

“rounds” of I/0 — no buffering at intermediate aggregator

No network exchange of data

network cards

Since List-10 does not aggregate, could be a problem at larger

scale (evaluation “on my list”)
Obviously, combining both approaches would be great
(that’s “on my list” now too...)

Time [seconds)

IOR write time as degree of noncontig increases

= collective

1 —— tuned collective
| = list-io

e

10t 10! 10d

ATPESC2025

——
10

103 10t

code etc: https://github.com/radix-io/hands-on

MPI-IO writes 1152
MPI-10 Reads 0
DAOS Writes 696
DAOS Reads 0
MPI-10 bytes written 10.7 GiB
MPI-10 bytes read 0
DAOS bytes read 0
DAOS bytes written 10.7 GiB
Max MPI-10 write time 1.335 sec
Max DAOS write time 3.10

msec

10.7 GiB

0.35 sec

3.485
msec

1152

10.7 GiB

0.22 sec

0.22 sec

Selected Darshan statistics, 5000 segments

extremecomputingtraining.anl.gov
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HANDS-ON: reading with MPI-IO

e Slightly different: all processes read one column
* For simplicity, same row

* File view will be more complicated, use MPI “Subarray”
datatype

* |n C, array access is described in “row-major”
* array_size[@] = 5; array_size[l] = 4;

* File view uses derived ‘subarray’, not built-in MPL_INT

* Location in file given with subarray type; no offset in
MPI File read all

 Sitill provide a “buffer, count, datatype” tuple for memory layout

<—— Nprocs —
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Solution fragments

Type creation File view and read

/* In C-order the arrays are row-major: MPI CHECK(MPI File set view(fh, sizeof (header),
* MPI INT, subarray, "native", info));
A Bt | MPI Type free (&subarray);
¥ lmmm | MPI CHECK (MPI File read all (fh,
Sl | read buf, nprocs, MPI INT, MPI STATUS IGNORE);
* The 'sizes' of the above array would be 3,5
* The last column would be a '"subsize" of 3,1
* And a "start" of 0,5 */

sizes[0] = nprocs; sizes[l] = XDIM;
sub[0] = nprocs; sub[1l] = 1;
starts[0] = 0; starts([1l] = XDIM/2;

MPI Type create subarray (NDIMS,
sizes, sub, starts,
MPI ORDER C, MPI INT, &subarray);
MPI Type commit (&subarray);

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo
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Hands on continued: Darshan

e How does this workload differ from the write?

* Change the ‘read_all’ to an independent ‘read’
* What do you think the Darshan output will say? Find out.

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonneo

DDDDDDDDDDDDDDDDDD



https://github.com/radix-io/hands-on

Performance portability in 1/O:

* Let's look more closely at file-

» Simple ior benchmark on (Lustre) (DAOS)

Polaris vs Ascent (baby MPIIO_ACCESS1_ACCESS 1000000 1000000 1000000
Summit) vs Aurora POSIX_WRITES 46 3
« 1000 000 bytes per process, 48 prs wrITES 3
o %ﬁfee;?\/eesllo forced on Ascent | oo oY TESWRITTEN B
and Aurora DFS_BYTES_WRITTEN 48000000
« Darshan confirms identical MPI- POSX_SIZE_WRITE_100K_1M 46 0
|O workload POSIX_SIZE_WRITE_10M_100M 0 3
* Different transformations for DFS_SIZE_WRITE_10M_100M 3
different file systems POSIX_FILE_ALIGNMENT 4096 (%)
e OST-oriented vs file block POSIX_SLOWEST RANK_BYTES 2097152 96000000
DFS_SLOWEST_RANK_BYTES 49000000

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne G
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MPI-IO Takeaway

* “Performance Portability”

* Describe your I/0O pattern to MPI-10 and the library will sort out FS-specific
approaches/interfaces

* Sometimes it makes sense to build a custom library that uses MPI-10 (or
maybe even MPI| + POSIX) to write a custom format

* e.g., adata format for your domain already exists, need parallel API

* We’ve only touched on the APl here
* There is support for data that is noncontiguous in file and memory
* There are independent calls that allow processes to operate without coordination

* In general we suggest using data model libraries
* They do more for you
* Performance can be competitive

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0

DDDDDDDDDDDDDDDDDD



https://github.com/radix-io/hands-on

Additional Resources

I/0 Sleuthing: Another approach towards thinking
about tuning IO codes, including MPI-10

https://github.com/radix-io/io-sleuthing

* On Cray systems, “man intro_mpi” for 3,000 lines of
tuning parameters, debug configuration

Using Advanced MPI, Gropp, Hoeffler, Thakur, Lusk

 Chapter on MPI I/0O routines covers entire APl as well as
consistency semantics

* Mpidpy: Python bindings to MPI
* https://mpidpy.readthedocs.io/en/stable/index.html

Message-Passing Interface

ATPESC2@25 code etc: https://github.com/radix-io/hands-on extremecomputingtraining.anl.gov Argonne 0
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