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I wanted to be a science high school teacher
• Enrolled as an undergraduate at a college for teachers for 

the Chicago public school system
• My last semester in college my physics professor 

encouraged me to apply to a program to spend a 
semester at Argonne working with a scientist. 

Brian Smith Cleve Moler, U of New Mexico

Worked on a 
software project 
called EISPACK.

Many visitors 
from various 
universities.



1970s HPC Systems

CDC	7600	36.4 MHz	(27.5 ns	clock	cycle)	 IBM	370/195 18.5	MHz	(54	ns	clock	cycle)

Both	systems	had	a	high	degree	of	instruction-level	pipelining	and	parallelism.

• Primary	memory	65	Kwords (60-bit	words)
• Seymour	Cray	design
• Peak	36	Mflop/s
• Broke	down	at	least	once/day	(often	four	or	five	times)

• High	degree	of	parallelism
• Up	to	7	operations	at	a	time	
• Up	to	4	MB	of	memory



1970s-1980s: Vector Supercomputers (Cray)
1990s-2000s: Parallel computing and distributed systems
2010s: Rise of GPUs, cloud HPC
2020s and beyond: AI acceleration, quantum computing 
explorations

Evolution of HPC Technology in the Last 50 Years

Distributed
Memory
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EISPACK (1970’s) NATS Project
(Translation of Algol to F66)

Level 1 Basic Linear Algebra 
Subprograms (BLAS)

LINPACK (1980’s)
(Vector operations)

Level 2 & 3 BLAS - ATLAS

LAPACK (1990’s)
(Blocking, cache friendly)

EISPACK (1970’s) NATS Project
(Translation of Algol to F66)

Level 1 Basic Linear Algebra 
Subprograms (BLAS)

LINPACK (1980’s)
(Vector operations)

Level 2 & 3 BLAS - ATLAS

LAPACK (1990’s)
(Blocking, cache friendly)

PVM and MPI

ScaLAPACK (2000’s)
(Distributed Memory)

PLASMA / MAGMA (2010’s)
(Many-core friendly & GPUs)

SLATE (2020’s)
(DM and Heterogeneous arch)

Evolving Software and Algorithms 
Following Hardware Developments

Sven Hammarling, Z. Bai, Anne Greenbaum, Ed Anderson
Alan McKenney, JD, Jeremy DeCroz, & Jim Demmel
(missing C. Bischof, S. Blackford, D. Sorensen)



LINPACK Benchmark Top500
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Size

Ra
te

TPP performance

• Since 1977 I maintained a LINPACK 
Benchmark list.

• Hans Meuer and Erich Strohmaier had a list of
fastest computers ranked by peak performance.

• Since 1993 listing of the 500 most powerful 
computers using 64-bit floating point
arithmetic.

• Yardstick: Performance for
Ax=b, dense problem

Maintained and updated twice a year:
SC‘xy in the States in November
Meeting in Germany in June



• TOP500 list began in 1993
• 65 systems used Intel’s i860 architecture
• Remainder had specialized architectures, 

mainly vector based 

• Most recent TOP500 list 
• 78% of systems used Intel processors
• Another 19% used AMD processors 

• 97% of the systems use x86-64 
architecture 

• Many use GPU accelerators

6

Most of the HPC systems 
were specially built for 
computational science 

applications

6

Attach of the Killer Micros
Major paradigm shift



• TOP500 list began in 1993
• 65 systems used Intel’s i860 architecture
• Remainder had specialized architectures, 

mainly vector based 

• Today’s TOP500 list 
• 59% of systems used Intel processors
• Another 34% used AMD processors 

• 93% of the systems use x86-64 
architecture 

• Many use GPU accelerators
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Scientific High Performance Computing based on Commodity  
Processors

Attach of the Killer Micros
Major paradigm shift



Today, Our HPC Systems are Based on Commodity Parts

• Commodity Processors
§ 93% of the Top500 system use X86 (Intel & AMD) instruction set

• Commodity Accelerators
§ 92% of accelerated systems use NVIDIA

• Commodity Interconnect
§ 85% of the Top500 systems use Ethernet or Infiniband

• Commodity OS
§ 100% of the Top500 systems run on Linux

• Unlike the HPC Community, the Hyperscalers (Cloud Providers) 
§ They are building their processors, accelerators, and interconnects 8



• Alibaba
• CIPU, 128 core ARM based
• Alibaba’s Elastic Compute Service

• AWS Graviton4
• 96 ARM cores, 7 chiplet design
• ~100 billion transistors, DDR5 memory

• Google TPU7
• 2X TPU3 performance
• 4096 units per “pod”
• Reconfigurable optical 

interconnect

• Microsoft Azure
• Project Catapult/Brainwave FPGA accelerator
• Cobalt 100 (128 Neoverse N2 ARMv9 cores)
• Maia100 (Athena) AI accelerator

Cloud Providers are Designing and Using Their Own Processors

Even car makers
• Tesla
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The Fastest Supercomputers are at an Exaflop.

What’s an Exaflop? 

• 1 flop = Addition or Multiplication of 64-bit floating point numbers

• Exaflop is a billion-billion (1018) floating point operations per second

• If each person on Earth completed 1 calculation per second, it 
would take more than 4 years to do what an Exascale computer 
can do in 1 second



The Environment for High Performance Computing in Scientific Computation

• Highly parallel
– Distributed memory
– MPI + Open-MP programming model

• Heterogeneous
– Commodity processors + GPU accelerators

• Communication between parts very                                      
expensive compared to floating point ops 

• Comparison of operation counts may not reflect time to solution

• Floating point hardware at 64 & 32 bits

LLNL El Capitan, 2.7 Eflop/s, 
11 x 106 Cores, 11,136 nodes, 35 MW
(node = 3-AMD CPU + 3-AMD GPUs)
> 99% of performance from GPUs

• Floating point hardware at 64, 32, 16, 8, & 4 bits
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Performance Development of HPC over the Last 33 
Years from the Top500

My Laptop: 426 Gflop/s

# 1 in 1993 - Thinking Machine CM-5 with 1024 Processors at 
Los Alamos Nat Lab used for nuclear weapons design

El Capatain, LLNL

HPE, ARL
Intel w/3696 nodes, @20 cores



June 2025: The TOP 10 Systems (54% of the Total Performance of Top500) 

Rank     Site Computer Country Cores Rmax
[Pflops]

% of 
Peak

Power
[MW]

GFlops/
Watt

1 DOE / NNSA
LLNL

El Capitan, HPE Cray EX255a, AMD 4th EPYC 24C, 1.8 
GHz, AMD Instinct MI300A, Slingshot 11 11,039,616 1,742 63 29.5 58.9

2 DOE / OS  
Oak Ridge Nat Lab

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C,          
2 GHz, AMD Instinct MI250X, Slingshot 11 USA 9,066,176 1,353 65 24.6 55.0

3 DOE / OS  
Argonne Nat Lab

Aurora, Intel, Xeon CPU Max Series 2.4 GHz,        
Intel Data Center GPU Max Series Slingshot 11 9,264,128 1,012 51 38.7 26.1

4 EuroHPC/FZL JUPITER/Booster, EVIDEN BullSequana GH             
72 C, 3 GHz, NVIDIA H100 NVIDIA HDR 4,801,344 793. 85 13.1 60.5

5 Microsoft, Azure Cloud Eagle, Intel, Xeon 8490C, 2 GHz,                           
Nvidia H100 Infiniband 2,073,600 561. 66 -

6 Eni S.p.A. HPE Cray EX235a, AMD Optimized 3rd EPYC 64C 
2GHz, AMD Instinct MI250X, Slingshot-11 3,143,520 477. 78 8.46 56.5

7 RIKEN Center for 
Computational Science

Fugaku, ARM A64FX (48C, 2.2 GHz),                           
Tofu D Interconnect Japan 7,630,848 442. 82 29.9 14.8

8 Swiss National 
Supercomputing Center CSCS

Alps, HPE Cray EX254n, Nvidia Grace 72C 3.1 Nvidia 
GH200 Superchip, Slingshot 11 Swiss 2,121,600 434. 76 7.12 61.0

9 EuroHPC /CSC LUMI, HPE Cray EX235a, AMD 3rd EPYC 64C,             
2 GHz, AMD Instinct MI250X, Slingshot 11 Finland 2,752,704 380. 71 7.10 52.3

10 EuroHPC/CINECA
Leonardo, BullSequana XH2000, Xeon Platinum 8358 

32C, 2.6GHz,                                                       
NVIDIA A100 (108C), Quad-rail NVIDIA HDR100

Italy 1,824,768 241. 78 7.49 32.2

1,400,000.00

1,600,000.00

1,800,000.00

2,000,000.00
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System Performance

• Peak performance of 2.749 Eflop/s 
for modeling & simulation using 
64 bit floating point

• Power: 34.8 MW (29.6 MW HPL)
• Peak performance of 17.6 Eflop/s 

for 16 bit floating point used in for 
data analytics, ML, and artificial 
intelligence 

Each node has

– 4 - AMD MI300As/node                                  
250.8 Tflop/s / node

< 1% performance of the system from CPUs
99% performance of the system from GPUs

The system includes

• 11,136 nodes
3 - 8-core “Zen 4” CPU dies
6 - AMD 38-core CDNA 3 GPU dies

• Cray Slingshot interconnect
• 4 end points per node

El Capitan         Current #1 System Overview



Rumored to be 3-4 Exascale Systems in China

• In the US, El Capitan, Frontier, and Aurora systems remain the only 
exascale systems on the Top500

• China stopped its submissions to the Top500
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China: Top Producer overall
5 main manufactures of HPC  in China
Lenovo(135), Inspur(5), Sugon(2),
NUDT(1), Huawei(1) with 144 systems total

US has 224
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Performance and Benchmarking Evaluation Tools

¨ Linpack Benchmark - Longstanding benchmark started in 1979
ØLots of positive features; easy to understand and run; shows trends

¨ However, much has changed since 1979
ØArithmetic was expensive then and today it is over-provisioned and 

inexpensive
¨ Linpack performance of computer systems is no longer 

strongly correlated to real application performance
ØLinpack benchmark based on dense matrix multiplication

¨ Designing a system for good Linpack performance can lead to 
design choices that are wrong for today’s applications



Today’s Top HPC Systems Used to do Simulations
• Climate
• Combustion
• Nuclear Reactors
• Catalysis
• Electric Grid
• Fusion
• Stockpile
• Supernovae
• Materials
• Digital Twins
• Accelerators
• …

• Usually 3-D PDE’s
• Sparse matrix computations, not dense



HPCG Results; The Other Benchmark
• High Performance Conjugate Gradients (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential 

computational and communication patterns that are prevalent in a 
variety of methods for discretization and numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collectives.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification (via spectral properties of PCG).

hpcg-benchmark.org With Piotr Luszczek and Mike Heroux



HPCG Top 10, June 2025
Rank Site Computer Cores

HPL 
Rmax

(Pflop/s)

TOP500 
Rank

HPCG 
(Pflop/s)

Fraction of 
Peak HPCG

1 DOE/SC/LLNL
USA

El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 24C 
1.8 GHz, AMD Instinct MI300A, Slingshot-11 11,039,616 1742 1 17.4 0.6%

2
RIKEN Center for 
Computational Science
Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D, Fujitsu 7,630,848 442 7 16.0 3.0%

3 DOE/SC/ORNL
USA

Frontier, HPE Cray Ex235a, AMD 3rd EPYC 64C, 2 GHz, 
AMD Instinct MI250X, Slingshot-11 9,066,176 1353 2 14.1 0.7%

4 DOE/SC/ANL
USA

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 GHz, 
Intel GPU MAX, Slingshot-11 9,264,128 1012 3 5.6 0.3%

5 EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 2GHz, 
AMD MI250X, Slingshot-11 2,752,704 380 9 4.6 0.9%

6 CSCS
Switzerland

Alps, HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, 
NVIDIA GH200 Superchip, Slingshot-11 2,121,600 435 8 3.7 0.6%

7 EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 
NVIDIA HDR100 Infiniband

1,824,768 241 10 3.1 1.0%

8 AIST
Japan

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558 48C 
2.1GHz, NVIDIA H200 SXM5 141 GB, Infiniband
NDR200, HPE

479,232 145 15 2.4 1.3%

9 DOE/SC/LBNL
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 64C 
2.45GHz, NVIDIA A100 SXM4 40 GB, Slingshot-10 888,832 79 25 1.9 1.7%

10 DOE/NNSA/LLNL
USA

Sierra, S922LC, IBM POWER9 20C 3.1 GHz, Mellanox 
EDR, NVIDIA Volta V100, IBM 1,572,480 95 20 1.8 1.4%

Think of a race car that has the potential of 200 MPH but only goes 2 MPH!

Think of a race car that has the potential of 200 KPH but only goes 2 KPH!

Ax=b
Dense A

Ax=b
Sparse A



WHY MIXED PRECISION? (Less is Faster)
• There are many reasons to consider using mixing 

precisions within an application:
§ Less Communication

• Reduce memory traffic (from memory to processor)
• Reduce network traffic (from node to node)

§ Reduce memory footprint (less data to store)
§ Arithmetic faster (usually factor of 2 or more)

• Lower precision is usually faster than 
high precision operations

• Architecture may have an accelerator
§ Suitable numerical properties for the algorithm & problems.
The hope is to improve the algorithm performance without 
compromising the quality of science



“Responsibly Reckless” Algorithms

▪ Try a fast algorithm (unstable algorithm) that 
might fail (but rarely)
• Avoiding Data Movement
• Avoiding Synchronization
• Use Mixed Precision

▪ Check for instability
▪ If needed, recompute with a stable algorithm
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52IEEE FP64

IEEE FP32

11

8

Can we leverage the short precision in our
“traditional” scientific numerical computations?

15 112IEEE FP128

Sign bit Fractio bitsExponent bits Fraction bits

Floating Point Representation

Traditional Scientific Computing
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52IEEE FP64

IEEE FP32

IEEE FP16
ML, Neural Networks
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Can we leverage the short precision in our
“traditional” scientific numerical computations?

15 112IEEE FP128

Sign bit Fractio bitsExponent bits Fraction bits

Floating Point Representation

Traditional Scientific Computing

Google BF16
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52IEEE FP64

IEEE FP32

IEEE FP16

Google BF16

NVIDIA FP8

NVIDIA FP8
Transformers

ML, Neural Networks
8
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Can we leverage the short precision in our
“traditional” scientific numerical computations?

15 112IEEE FP128

Sign bit Fractio bitsExponent bits Fraction bits

Floating Point Representation

Forward propagation through a neural network requires 
higher precision for weights and activations.
In contrast, gradients in the backward propagation 
(used for updating weights) require a higher dynamic range. 

Traditional Scientific Computing

NVIDIA FP4 3



Mixed Precision++

Use a mathematical technique
§ Get an approximation in lower precision (fast) then use 

something like Newton’s method to enhance accuracy.
§ Newton’s Method

•x+ = x – f(x)/f’(x)

•For Ax = b;     f(x) = b - Ax     and     f’(x) = -A
•x+ = x + A \ ( b – Ax );       r = b – Ax 
• (x+ - x) = A-1 * r
• ∆ = (L*U)-1  * r 28



Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) lower precision O(n3)
x = U\(L\b) lower precision O(n2)
r = b – Ax (with original A) FP64 precision O(n2)

WHILE || r || not small enough
1. find a correction “z” to adjust x that satisfy Az=r

solving Az=r could be done by either:
Ø z = U\(L\r) Classical Iterative Refinement lower precision O(n2)
Ø GMRes preconditioned by the LU to solve Az=r Iterative Refinement GMRes lower precision O(n2)

2. x = x + z FP64 precision O(n1)
3. r = b – Ax (with original A) FP64 precision O(n2)

END

Idea: use low precision to compute the expensive flops (LU O(n3)) and then iteratively refine 
(O(n2)) the solution in order to achieve the FP64 arithmetic

Ø Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt results when using DP fl pt.
Ø It can be shown that using this approach we can compute the solution to 64-bit floating point precision.
Ø Need the original matrix to compute residual (r) and matrix cannot be too badly conditioned

Leveraging	Half	Precision

Requires extra storage, total is 1.5 times normal;
O(n3) work is done in lower precision
O(n2) work is done in high precision
Problems if the matrix is ill-conditioned

Higham and Carson showed can solve the inner problem with iterative method and not infect the solution with the conditioning of the original matrix.

E. Carson & N. Higham, “Accelerating the Solution of Linear 
Systems by Iterative Refinement in Three Precisions SIAM J. 
Sci. Comput., 40(2), A817–A847.

J. Langou, et al., Exploiting the Performance of 32 bit fl-pt
Arithmetic in Obtaining 64 bit Accuracy, in: Proc. of SC06

Originally motivated by the Sony PlayStation
SP peak 205 Gflop/s, DP peak 15 Gflop/s



Tensor Core Accelerated Iterative Refinement 
Nvidia H200

2k 6k 10k 14k 18k 22k 26k 30k 34k 40k 46k
Matrix size

0  
20 
40 
60 
80 

100
120
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180
200
220

Tf
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p/
s

Performance of solving complex Ax=b to the FP64 accuracy
FP16->FP64
FP64

5X

Flop/s = 2n3/(3 time)

(Meaning 5X is 5 times faster) 



HPL-MxP Benchmark Utilizing 16-bit Arithmetic
1. Generate random linear system Ax=b
2. Represent the matrix A in low precision (16-bit floating point)
3. Factor A in lower precision into LU by Gaussian elimination
4. Compute approximate solution with LU factors in low precision
5. Perform a few iterations of refinement, e.g., GMRES to get accuracy 

up to 64-bit floating point
a. Use LU factors for preconditioning

6. Validate the answer is correct: scaled residual small 
7. Compute performance rate as             

L
U

||𝐴𝑥 − 𝑏||
𝐴 𝑥 + | 𝑏 |

×
1
𝑛𝜖

≤ 𝑂(10)
2
3
×

𝑛3

time

Iterative refinement for dense systems, Ax = b, can work this way.
L U = lu(A) Lower precision O(n3)
x = U\(L\b) Lower precision O(n2)
GMRes preconditioned by the LU to solve Ax=b FP64 precision O(n2)



HPL-MxP Top 10 for June 2025
Rank Site Computer Cores HPL Rmax 

(Eflop/s)
TOP500 

Rank
HPL-MxP 
(Eflop/s) Speedup

1 DOE/SC/LLNL
USA

El Capitan, HPE Cray 255a, AMD 4th Gen EPYC 
24C 1.8 GHz, AMD Instinct MI300A, Slingshot-11 11,039,616 1.742 1 16.7 9.6

2 DOE/SC/ANL
USA

Aurora, HPE Cray EX, Intel Max 9470 52C, 2.4 
GHz, Intel GPU MAX, Slingshot-11 8,159,232 1.012 3 11.6 11.5

3 DOE/SC/ORNL
USA

Frontier, HPE Cray EX235a, AMD Zen-3 (Milan) 
64C 2GHz, AMD MI250X, Slingshot-11 8,560,640 1.353 2 11.4 8.4

4 AIST
Japan

ABCI 3.0, HPE Cray XD670, Xeon Platinum 8558 
48C 2.1GHz, NVIDIA H200 SXM5 141 GB, 
Infiniband NDR200, HPE

479,232 0.145 15 2.36 16.3

5 EuroHPC/CSC
Finland

LUMI, HPE Cray EX235a, AMD Zen-3 (Milan) 64C 
2GHz, AMD MI250X, Slingshot-11 2,752,704 0.380 9 2.35 6.2

6
RIKEN Center for 
Computational Science, 
Japan

Fugaku, Fujitsu A64FX 48C 2.2GHz, Tofu D 7,630,848 0.442 7 2.0 4.5

7 EuroHPC/CINECA
Italy

Leonardo, BullSequana XH2000, Xeon Platinum 8358 
32C 2.6GHz, NVIDIA A100 SXM4 40 GB, Quad-rail 
NVIDIA HDR100 Infiniband

1,824,768 0.241 10 1.8 7.6

8 CII, Institute of Science
Japan

TSUBAME 4, HPE Cray XD665, AMD EPYC 9654 
96C 2.4GHz, NVIDIA H100 SXM5 94 GB, Mellanox 
NDR200

172,800 0.035 46 0.64 16.2

9 NVIDIA
USA

Selene, DGX SuperPOD, AMD EPYC 7742 64C 
2.25 GHz, Mellanox HDR, NVIDIA A100 555,520 0.063 30 0.63 9.9

10 DOE/SC/LBNL/NERSC
USA

Perlmutter, HPE Cray EX235n, AMD EPYC 7763 
64C 2.45 GHz, Slingshot-10, NVIDIA A100 761,856 0.079 25 0.59 7.5



Recent Nvidia GPUs
Figure of Merit

Peak Performance
Operations 2022

Hopper  (H200)
2024

Blackwell (B200)
FP64 FMA 33.5 Tflop/s 40 Tflop/s

FP64 Tensor Core 67 Tflop/s 40 Tflop/s
FP32 FMA 67 Tflop/s 80 Tflop/s

FP16 Tensor Core 989 Tflop/s 2250 Tflop/s
BF16 Tensor Core 989 Tflop/s 2250 Tflop/s

INT8 Tensor Core 1979 TOP/s 4500 TOP/s

Memory BW 4.8 TB/s 8 TB/s

112X



Divide the numbers into “slices” of 2-8

Use Int8 Tensor Cores for each matrix multiplication
Int8-input Int32-accumulation

http://arxiv.org/abs/2506.11277

Opportunity Breeds Innovation, Emulating Fl.Pt. with 
Integer arithmetic, “Ozaki Scheme”

http://arxiv.org/abs/2506.11277
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GMRES

• General purpose, sparse linear solver
• Iterative, Krylov solver

• Memory bound performance

• Selectively reduced precision
• Improving performance
• Without losing accuracy
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Classic GMRES Algorithm with Restart
GMRES𝑟𝑒𝑠(𝑨, 𝒙𝟎, 𝒃,𝑴−1)

for  𝑘=0, 1, 2,…
𝒓𝒌 ← 𝒃−𝑨𝒙𝒌
𝒛𝒌← 𝑴−1 𝒓𝒌
𝛽 ← ǁ𝒛𝒌 ǁ2
𝑽:,0 ← 𝒛𝒌 ⁄ 𝛽
𝐬 ← [𝛽, 0, 0, …, 0]𝑇
for j=0, 1, 2, …

𝒘←𝑴−1 𝑨𝑽:,𝑗
𝒘,𝑯:,𝑗 ← 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑒(𝒘, 𝑽:,𝑗 )
𝑯𝑗+1,𝑗 ← ǁ𝒘ǁ2
𝑽:,𝑗+1 ← 𝒘 ⁄ ǁ𝒘ǁ2

𝑯:, 𝑗 ← 𝑮𝟎 𝑮𝟏…𝑮𝒋−𝟏 𝑯:,𝑗
𝑮𝒋 ← 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑯:,𝑗)
𝑯:, 𝑗 ← 𝑮𝒋 𝑯:,𝑗

𝒔 ← 𝑮𝒋 𝒔
𝒖𝒌 ← 𝑽𝑯−1 𝒔
𝒙𝒌+𝟏 ← 𝒙𝒌 + 𝒖𝒌

Computing 𝑨𝒙=𝒃. 𝑨−1≈𝑴−1

Restarts

Iteration count



43 /

A Mixed Precision GMRES Algorithm
GMRES𝑟𝑒𝑠(𝑨, 𝒙𝟎, 𝒃,𝑴−1)

for  𝑘=0, 1, 2,…
𝒓𝒌 ← 𝒃−𝑨𝒙𝒌
𝒛𝒌← 𝑴−1 𝒓𝒌
𝛽 ← ǁ𝒛𝒌 ǁ2
𝑽:,0 ← 𝒛𝒌 ⁄ 𝛽
𝐬 ← [𝛽, 0, 0, …, 0]𝑇
for j=0, 1, 2, …

𝒘←𝑴−1 𝑨𝑽:,𝑗
𝒘,𝑯:,𝑗 ← 𝑜𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑧𝑒(𝒘, 𝑽:,𝑗 )
𝑯𝑗+1,𝑗 ← ǁ𝒘ǁ2
𝑽:,𝑗+1 ← 𝒘 ⁄ ǁ𝒘ǁ2

𝑯:, 𝑗 ← 𝑮𝟎 𝑮𝟏…𝑮𝒋−𝟏 𝑯:,𝑗
𝑮𝒋 ← 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛_𝑚𝑎𝑡𝑟𝑖𝑥(𝑯:,𝑗)
𝑯:, 𝑗 ← 𝑮𝒋 𝑯:,𝑗

𝒔 ← 𝑮𝒋 𝒔
𝒖𝒌 ← 𝑽𝑯−1 𝒔
𝒙𝒌+𝟏 ← 𝒙𝒌 + 𝒖𝒌

Computing 𝑨𝒙=𝒃. 𝑨−1≈𝑴−1

Restarts

Iteration count

Double:

Single:

Double:

This approach allows for uniform-precision kernels, found to be effective for mixed precision (see SMC materials)
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Simplified Mixed Precision GMRES Algorithm

GMRES𝑟𝑒𝑠(𝑨, 𝒙𝟎, 𝒃,𝑴−1)
for  𝑘=0, 1, 2,…

𝒓𝒌 ← 𝒃−𝑨𝒙𝒌
u𝒌← GMRESno_restart(A−1,0, 𝒓𝒌,𝑴−1)
𝒙𝒌+𝟏 ← 𝒙𝒌+ 𝒖𝒌

Double:
Single:

Double:

Single precision section equivalent to non-restarted GMRES, which makes this approach a standard mixed precision iterative
refinement.  Thus, it converges to double precision if A isn’t too ill-conditioned and the non-restarted GMRES computes
accurate enough solutions
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Performance Evaluation: No Preconditioner



The Take Away

• HPC Hardware is Constantly Changing
• Scalar
• Vector
• Distributed
• Accelerated
• Mixed precision

• Three computer revolutions
• High performance computing
• Deep learning
• Edge & AI

• Algorithm / Software advances follows hardware.
• And there is “plenty of room at the top”

“There’s plenty of room at the Top: What will drive computer 
performance after Moore’s law?”

Feynman’s 1959 
Lecture @ CalTech


