Sandia
Exceptional service in the national interest m National
Laboratories

lterative Solvers & Algebraic Multigrid (with Trilinos, Belos & Muelu)

Christian Glusa and Graham Harper {caglusa,gbharpe}@sandia.gov

August 5, 2025

@kieicy NS4
Corpor: amn hv the U.S. Department of Energys National Nuclear Security Administration under cm-t ract DE-/ ACM -94ALB5000. SAND ND SAND2024-09977C

1/18

Sanda
Natonal
Laboratories

Discretization of partial differential equations gives rise to large linear systems of equations
A% = b,

where A is sparse, i.e. only a few non-zero entries per row.

Example
2D Poisson equation: Central finite differences on a uniform mesh {x; ;}:
—Au=fin Q=01 Aujj = i j1 = uijo1 = i1 — uio1y = F(x)Ax®if xi; ¢ 00,
u =0 on ON. ujj =0 if x;; € 092

— 5 entries or less per row of A.
Instead of dense format, keep matrix A in a sparse format e.g. compressed sparse row (CSR):

rowptr — (NNNZHNEN 5)
_ LN T~

indices — (IEENONNINNZE)

vatues — (EEEEENSIEANS)

2/18

Sandia
Natonal
Laboratories

Available solvers
Solve

A% = b.

Option 1: Direct solvers (think Gaussian elimination), presentation by Sherry Li and Yang Liu this morning
m Factorisation scales as O(n?).
m Factors are a lot denser than A — memory cost.
m Parallel implementation not straightforward.

m Does not require a lot of information about the structure of A.

Observation
A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.

Option 2: lterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.
m Can have small memory footprint. (In the best case, we only need to keep a single vector.)

m Generally more restrictions on properties of A.

3/18

(f=

Available solvers

Solve

Observation
A has O(n) non-zero entries. — Optimal complexity for a solve is O(n) operations.

Option 2: lterative solvers
m Exploit an operation that has O(n) complexity: mat-vec.
m Easy to parallelize.
m Can have small memory footprint. (In the best case, we only need to keep a single vector.)

m Generally more restrictions on properties of A.

3/18

Krylov methods (D=

Based on mat-vecs, we can compute

7 :=b (“initial guess”")
L= gk 4 (E_Ayk)
——
“residual”

and recombine in some smart way to obtain an approximate solution

K
2K =k
X" = E agy”.
k=0

Expressions for ay typically involve inner products between vectors in the so-called Krylov space
span {)7‘(} = {B, Ab, A2 A, . .. ,AKE}.
m Keeping the entire Krylov space can be quite expensive.
m Computing inner products involves an all-reduce which can be costly at large scale.
Two particular Krylov methods:
m Conjugate gradient (CG) m Generalized Minimum Residual (GMRES,

m Use a short recurrence, i.e. does not keep the whole GMRES(K))
Krylov space around. m Works for nonsymmetric systems.

. - - GMRES keeps the whole Krylov space around.
Provably works f t tive definite (spd - P yiov sp
- Arova y works for symmetric positive definite (spd) m GMRES(K) discards the Krylov space after K

iterations.
4/18

Convergence of Krylov methods @i,
CG convergence result:

|7 =] < (1- 1/\/H(A))K 10— =],
where k(A) is the condition number of A:
K(A) = |A][|AH].

A common theme with Krylov methods:
K measures how hard it is to solve the system, i.e. how many iterations are required to reach a given tolerance.

Idea
Reduce the condition number (“Preconditioning”).
Instead of solving

AX = b,
solve

—

PAX = Pb or AP

NL
Il
o
X1
Il
R
NL

with preconditioner P so that k(PA) < k(A).
Two requirements that must be balanced:

m Multiplication with P should be comparable in cost to A.
m P AL

5/18

(f=

Some simple preconditioners

m Jacobi: P = D!, where D is the diagonal of A.
m Gauss-Seidel: P = (D + L)fl, where L is the lower or upper triangular part of A.

m Polynomial preconditioners: P = p(A), where p is some carefully chosen polynomial.

Incomplete factorizations such as ILU or Incomplete Cholesky.

6/18

Krylov methods and preconditioners: Packages in the Trilinos project @

www.trilinos.org

T
g
v
T

HIGH PERFORMANCE
SOFTWARE FOUNDATION

Belos - iterative linear solvers

m Standard methods:
m Conjugate Gradients (CG), Generalized Minimal
Residual (GMRES)
m TFQMR, BiCGStab, MINRES, Richardson /
fixed-point
m Advanced methods:
m Block GMRES, block CG/BiCG
m Hybrid GMRES, GCRODR (block recycling GMRES)
m TSQR (tall skinny QR), LSQR

m Ongoing research:

m Communication avoiding methods
m Pipelined and s-step methods
m Mixed precision methods

m Support for hybrid (MPI+X) parallelism,
X € {OpenMP, CUDA, HIP, ...}

m C++, open source, primarily developed at Sandia National Labs

Ifpack?2 - single-level solvers and preconditioners

m incomplete factorisations

LT
RILU(K)

m relaxation preconditioners

Jacobi

Gauss-Seidel (and a multithreaded variant)
Successive Over-Relaxation (SOR)
Symmetric versions of Gauss-Seidel and SOR
Chebyshev

m additive Schwarz domain decomposition

7/18

www.trilinos.org

Hands-on: Krylov methods and preconditioning
Go to https://xsdk-project.github.io/MathPackagesTraining2025/
lessons/krylov_amg muelu/
Sets 1 and 2
20 mins
Slack channel: #atpesc-2025-trackb-numerical-breakout

8/18

https://xsdk-project.github.io/MathPackagesTraining2025/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2025/lessons/krylov_amg_muelu/

Sanda
Natonal

Motivation for Multigrid methods =

Convergence of Jacobi: yk+1 = gk + D=1k 7k = | — Ayk
High frequency error is damped quickly, low frequency error slowly

Iteration 0 Iteration 5 Iteration 10

Iteration 20 Iteration 30 Iteration 40

9/18

Motivation for Multigrid methods @

Convergence of Jacobi:
Local transmission of information cannot result in a scalable method

Iteration 5 Iteration 10

Iteration 20 Iteration 30 Iteration 40

10/18

Motivation for Multigrid methods

Resolution affects observed frequency:

33 points 25 points 13 points. 9 points
02 04 06 08 10
0z 04 06 08 10
19 19 19 1
0 0+ 0 0
M~
14 T T T T -1+ T T T T -1+ T T T T -1+ T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 L0
1 1 1 1
i 0 0+ 0 0
14 T T T T 14 T T T T 14 T T T T —14 T T T T
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 L0
X X X X

Idea: accelerate Jacobi convergence by reducing resolution!

@

Sanda
Natonal
Laboratories

11/18

Multigrid ()=

m Main idea: accelerate solution of AX = b by using "hierarchy” of coarser
problems

B Remove high-frequency error on fine mesh, where application matrix lives
(using Jacobi or another cheap preconditioner),

m Move to coarser mesh
m Remove high-frequency error on coarser mesh by solving residual equation

m Move to coarser mesh

m Solve a small problem on a very coarse mesh.
m Move back up.

Repeat.

m Geometric multigrid requires coarse mesh information.

m Algebraic multigrid constructs coarser matrices on the fly based on fine-level matrix entries.

12/18

Software packages for Algebraic Multigrid @
m Classical AMG (hypre)
Developed at Lawrence Livermore National Lab, presentation by Daniel Osei-Kuffuor & Ulrike Yang this

morning.

/1vere-

m Smoothed Aggregation Multigrid (PETSc)
Developed by Mark Adams and the PETSc team.

m Smoothed Aggregation Multigrid (Trilinos)
Two multigrid packages in Trilinos:

= ML
C library, up to 2B unknowns, MPI only. (Maintained, but not under active development)

m Muelu
Templated C++ library with support for 2B+ unknowns and next-generation architectures (OpenMP, CUDA, HIP, ...)

13/18

The Muelu package @S,

m Algebraic Multigrid package in Trilinos
Templated C++ library with support for 2B+ unknowns and
next-generation architectures (OpenMP, CUDA, HIP, ..)

m Robust, scalable, portable AMG preconditioning is critical for many
large-scale simulations

m Multifluid plasma simulations

m Shock physics

m Magneto-hydrodynamics (MHD)

m Low Mach computational fluid dynamics (CFD)

www.trilinos.org

m Capabilities
m Aggregation-based and structured coarsening
m Smoothers: Jacobi, Gauss-Seidel, £1 Gauss-Seidel, multithreaded Gauss-Seidel,
polynomial, ILU

m Load balancing for good parallel performance m

m Ongoing research

m performance on next-generation architectures

m AMG for multiphysics H PS F
m Multigrid for coupled structured/unstructured problems

m Algorithm selection via machine learning HIGH PERFORMANCE

SOFTWARE FOUNDATION

14/18

www.trilinos.org

Hands-on: Algebraic Multigrid
Go to https://xsdk-project.github.io/MathPackagesTraining2025/
lessons/krylov_amg muelu/
Set 3& 4
20 mins
Slack channel: #atpesc-2025-trackb-numerical-breakout

15/18

https://xsdk-project.github.io/MathPackagesTraining2025/lessons/krylov_amg_muelu/
https://xsdk-project.github.io/MathPackagesTraining2025/lessons/krylov_amg_muelu/

Strong & weak scaling results for EMPIRE (Maxwell + PIC)

m Specialized multigrid for curl-curl problem

m Largest problem to date: 34B unknowns

Astra
2 MPI/socket; 9 threads/MPI
Up to 2560 nodes (99% of total)

Sierra

4 GPU/socket; 1 MPI/GPU
Up to 2048 nodes (47% of total)

z ¢
&
- o
BV o A oW ©
@ ST
g BApn A P »
s g * o
g © o 1 Squares: Main Time Loop
s " | circles: Particle Update
g i Triangles: Linear Solve
i I A S S S
| sauares: Main Time Loop A
& Circles: Particle Update Number of Compute Nodes
o Triangles: Linear Solve
& NI T - ©—@ AstraR0 @---@ AstraR2 O — O AstraR3
K e PSP O O AstraRl

Number of Compute Nodes

@—@ SieraR0 @---@ SiemaR2 @ — @ SierraR3

O O sieraR1

Trinity/KNL
4 MPI/socket; 16 threads/MPI
Up to 5120 nodes (52% of total)

Sanda
Natonal
Laboratories

o
o Squares: Main Time Loop
Circles: Particle Update
Triangles: Linear Solve

L TR . X 4

Number of Compute Nodes
@——@ Trinity KNLRO @ ~~--@ Trinity KNL R2
@@ Trinity KNL R1

@ — @ Trinity KNLR3

L Lanee e o Lo

RO 3.7M
R1 25M 4.4M 30M
R2 200M 32m 240M
R3 1.6B 270M 1.98

2.4B
198
160B

16/18

Sandia
Ongoing work ()=

m Multiprecision (Krylov methods with mixed precision; lower precision preconditioning)
m Multigrid approaches for higher order discretizations

Matrix-free multigrid

Multigrid on semi-structured meshes

Machine learning for AMG coarsening

Preconditioning for multiphysics systems

Multigrid for hierarchical matrices (boundary integral and nonlocal equations)

6: end for

17/18

Take away messages ()=

CG works for spd matrix and preconditioner.

GMRES works for unsymmetric systems, but requires more memory.

Simple preconditioners can reduce the number of iterations, but often do not lead to a scalable solver.

Multigrid (when applicable) has constant number of iterations, independent of the problem size.

Thank you for your attention!

Interested in working on Multigrid (and other topics) at a national lab?
We are always looking for motivated

m summer and year-round students,

m postdocs.

Please contact us!

18/18

