
The Kokkos Lectures

The Compact Course

July 31, 2025

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND2020-7475 PE

July 31, 2025 2/149

The Compact Course

A 1-Day Tutorial

This lecture covers many concepts of Kokkos with Hands-On
Exercises as homework.
Slides: https://github.com/kokkos/kokkos-tutorials/
Intro-Medium/KokkosTutorial_Medium.pdf

For the full lectures, with more capabilities covered, and more
in-depth explanations visit:
https://github.com/kokkos/kokkos-tutorials/wiki/

Kokkos-Lecture-Series

https://github.com/kokkos/kokkos-tutorials/Intro-Medium/KokkosTutorial_Medium.pdf
https://github.com/kokkos/kokkos-tutorials/Intro-Medium/KokkosTutorial_Medium.pdf
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series

July 31, 2025 3/149

The HPC Hardware Landscape

(a) Initially not working. Now more robust for Fortran than C++, but getting better.
(b) Research effort.
(c) OpenMP 5 by NVIDIA.
(d) OpenMP 5 by HPE.

(e) OpenMP 5 by Intel.

July 31, 2025 4/149

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

▶ Typical HPC production app: 300k-600k lines
▶ Sandia alone maintains a few dozen

▶ Large Scientific Libraries:
▶ E3SM: 1,000k lines
▶ Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

July 31, 2025 4/149

Cost of Coding

Industry Estimate

A full time software engineer writes 10 lines of production code per
hour: 20k LOC/year.

▶ Typical HPC production app: 300k-600k lines
▶ Sandia alone maintains a few dozen

▶ Large Scientific Libraries:
▶ E3SM: 1,000k lines
▶ Trilinos: 4,000k lines

Conservative estimate: need to rewrite 10% of an app to switch
Programming Model

Software Cost Switching Vendors

Just switching Programming Models costs multiple person-years
per app!

July 31, 2025 5/149

What is Kokkos?

▶ A C++ Programming Model for Performance Portability
▶ Implemented as a template library on top CUDA, HIP,

OpenMP, ...
▶ Aims to be descriptive not prescriptive
▶ Aligns with developments in the C++ standard

▶ Expanding solution for common needs of modern science and
engineering codes
▶ Math libraries based on Kokkos
▶ Tools for debugging, profiling and tuning
▶ Utilities for integration with Fortran and Python

▶ It is an Open Source project with a growing community
▶ Maintained and developed at https://github.com/kokkos
▶ Hundreds of users at many large institutions

https://github.com/kokkos

July 31, 2025 6/149

Kokkos at the Center

July 31, 2025 7/149

The Kokkos Ecosystem

July 31, 2025 8/149

The Kokkos Team

July 31, 2025 9/149

Kokkos and the C++ Standard

Kokkos helps improve ISO C++

Ten current or former Kokkos team members are members of the
ISO C++ standard committee.

July 31, 2025 10/149

Kokkos Users

Kokkos has a growing OpenSource Community

▶ 20 ECP projects list Kokkos as Critical Dependency
▶ 41 list C++ as critical
▶ 25 list Lapack as critical
▶ 21 list Fortran as critical

▶ Slack Channel: 1.7k members from 100+ institutions
▶ 15% Sandia Nat. Lab.
▶ 24% other US Labs
▶ 22% universities
▶ 39% other

▶ GitHub: 1.9k stars

July 31, 2025 11/149

Welcome to Kokkos

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://github.com/kokkos/kokkos/wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

July 31, 2025 12/149

Data parallel patterns

Learning objectives:

▶ How computational bodies are passed to the Kokkos runtime.

▶ How work is mapped to execution resources.

▶ The difference between parallel for and
parallel reduce.

▶ Start parallelizing a simple example.

July 31, 2025 13/149

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

July 31, 2025 13/149

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

July 31, 2025 13/149

Using Kokkos for data parallel patterns (0)

Data parallel patterns and work

for (atomIndex = 0; atomIndex < numberOfAtoms; ++ atomIndex) {

atomForces[atomIndex] = calculateForce (... data ...);

}

Kokkos maps work to execution resources

▶ each iteration of a computational body is a unit of work.

▶ an iteration index identifies a particular unit of work.

▶ an iteration range identifies a total amount of work.

Important concept: Work mapping

You give an iteration range and computational body (kernel)
to Kokkos, and Kokkos decides how to map that work to execution
resources.

July 31, 2025 14/149

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

July 31, 2025 14/149

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

July 31, 2025 14/149

Using Kokkos for data parallel patterns (2)

How are computational bodies given to Kokkos?

As functors or function objects, a common pattern in C++.

Quick review, a functor is a function with data. Example:

struct ParallelFunctor {

...

void operator ()(a work assignment) const {

/* ... computational body ... */

...

};

July 31, 2025 15/149

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

July 31, 2025 15/149

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

July 31, 2025 15/149

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

July 31, 2025 15/149

Using Kokkos for data parallel patterns (3)

How is work assigned to functor operators?

A total amount of work items is given to a Kokkos pattern,

ParallelFunctor functor;

Kokkos :: parallel_for(numberOfIterations , functor);

and work items are assigned to functors one-by-one:

struct Functor {

void operator ()(const int64_t index) const {...}

}

Warning: concurrency and order

Concurrency and ordering of parallel iterations is not guaranteed
by the Kokkos runtime.

July 31, 2025 16/149

Using Kokkos for data parallel patterns (6)

The complete picture (using functors):

1. Defining the functor (operator+data):

struct AtomForceFunctor {

ForceType _atomForces;

DataType _atomData;

AtomForceFunctor(ForceType atomForces , DataType data) :

_atomForces(atomForces), _atomData(data) {}

void operator ()(const int64_t atomIndex) const {

_atomForces[atomIndex] = calculateForce(_atomData);

}

}

2. Executing in parallel with Kokkos pattern:
AtomForceFunctor functor(atomForces , data);

Kokkos :: parallel_for(numberOfAtoms , functor);

July 31, 2025 17/149

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

July 31, 2025 17/149

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

July 31, 2025 17/149

Using Kokkos for data parallel patterns (7)

Functors are tedious ⇒ C++11 Lambdas are concise

atomForces already exists

data already exists

Kokkos :: parallel_for(numberOfAtoms ,

[=] (const int64_t atomIndex) {

atomForces[atomIndex] = calculateForce(data);

}

);

A lambda is not magic, it is the compiler auto-generating a
functor for you.

Warning: Lambda capture and C++ containers

For portability to GPU a lambda must capture by value [=].
Don’t capture containers (e.g., std::vector) by value because it will
copy the container’s entire contents.

July 31, 2025 18/149

parallel for examples

How does this compare to OpenMP?

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

#pragma omp parallel for

for (int64_t i = 0; i < N; ++i) {

/* loop body */

}

parallel_for(N, [=] (const int64_t i) {

/* loop body */

});

Important concept

Simple Kokkos usage is no more conceptually difficult than
OpenMP, the annotations just go in different places.

S
er
ia
l

O
p
en

M
P

K
o
k
ko

s

July 31, 2025 19/149

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

July 31, 2025 19/149

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

July 31, 2025 19/149

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

July 31, 2025 19/149

Scalar integration (0)

Riemann-sum-style numerical integration:

y =

∫ upper

lower
function(x) dx

Wikipedia

double totalIntegral = 0;

for (int64_t i = 0; i < numberOfIntervals; ++i) {

const double x =

lower + (i/numberOfIntervals) * (upper - lower);
const double thisIntervalsContribution = function(x);
totalIntegral += thisIntervalsContribution;

}

totalIntegral *= dx;

How do we parallelize it? Correctly?

Pattern?
Policy?

B
o
d
y?

July 31, 2025 20/149

Scalar integration (1)

An (incorrect) attempt:

double totalIntegral = 0;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

totalIntegral += function(x);}

);

totalIntegral *= dx;

First problem: compiler error; cannot increment totalIntegral
(lambdas capture by value and are treated as const!)

July 31, 2025 21/149

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);}

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

July 31, 2025 21/149

Scalar integration (2)

An (incorrect) solution to the (incorrect) attempt:

double totalIntegral = 0;

double * totalIntegralPointer = &totalIntegral;

Kokkos :: parallel_for(numberOfIntervals ,

[=] (const int64_t index) {

const double x =

lower + (index/numberOfIntervals) * (upper - lower);

*totalIntegralPointer += function(x);}

);

totalIntegral *= dx;

Second problem: race condition

step thread 0 thread 1

0 load

1 increment load

2 write increment

3 write

July 31, 2025 22/149

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

July 31, 2025 22/149

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

July 31, 2025 22/149

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

July 31, 2025 22/149

Scalar integration (3)

Root problem: we’re using the wrong pattern, for instead of
reduction

Important concept: Reduction

Reductions combine the results contributed by parallel work.

How would we do this with OpenMP?
double finalReducedValue = 0;

#pragma omp parallel for reduction(+: finalReducedValue)

for (int64_t i = 0; i < N; ++i) {

finalReducedValue += ...

}

How will we do this with Kokkos?
double finalReducedValue = 0;

parallel_reduce(N, functor , finalReducedValue);

July 31, 2025 23/149

Scalar integration (4)

Example: Scalar integration

double totalIntegral;

#pragma omp parallel for reduction(+: totalIntegral)

for (int64_t i = 0; i < numberOfIntervals; ++i) {

totalIntegral += function (...);

}

double totalIntegral = 0;

parallel_reduce(numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

▶ The operator takes two arguments: a work index and a value
to update.

▶ The second argument is a thread-private value that is
managed by Kokkos; it is not the final reduced value.

O
p
en

M
P

K
o
k
ko

s

July 31, 2025 24/149

Naming your kernels

Always name your kernels!

Giving unique names to each kernel is immensely helpful for
debugging and profiling. You will regret it if you don’t!

▶ Non-nested parallel patterns can take an optional string
argument.

▶ The label doesn’t need to be unique, but it is helpful.

▶ Anything convertible to ”std::string”

▶ Used by profiling and debugging tools (see Profiling Tutorial)

Example:
double totalIntegral = 0;

parallel_reduce("Reduction",numberOfIntervals ,

[=] (const int64_t i, double & valueToUpdate) {

valueToUpdate += function (...);

},

totalIntegral);

July 31, 2025 25/149

Recurring Exercise: Inner Product

Exercise: Inner product < y ,A ∗ x >

Details:

▶ y is Nx1, A is NxM, x is Mx1

▶ We’ll use this exercise throughout the tutorial

July 31, 2025 26/149

Exercise #1: include, initialize, finalize Kokkos

The first step in using Kokkos is to include, initialize, and finalize:

#include <Kokkos_Core.hpp >

int main(int argc , char* argv []) {

/* ... do any necessary setup (e.g., initialize MPI) ... */

Kokkos :: initialize(argc , argv);

{

/* ... do computations ... */

}

Kokkos :: finalize ();

return 0;

}

(Optional) Command-line arguments or environment variables:

--kokkos-num-threads=INT or
KOKKOS NUM THREADS

total number of threads

--kokkos-device-id=INT or
KOKKOS DEVICE ID

device (GPU) ID to use

July 31, 2025 27/149

Exercise #1: Inner Product, Flat Parallelism on the CPU

Exercise: Inner product < y ,A ∗ x >

Details:

▶ Location: Exercises/01/Begin/

▶ Look for comments labeled with “EXERCISE”

▶ Need to include, initialize, and finalize Kokkos library

▶ Parallelize loops with parallel for or parallel reduce

▶ Use lambdas instead of functors for computational bodies.

▶ For now, this will only use the CPU.

July 31, 2025 28/149

Exercise #1: logistics

Compiling for CPU

cmake -B build_openmp -DKokkos_ENABLE_OPENMP=ON \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_openmp

Running on CPU with OpenMP backend

Set OpenMP affinity

export OMP_PROC_BIND=spread OMP_PLACES=threads

Print example command line options:

./ build_openmp /01 _Exercise -h

Run with defaults on CPU

./ build_openmp /01 _Exercise

Run larger problem

./ build_openmp /01 _Exercise -S 26

Things to try:

▶ Vary problem size with command line argument -S s

▶ Vary number of rows with command line argument -N n

▶ Num rows = 2n, num cols = 2m, total size = 2s == 2n+m

July 31, 2025 29/149

Exercise #1 results

 0

 50

 100

 150

 200

 250

 300

 350

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y,Ax> Exercise 01, Fixed Size

HSW
KNL
KNL (HBM)

July 31, 2025 30/149

Section Summary

▶ Simple usage is similar to OpenMP, advanced features are
also straightforward

▶ Three common data-parallel patterns are parallel for,
parallel reduce, and parallel scan.

▶ A parallel computation is characterized by its pattern, policy,
and body.

▶ User provides computational bodies as functors or lambdas
which handle a single work item.

July 31, 2025 31/149

Views

Learning objectives:

▶ Motivation behind the View abstraction.

▶ Key View concepts and template parameters.

▶ The View life cycle.

July 31, 2025 32/149

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

July 31, 2025 32/149

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

July 31, 2025 32/149

View motivation

Example: running daxpy on the GPU:

double * x = new double[N]; // also y

parallel_for("DAXPY",N, [=] (const int64_t i) {

y[i] = a * x[i] + y[i];

});

struct Functor {

double *_x , *_y, a;

void operator ()(const int64_t i) const {

_y[i] = _a * _x[i] + _y[i];

}

};

Problem: x and y reside in CPU memory.

Solution: We need a way of storing data (multidimensional arrays)
which can be communicated to an accelerator (GPU).

⇒ Views

L
a
m
b
d
a

F
u
n
ct
o
r

July 31, 2025 33/149

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

July 31, 2025 33/149

Views (0)

View abstraction

▶ A lightweight C++ class with a pointer to array data and a
little meta-data,

▶ that is templated on the data type (and other things).

High-level example of Views for daxpy using lambda:

View <double*, ...> x(...) , y(...);

... populate x, y...

parallel_for("DAXPY",N, [=] (const int64_t i) {

// Views x and y are captured by value (shallow copy)

y(i) = a * x(i) + y(i);

});

Important point

Views are like pointers, so copy them in your functors.

July 31, 2025 34/149

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.

Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

July 31, 2025 34/149

Views (1)

View overview:

▶ Multi-dimensional array of 0 or more dimensions
scalar (0), vector (1), matrix (2), etc.

▶ Number of dimensions (rank) is fixed at compile-time.

▶ Arrays are rectangular, not ragged.

▶ Sizes of dimensions set at compile-time or runtime.
e.g., 2x20, 50x50, etc.

▶ Access elements via ”(...)” operator.
Example:

View <double ***> data("label", N0 , N1, N2); //3 run, 0 compile

View <double **[N2]> data("label", N0, N1); //2 run, 1 compile

View <double *[N1][N2]> data("label", N0); //1 run, 2 compile

View <double[N0][N1][N2]> data("label"); //0 run, 3 compile

// Access

data(i,j,k) = 5.3;

Note: runtime-sized dimensions must come first.

July 31, 2025 35/149

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

July 31, 2025 35/149

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?

3.0

July 31, 2025 35/149

Views (2)

View life cycle:

▶ Allocations only happen when explicitly specified.
i.e., there are no hidden allocations.

▶ Copy construction and assignment are shallow (like pointers).
so, you pass Views by value, not by reference

▶ Reference counting is used for automatic deallocation.

▶ They behave like std::shared ptr

Example:
View <double *[5]> a("a", N), b("b", K);

a = b;

View <double**> c(b);

a(0,2) = 1;

b(0,2) = 2;

c(0,2) = 3;

print_value(a(0,2));

What gets printed?
3.0

July 31, 2025 36/149

Views (3)

View Properties:
▶ Accessing a View’s sizes is done via its extent(dim)

function.
▶ Static extents can additionally be accessed via

static extent(dim).

▶ You can retrieve a raw pointer via its data() function.

▶ The label can be accessed via label().

Example:

View <double *[5]> a("A",N0);

assert(a.extent (0) == N0);

assert(a.extent (1) == 5);

static_assert(a.static_extent (1) == 5);

assert(a.data() != nullptr);

assert(a.label () == "A");

July 31, 2025 37/149

Exercise #2: Inner Product, Flat Parallelism on the CPU, with Views

▶ Location: Exercises/02/Begin/

▶ Assignment: Change data storage from arrays to Views.

▶ Compile and run on CPU, and then on GPU with SharedSpace.

CPU -only using OpenMP

cmake -B build -openmp/ -DKokkos_ENABLE_OPENMP=On \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_openmp

GPU build using SYCL

cmake -B build -sycl/ -DKokkos_ENABLE_SYCL=On \

-DKokkos_ARCH_INTEL_PVC=On \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_sycl

Run exercise

./ build_openmp /02 _Exercise -S 26

./ build_sycl /02 _Exercise -S 26

July 31, 2025 38/149

Execution and Memory spaces

Execution and Memory Spaces

Learning objectives:

▶ Heterogeneous nodes and the space abstractions.

▶ How to control where parallel bodies are run, execution
space.

▶ How to control where view data resides, memory space.

▶ How to avoid illegal memory accesses and manage data
movement.

▶ The need for Kokkos::initialize and finalize.

▶ Where to use Kokkos annotation macros for portability.

July 31, 2025 39/149

Execution spaces (1)

Execution Space
a homogeneous set of cores and an execution mechanism

(i.e., “place to run code”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

Execution spaces: Serial, Threads, OpenMP, Cuda, HIP, ...

July 31, 2025 40/149

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

July 31, 2025 40/149

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

July 31, 2025 40/149

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

July 31, 2025 40/149

Execution spaces (2)

MPI_Reduce (...);

FILE * file = fopen (...);

runANormalFunction (... data ...);

Kokkos :: parallel_for("MyKernel", numberOfSomethings ,

[=] (const int64_t somethingIndex) {

const double y = ...;

// do something interesting

}

);

▶ Where will Host code be run? CPU? GPU?
⇒ Always in the host process
also known as default host execution space

▶ Where will Parallel code be run? CPU? GPU?
⇒ The default execution space

▶ How do I control where the Parallel body is executed?
Changing the default execution space (at compilation),
or specifying an execution space in the policy.

H
o
st

P
ar
al
le
l

July 31, 2025 41/149

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

July 31, 2025 41/149

Execution spaces (3)

Changing the parallel execution space:

parallel_for("Label",

RangePolicy < Execut ionSpace >(0, numberOfIntervals),

[=] (const int64_t i) {

/* ... body ... */

});

parallel_for("Label",

numberOfIntervals , // => RangePolicy <>(0, numberOfIntervals)

[=] (const int64_t i) {

/* ... body ... */

});

Requirements for enabling execution spaces:
▶ Kokkos must be compiled with the execution spaces enabled.

▶ Execution spaces must be initialized (and finalized).

▶ Functions must be marked with a macro for non-CPU spaces.

▶ Lambdas must be marked with a macro for non-CPU spaces.

D
ef
a
u
lt

C
u
st
o
m

July 31, 2025 42/149

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
struct ParallelFunctor {

KOKKOS_INLINE_FUNCTION

double helperFunction(const int64_t s) const {...}

KOKKOS_INLINE_FUNCTION

void operator ()(const int64_t index) const {

helperFunction(index);

}

}

// Where kokkos defines:

#define KOKKOS_INLINE_FUNCTION inline // if CPU only

#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ // if CPU + Cuda/HIP

Lambda annotation with KOKKOS LAMBDA macro
Kokkos :: parallel_for("Label",numberOfIterations ,

KOKKOS_LAMBDA (const int64_t index) {...});

// Where Kokkos defines:

#define KOKKOS_LAMBDA [=] // if CPU only

#define KOKKOS_LAMBDA [=] __device__ __host__ // if CPU + Cuda/HIP

These macros are already defined by Kokkos.

July 31, 2025 42/149

Execution spaces (5)

Kokkos function and lambda portability annotation macros:

Function annotation with KOKKOS INLINE FUNCTION macro
struct ParallelFunctor {

KOKKOS_INLINE_FUNCTION

double helperFunction(const int64_t s) const {...}

KOKKOS_INLINE_FUNCTION

void operator ()(const int64_t index) const {

helperFunction(index);

}

}

// Where kokkos defines:

#define KOKKOS_INLINE_FUNCTION inline // if CPU only

#define KOKKOS_INLINE_FUNCTION inline __device__ __host__ // if CPU + Cuda/HIP

Lambda annotation with KOKKOS LAMBDA macro
Kokkos :: parallel_for("Label",numberOfIterations ,

KOKKOS_LAMBDA (const int64_t index) {...});

// Where Kokkos defines:

#define KOKKOS_LAMBDA [=] // if CPU only

#define KOKKOS_LAMBDA [=] __device__ __host__ // if CPU + Cuda/HIP

These macros are already defined by Kokkos.

July 31, 2025 43/149

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

July 31, 2025 43/149

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

July 31, 2025 43/149

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

July 31, 2025 43/149

Memory Space Motivation

Memory space motivating example: summing an array

View <double*> data("data", size);

for (int64_t i = 0; i < size; ++i) {

data(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy <SomeExampleExecutionSpace >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: Where is the data stored? GPU memory? CPU
memory? Both?

⇒ Memory Spaces

July 31, 2025 44/149

Memory spaces (0)

Memory space:
explicitly-manageable memory resource

(i.e., “place to put data”)

DRAM

NVRAM

On-Package
Memory

Network-on-Chip

Core Core

External Network
Interface

...

Core Core...

Acc.
On-Package

Memory

External Interconnect

Node

NUMA Domain

NUMA Domain

Accelerator

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 45/149

Memory spaces (1)

Important concept: Memory spaces

Every view stores its data in a memory space set at compile time.

▶ View<double***,MemorySpace> data(...);

▶ Available memory spaces:
HostSpace, CudaSpace, CudaUVMSpace, ... more
Portable: SharedSpace, SharedHostPinnedSpace

▶ Each execution space has a default memory space, which is
used if Space provided is actually an execution space

▶ If no Space is provided, the view’s data resides in the default
memory space of the default execution space.

// Equivalent:

View <double*> a("A",N);

View <double*,DefaultExecutionSpace :: memory_space > b("B",N);

July 31, 2025 46/149

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

July 31, 2025 46/149

Memory spaces (2)

Example: HostSpace

View <double**, HostSpace> hostView (... constructor arguments ...);

Example: CudaSpace

View <double**, CudaSpace> view (... constructor arguments ...);

July 31, 2025 47/149

Execution and Memory spaces (0)

Anatomy of a kernel launch:

1. User declares views, allocating.

2. User instantiates a functor with
views.

3. User launches
parallel something:
▶ Functor is copied to the device.
▶ Kernel is run.
▶ Copy of functor on the device is

released.

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev (...);

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

Note: no deep copies of array data are performed;
views are like pointers.

July 31, 2025 48/149

Execution and Memory spaces (1)

Example: one view

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

});

July 31, 2025 49/149

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

July 31, 2025 49/149

Execution and Memory spaces (2)

Example: two views

#define KL KOKKOS_LAMBDA

View <int*, Cuda > dev;

View <int*, Host > host;

parallel_for("Label",N,

KL (int i) {

dev(i) = ...;

host(i) = ...;

});

July 31, 2025 50/149

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

July 31, 2025 50/149

Execution and Memory spaces (3)

Example (redux): summing an array with the GPU

(failed) Attempt 1: View lives in CudaSpace

View <double*, CudaSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

fault

July 31, 2025 51/149

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

July 31, 2025 51/149

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

illegal access

July 31, 2025 51/149

Execution and Memory spaces (4)

Example (redux): summing an array with the GPU

(failed) Attempt 2: View lives in HostSpace

View <double*, HostSpace> array("array", size);

for (int64_t i = 0; i < size; ++i) {

array(i) = ... read from file ...

}

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Cuda >(0, size),

KOKKOS_LAMBDA (const int64_t index , double & valueToUpdate) {

valueToUpdate += array(index);

},

sum);

What’s the solution?
▶ SharedSpace

▶ SharedHostPinnedSpace (skipping)

▶ Mirroring

illegal access

July 31, 2025 52/149

Execution and Memory spaces (5)

SharedSpace

#define KL KOKKOS_LAMBDA

View <double*,

SharedSpace > array;

array = ... from file ...

double sum = 0;

parallel_reduce("Label", N,

KL (int i, double & d) {

d += array(i);

},

sum);

Cuda runtime automatically handles data movement,
at a performance hit.

July 31, 2025 53/149

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

Kokkos ::View <double**, Space> view (...);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

July 31, 2025 53/149

Views, Spaces, and Mirrors

Important concept: Mirrors

Mirrors are views of equivalent arrays residing in possibly different
memory spaces.

Mirroring schematic

Kokkos ::View <double**, Space> view (...);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 54/149

Mirroring pattern

1. Create a view’s array in some memory space.
Kokkos ::View <double*, Space> view (...);

2. Create hostView, a mirror of the view’s array residing in the
host memory space.

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

3. Populate hostView on the host (from file, etc.).

4. Deep copy hostView’s array to view’s array.
Kokkos :: deep copy (view, hostView);

5. Launch a kernel processing the view’s array.
Kokkos :: parallel_for("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (...) { use and change view });

6. If needed, deep copy the view’s updated array back to the
hostView’s array to write file, etc.

Kokkos :: deep copy (hostView , view);

July 31, 2025 55/149

Mirrors of Views in HostSpace

What if the View is in HostSpace too? Does it make a copy?

Kokkos ::View <double*, Space> view("test", 10);

auto hostView = Kokkos : : c r e a t e m i r r o r v i ew (view);

▶ create mirror view allocates data only if the host process
cannot access view’s data, otherwise hostView references the
same data.

▶ create mirror always allocates data.

▶ create mirror view and copy allocates data if necessary
and also copies data.

Reminder: Kokkos never performs a hidden deep copy.

July 31, 2025 56/149

Exercise #3: Flat Parallelism on the GPU, Views and Host Mirrors

Details:
▶ Location: Exercises/03/Begin/

▶ Add HostMirror Views and deep copy

▶ Make sure you use the correct view in initialization and Kernel

CPU -only using OpenMP

cmake -B build -openmp/ -DKokkos_ENABLE_OPENMP=On \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_openmp

GPU build using SYCL

cmake -B build -sycl/ -DKokkos_ENABLE_SYCL=On \

-DKokkos_ARCH_INTEL_PVC=On \

-DCMAKE_BUILD_TYPE=Release

cmake --build build_sycl

Run exercise

./ build_openmp /03 _Exercise -S 26

./ build_sycl /03 _Exercise -S 26

July 31, 2025 57/149

View and Spaces Section Summary

▶ Data is stored in Views that are “pointers” to
multi-dimensional arrays residing in memory spaces.

▶ Views abstract away platform-dependent allocation,
(automatic) deallocation, and access.

▶ Heterogeneous nodes have one or more memory spaces.

▶ Mirroring is used for performant access to views in host and
device memory.

▶ Heterogeneous nodes have one or more execution spaces.

▶ You control where parallel code is run by a template
parameter on the execution policy, or by compile-time
selection of the default execution space.

July 31, 2025 58/149

Managing memory access patterns
for performance portability

Learning objectives:

▶ How the View’s Layout parameter controls data layout.

▶ How memory access patterns result from Kokkos mapping
parallel work indices and layout of multidimensional array data

▶ Why memory access patterns and layouts have such a
performance impact (caching and coalescing).

▶ See a concrete example of the performance of various memory
configurations.

July 31, 2025 59/149

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

July 31, 2025 59/149

Example: inner product (0)

Kokkos :: parallel_reduce("Label",

RangePolicy <ExecutionSpace >(0, N),

KOKKOS_LAMBDA (const size_t row , double & valueToUpdate) {

double thisRowsSum = 0;

for (size_t entry = 0; entry < M; ++entry) {

thisRowsSum += A(row , entry) * x(entry);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Driving question: How should A be laid out in memory?

July 31, 2025 60/149

Example: inner product (1)

Layout is the mapping of multi-index to memory:

LayoutLeft

in 2D, “column-major”

LayoutRight

in 2D, “row-major”

July 31, 2025 61/149

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

July 31, 2025 61/149

Layout

Important concept: Layout

Every View has a multidimensional array Layout set at
compile-time.

View <double ***, Layout , Space > name (...);

▶ Most-common layouts are LayoutLeft and LayoutRight.
LayoutLeft: left-most index is stride 1.
LayoutRight: right-most index is stride 1.

▶ If no layout specified, default for that memory space is used.
LayoutLeft for CudaSpace, LayoutRight for HostSpace.

▶ Layouts are extensible: ≈ 50 lines

▶ Advanced layouts: LayoutStride, LayoutTiled, ...

July 31, 2025 62/149

Exercise #4: Inner Product, Flat Parallelism

Details:

▶ Location: Exercises/04/Begin/

▶ Replace ‘‘N’’ in parallel dispatch with RangePolicy<ExecSpace>

▶ Add MemSpace to all Views and Layout to A

▶ Experiment with the combinations of ExecSpace, Layout to view
performance

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Change number of repeats (-nrepeat ...)

▶ Compare behavior of CPU vs GPU

▶ On GPUs, compare using SharedSpace vs using the default
memory space, i.e, not providing an explicit memory space.

▶ Check what happens if MemSpace and ExecSpace do not match.

July 31, 2025 63/149

Exercise #4: Inner Product, Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

Why?

July 31, 2025 64/149

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?

▶ CPU threads are independent.
▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

July 31, 2025 64/149

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

July 31, 2025 64/149

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

July 31, 2025 64/149

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

July 31, 2025 64/149

Caching and coalescing (0)

Thread independence:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

Question: once a thread reads d, does it need to wait?
▶ CPU threads are independent.

▶ i.e., threads may execute at any rate.

▶ GPU threads execute synchronized.
▶ i.e., threads in groups can/must execute instructions together.

In particular, all threads in a group (warp or wavefront) must
finished their loads before any thread can move on.

So, how many cache lines must be fetched before threads can
move on?

July 31, 2025 65/149

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

July 31, 2025 65/149

Caching and coalescing (1)

CPUs: few (independent) cores with separate caches:

GPUs: many (synchronized) cores with a shared cache:

July 31, 2025 66/149

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

July 31, 2025 66/149

Caching and coalescing (2)

Important point

For performance, accesses to views in HostSpace must be cached,
while access to views in CudaSpace must be coalesced.

Caching: if thread t’s current access is at position i,
thread t’s next access should be at position i+1.

Coalescing: if thread t’s current access is at position i,
thread t+1’s current access should be at position i+1.

Warning

Uncoalesced access on GPUs and non-cached loads on CPUs
greatly reduces performance (can be 10X)

July 31, 2025 67/149

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

July 31, 2025 67/149

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

July 31, 2025 67/149

Mapping indices to cores (0)

Consider the array summation example:

View <double*, Space> data("data", size);

... populate data ...

double sum = 0;

Kokkos :: parallel_reduce("Label",

RangePolicy < Space >(0, size),

KOKKOS_LAMBDA (const size_t index , double & valueToUpdate) {

valueToUpdate += data(index);

},

sum);

Question: is this cached (for OpenMP) and coalesced (for Cuda)?

Given P threads, which indices do we want thread 0 to handle?

Contiguous:
0, 1, 2, ..., N/P

Strided:
0, N/P, 2*N/P, ...

CPU GPU
Why?

July 31, 2025 68/149

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

July 31, 2025 68/149

Mapping indices to cores (1)

Iterating for the execution space:

operator ()(int index , double & valueToUpdate) const {

const double d = _data(index);

valueToUpdate += d;

}

As users we don’t control how indices are mapped to threads, so
how do we achieve good memory access?

Important point

Kokkos maps indices to cores in contiguous chunks on CPU
execution spaces, and strided for Cuda.

July 31, 2025 69/149

Mapping indices to cores (2)

Rule of Thumb

Kokkos index mapping and default layouts provide efficient access
if iteration indices correspond to the first index of array.

Example:

View <double ***, ...> view (...);

...

Kokkos :: parallel_for("Label", ... ,

KOKKOS_LAMBDA (int workIndex) {

...

view (..., ... , workIndex) = ...;

view (... , workIndex , ...) = ...;

view(workIndex , ... , ...) = ...;

});

...

July 31, 2025 70/149

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

July 31, 2025 70/149

Example: inner product (3)

Important point

Performant memory access is achieved by Kokkos mapping parallel
work indices and multidimensional array layout optimally for the
architecture.

Analysis: column-major (LayoutLeft)

▶ HostSpace: uncached (bad)

▶ CudaSpace: coalesced (good)

July 31, 2025 71/149

Example: inner product (4)

Analysis: Kokkos architecture-dependent

View <double**, Execut ionSpace > A(N, M);

parallel_for(RangePolicy < Execut ionSpace >(0, N),

... thisRowsSum += A(j, i) * x(i);

(a) OpenMP (b) Cuda

▶ HostSpace: cached (good)

▶ CudaSpace: coalesced (good)

July 31, 2025 72/149

Example: inner product (5)

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached
uncached

July 31, 2025 73/149

Memory Access Pattern Summary

▶ Every View has a Layout set at compile-time through a
template parameter.

▶ LayoutRight and LayoutLeft are most common.

▶ Views in HostSpace default to LayoutRight and Views in
CudaSpace default to LayoutLeft.

▶ Layouts are extensible and flexible.

▶ For performance, memory access patterns must result in
caching on a CPU and coalescing on a GPU.

▶ Kokkos maps parallel work indices and multidimensional array
layout for performance portable memory access patterns.

▶ There is nothing in OpenMP, OpenACC, or OpenCL to manage
layouts.
⇒ You’ll need multiple versions of code or pay the
performance penalty.

July 31, 2025 74/149

Advanced Reductions

Learning objectives:

▶ How to use Reducers to perform different reductions.

▶ How to do multiple reductions in one kernel.

▶ Using Kokkos::View’s as result for asynchronicity.

▶ Custom reductions

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 75/149

Reducers

So far only ”sum” reduction. What about other things?
Using a Reducer:

double max_value = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i, double & valueToUpdate) {

double my_value = function (...);

if(my_value > valueToUpdate) valueToUpdate = my_value;

}, Kokkos ::Max <double >(max_value));

▶ Note how the operation in the body matches the reducer op!

▶ The scalar type is used as a template argument.

▶ Many reducers available: Sum, Prod, Min, Max, MinLoc,

see: https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

▶ Some reducers (like MinLoc) use special scalar types!

▶ Custom value types supported via specialization of
reduction identity.

https://kokkos.github.io/kokkos-core-wiki/API/core/builtin_reducers.html

July 31, 2025 76/149

Simultaneous Reductions

Sometimes multiple reductions are needed

▶ Provide multiple reducers/result arguments

▶ Functor/Lambda operator takes matching thread-local
variables

▶ Mixing scalar types is fine.

float max_value = 0;

double sum = 0;

parallel_reduce("Label", numberOfIntervals ,

KOKKOS_LAMBDA(const int64_t i,float& tl_max ,double& tl_sum){

float a_i = a[i];

if(a_i > tl_max) tl_max = a_i;

tl_sum += a_i;

}, Kokkos ::Max <float >(max_value),sum);

July 31, 2025 77/149

Views as Result arguments

Reducing into a Scalar is blocking!
▶ Providing a reference to scalar means no lifetime expectation.

▶ Call to parallel reduce returns after writing the result.

▶ Kokkos::View can be used as a result, allowing for
potentially non-blocking execution.

▶ Can provide View to host memory, or to memory accessible by
the ExecutionSpace for the reduction.

▶ Works with Reducers too!

View <double ,HostSpace > h_sum("sum_h");

View <double ,CudaSpace > d_sum("sum_d");

using policy_t = RangePolicy <Cuda >;

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

h_sum);

parallel_reduce("Label", policy_t(0,N), SomeFunctor ,

Kokkos ::Sum <double ,CudaSpace >(d_sum));

July 31, 2025 78/149

Custom Reductions

Pseudocode for Kokkos implementation

per_thread:

value& tmp=init(local_tmp);

for (i in local range)

functor(i, tmp)

call join for merging values between threads

in the same thread group

let one (the last) thread group merge all results

from all thread groups

call final(result) on one thread

Three ingredients

▶ init (optional), default: default constructor

▶ join (required)

▶ final (optional), default: no-op

July 31, 2025 79/149

Custom Reductions

Rules for choosing reduction behavior

1. If a reducer is specified (return type is a functor with reducer

alias to itself), use that.

2. If functor implements join, use functor as reducer.

3. Otherwise, assume join behaves like operator+.

Note that the functor’s init, join, final members must be
tagged if the call operator is tagged. The reducers member
functions must never be tagged.

July 31, 2025 80/149

Reducer Concept

c l a s s Reducer {
p u b l i c :

u s i n g r e du c e r = Reducer ;
u s i n g v a l u e t y p e = . . . ;
u s i n g r e s u l t v i e w t y p e = Kokkos : : View<v a l u e t y p e , . . . >;

KOKKOS FUNCTION
vo i d j o i n (v a l u e t y p e& dest , con s t v a l u e t y p e& s r c) con s t ;

// o p t i o n a l
KOKKOS INLINE FUNCTION
vo i d i n i t (v a l u e t y p e& v a l) con s t ;

// o p t i o n a l
KOKKOS INLINE FUNCTION
vo i d f i n a l (v a l u e t y p e& v a l) con s t ;

KOKKOS INLINE FUNCTION
v a l u e t y p e& r e f e r e n c e () con s t ;

KOKKOS INLINE FUNCTION
r e s u l t v i e w t y p e v iew () con s t ;

KOKKOS INLINE FUNCTION
Reducer (v a l u e t y p e& v a l u e) ;

KOKKOS INLINE FUNCTION
Reducer (con s t r e s u l t v i e w t y p e& v a l u e) ;

} ;

July 31, 2025 81/149

Subviews

Subviews: Taking slices of
Views

Learning objectives:

▶ Introduce Kokkos::subview—basic capabilities and syntax

▶ Suggested usage and practices

▶ View assignment rules

July 31, 2025 82/149

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

July 31, 2025 82/149

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

July 31, 2025 82/149

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

July 31, 2025 82/149

Subviews: Motivation

Sometimes you have to call functions on a subset of data:

Example: call a frobenius norm on a matrix slice of a rank-3 tensor:

double special_norm(View <double ***> tensor , int i) {

auto matrix = ???;

// Call a function that takes a matrix:

return some_library :: frobenius_norm(matrix);

}

In Fortran or Matlab or Python you can get such a slice:

tensor(i,:,:)

Kokkos can do that too!

Subview

Kokkos::subview can be used to get a view to a subset of an
existing View.

July 31, 2025 83/149

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View

▶ The function template Kokkos::subview() takes a View and
a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

July 31, 2025 83/149

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

July 31, 2025 83/149

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

July 31, 2025 83/149

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

July 31, 2025 83/149

Subviews (1)

Subview description:

▶ A subview is a “slice” of a View
▶ The function template Kokkos::subview() takes a View and

a slice for each dimension and returns a View of the
appropriate shape.

▶ The subview and original View point to the same data—no
extra memory allocation nor copying

▶ Can be constructed on host or within a kernel, since no
allocation of memory occurs

▶ Similar capability as provided by Matlab, Fortran, Python,
etc., using “colon” notation

July 31, 2025 84/149

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

July 31, 2025 84/149

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

July 31, 2025 84/149

Subviews (2)

Introductory Usage Demo:

Given a View:

Kokkos ::View <double ***> v("v", N0 , N1 , N2);

Say we want a 2-dimensional slice at an index i0 in the first
dimension—that is, in Matlab/Fortran/Python notation:

slicei0 = v(i0 , :, :);

This can be accomplished in Kokkos using a subview as follows:

auto sv_i0 =

Kokkos :: subview(v, i0 , Kokkos ::ALL , Kokkos ::ALL);

// Just like in Python , you can do the same thing with

// the equivalent of v(i0, 0:N1, 0:N2)

auto sv_i0_other =

Kokkos :: subview(v, i0 , Kokkos :: make_pair (0, N1),

Kokkos :: make_pair(0, N2));

July 31, 2025 85/149

Subviews (3)

Subview can take three types of slice arguments:
▶ Index

▶ For every index i the rank of the resulting View is decreased by
one.

▶ Must be between 0 <= i < extent(dim)

▶ Kokkos::pair
▶ References a half-open range of indices.
▶ The begin and end must be within the extents of the original

view.

▶ Kokkos::ALL
▶ References the entire extent in that dimension.
▶ Equivalent to providing make pair(0,v.extent(dim))

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)

▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.

▶ Prioritize readability and maintainability first, then make
changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 86/149

Subviews (4)

Usage notes:
▶ Use auto for the type of a subview (unless you can’t)

▶ The return type of Kokkos::subview() is implementation
defined for performance reasons

▶ You can also use decltype(subview(/*...*/)) if you really
need to spell name of the type somewhere

▶ Use Kokkos::pair for partial ranges if subview created
within a kernel

▶ Constructing subviews in inner loop code can have
performance implications (for now. . .)
▶ This will likely be far less of an issue in the future.
▶ Prioritize readability and maintainability first, then make

changes only if you see a performance impact.

July 31, 2025 87/149

Exercise—Subviews: Basic usage

Details:

▶ Location: Exercises/subview/Begin/

▶ This begins with the Solution of 04

▶ In the parallel reduce kernel, create a subview for row j of view A

▶ Use this subview when computing A(j,:)*x(:) rather than the matrix
A

Compile for CPU

cmake -B build_openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build_openmp

Run on CPU

./ build_openmp/subview_exercise -S 26

Note the warnings , set appropriate environment variables

Compile for GPU

cmake -B build_cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build_cuda

Run on GPU

./ build_cuda/subview_exercise -S 26

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4)

=> Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 88/149

Aside: View Assignment (1)

View::operator=() just does the “Right Thing”TM

▶ View<int**> a; a = View<int*[5]>("b", 4) => Okay

▶ View<int*[5]> a; a = View<int**>("b", 4, 5)

=> Okay, checked at runtime

▶ View<int*[5]> a; a = View<int*[3]>("b", 4)

=> Compilation error

▶ View<int*[5]> a; a = View<int**>("b", 4, 3)

=> Runtime error

▶ View<int*, CudaSpace> a;

a = View<int*, HostSpace>("b", 4)

=> Compilation error

▶ View<int**, LayoutLeft> a;

a = View<int**, LayoutRight>("b", 4, 5)

=> Compilation error

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4)

=> Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4)

=> Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 89/149

Aside: View Assignment (2)

View::operator=() just does the “Right Thing”TM

▶ View<const int*> a; a = View<int*>("b", 4)

=> Okay

▶ View<int*> a; a = View<const int*>("b", 4)

=> Compilation error

▶ View<int*[5], LayoutStride> a;

a = View<int*[5], LayoutLeft>("b", 4) => Okay,
converting compile-time strides into runtime strides

▶ View<int*[5], LayoutLeft> a;

a = View<int*[5], LayoutStride>("b", 4) => Okay,
but only if strides match layout left (checked at runtime)

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 90/149

View Assignment: subview

Given a View:
Kokkos ::View <int***> v("v", n0, n1, n2);

▶ View<int***> a;

a = Kokkos::subview(v, ALL, 42, ALL);

=> Compilation error

▶ View<int*> a;

a = Kokkos::subview(v, ALL, 5, 42);

=> Okay for LayoutLeft but => Compilation error for
LayoutRight

▶ View<int**> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Runtime error (!)

▶ View<int**, LayoutStride> a;

a = Kokkos::subview(v, ALL, 15, ALL);

=> Okay

July 31, 2025 91/149

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

July 31, 2025 91/149

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

July 31, 2025 91/149

Subview Summary

▶ Use subviews to get a portion of a View. Helps with:
▶ code reuse
▶ code readability
▶ library function compatibility

▶ Kokkos supports slicing Views similar to
Python/Matlab/Fortran slicing syntax

auto sv = Kokkos :: subview(v, 42, ALL , std:: make_pair (3, 17));

▶ The return type of subview is complicated. Use auto!!
▶ View::operator=() just does the “Right Thing”TM

▶ So generally don’t worry about it at first! This is advanced
stuff, and more for future reference.

July 31, 2025 92/149

MDRangePolicy

Tightly Nested Loops with
MDRangePolicy

Learning objectives:

▶ Demonstrate usage of the MDRangePolicy with tightly nested
loops.

▶ Syntax - Required and optional settings

▶ Code demo and example

July 31, 2025 93/149

MDRangePolicy (0)

Motivating example: Consider the nested for loops:

for (int i = 0; i < N0; ++i)

for (int j = 0; j < N1; ++j)

for (int k = 0; k < N2; ++k)

some_init_fcn(i, j, k);

Based on Kokkos lessons thus far, you might parallelize this as

Kokkos :: parallel_for("Label", N0,

KOKKOS_LAMBDA (const i) {

for (int j = 0; j < N1; ++j)

for (int k = 0; k < N2; ++k)

some_init_fcn(i, j, k);

}

);

▶ This only parallelizes along one dimension, leaving potential

parallelism unexploited.

▶ What if Ni is too small to amortize the cost of constructing a

parallel region, but Ni*Nj*Nk makes it worthwhile?

July 31, 2025 94/149

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

July 31, 2025 94/149

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

July 31, 2025 94/149

MDRangePolicy (1)

OpenMP has a solution: the collapse clause
#pragma omp parallel for collapse (3)

for (int64_t i = 0; i < N0; ++i) {

for (int64_t j = 0; j < N1; ++j) {

for (int64_t k = 0; k < N2; ++k) {

/* loop body */

}

}

}

Note this changed the policy by adding a ‘collapse‘ clause.

With Kokkos you also change the policy:
parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

July 31, 2025 95/149

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

July 31, 2025 95/149

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

July 31, 2025 95/149

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

July 31, 2025 95/149

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

July 31, 2025 95/149

MDRangePolicy (2)

MDRangePolicy

MDRangePolicy can parallelize tightly nested loops of 2 to 6
dimensions.

parallel_for("L", MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int64_t i, int64_t j, int64_t k) {

/* loop body */

});

▶ Specify the dimensionality of the loop with Rank < DIM >.

▶ As with Kokkos Views: only rectangular iteration spaces.

▶ Provide initializer lists for begin and end values.

▶ The functor/lambda takes matching number of indicies.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 96/149

MDRangePolicy (3)

You can also do Reductions:
double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

▶ The Policy doesn’t change the rules for ‘parallel reduce‘.

▶ Additional Thread Local Argument.

▶ Can do other reductions with reducers.

▶ Can use ‘View‘s as reduction argument.

▶ Multiple reducers not yet implemented though.

July 31, 2025 97/149

MDRangePolicy (4)

In structured grid applications a tiling strategy is often used to
help with caching.

Tiling

MDRangePolicy uses a tiling strategy for the iteration space.

▶ Specified as a third initializer list.
▶ For GPUs a tile is handled by a single thread block.

▶ If you provide too large a tile size this will fail!

▶ In Kokkos 3.3 we will add auto tuning for tile sizes.

double result;

parallel_reduce("Label",

MDRangePolicy <Rank <3>>({0,0,0},{N0,N1,N2},{T0 ,T1,T2}),

KOKKOS_LAMBDA(int i, int j, int k, double& lsum) {

/* loop body */

lsum += something;

}, result);

July 31, 2025 98/149

MDRangePolicy (5)

Initializing a Matrix:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

How do I make sure that I get the right access pattern?

July 31, 2025 98/149

MDRangePolicy (5)

Initializing a Matrix:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2>>({0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

How do I make sure that I get the right access pattern?

July 31, 2025 99/149

MDRangePolicy (6)

Iteration Pattern

MDRangePolicy provides compile time control over iteration
patterns.

Kokkos : : Rank< N, I t e r a t eOu t e r , I t e r a t e I n n e r >

▶ N: (Required) the rank of the index space (limited from 2 to 6)

▶ IterateOuter (Optional) iteration pattern between tiles
▶ Options: Iterate::Left, Iterate::Right, Iterate::Default

▶ IterateInner (Optional) iteration pattern within tiles
▶ Options: Iterate::Left, Iterate::Right, Iterate::Default

July 31, 2025 100/149

MDRangePolicy (7)

Initializing a Matrix fast:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Right ,Iterate ::Right >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

Default Patterns Match

Default iteration patterns match the default memory layouts!

July 31, 2025 100/149

MDRangePolicy (7)

Initializing a Matrix fast:

View <double**,LayoutLeft > A("A",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Left ,Iterate ::Left >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

A(i,j) = 1000.0 * i + 1.0*j;

});

View <double**,LayoutRight > B("B",N0,N1);

parallel_for("Label",

MDRangePolicy <Rank <2,Iterate ::Right ,Iterate ::Right >>(

{0,0},{N0 ,N1}),

KOKKOS_LAMBDA(int i, int j) {

B(i,j) = 1000.0 * i + 1.0*j;

});

Default Patterns Match

Default iteration patterns match the default memory layouts!

July 31, 2025 101/149

Exercise - mdrange: Initialize multi-dim views with MDRangePolicy
Details:

▶ Location: Exercises/mdrange/Begin/

▶ This begins with the Solution of 02

▶ Initialize the device Views x and y directly on the device using a
parallel for and RangePolicy

▶ Initialize the device View matrix A directly on the device using a
parallel for and MDRangePolicy

Compile for CPU

cmake -B build_openmp -DKokkos_ENABLE_OPENMP=ON

cmake --build build_openmp

Run on CPU

./ build_openmp/mdrange_exercise -S 26

Note the warnings , set appropriate environment variables

Compile for GPU

cmake -B build_cuda -DKokkos_ENABLE_CUDA=ON

cmake --build build_cuda

Run on GPU

./ build_cuda/mdrange_exercise -S 26

July 31, 2025 102/149

Common Policy Arguments

Template Parameters common to ALL policies.
▶ ExecutionSpace: control where code executes

▶ Options: Serial, OpenMP, Threads, Cuda, HIP, ...

▶ Schedule<Options>: set scheduling policy.
▶ Options: Static, Dynamic

▶ IndexType<Options>: control internal indexing type
▶ Options: int, long, etc

▶ WorkTag: enables multiple operators in one functor

struct Foo {

struct Tag1 {}; struct Tag2 {};

KOKKOS_FUNCTION void operator(Tag1 , int i) const {...}

KOKKOS_FUNCTION void operator(Tag2 , int i) const {...}

void run_both(int N) {

parallel_for(RangePolicy <Tag1 >(0,N),*this);

parallel_for(RangePolicy <Tag2 >(0,N),*this);

}

});

July 31, 2025 103/149

MDRangePolicy Section Summary

MDRangePolicy

▶ allows for tightly nested loops similar to OpenMP’s collapse
clause.

▶ requires functors/lambdas with as many parameters as its
rank is.

▶ works with parallel for and parallel reduce.

▶ uses a tiling strategy for the iteration space.

▶ provides compile time control over iteration patterns.

July 31, 2025 104/149

Hierarchical parallelism
Finding and exploiting more parallelism in your computations.

Learning objectives:

▶ Similarities and differences between outer and inner levels of
parallelism

▶ Thread teams (league of teams of threads)

▶ Performance improvement with well-coordinated teams

July 31, 2025 105/149

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

July 31, 2025 105/149

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

July 31, 2025 105/149

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?

▶ Atomics

▶ Thread teams

July 31, 2025 105/149

Example: inner product (0)

(Flat parallel) Kernel:

Kokkos :: parallel_reduce("yAx",N,

KOKKOS_LAMBDA (const int row , double & valueToUpdate) {

double thisRowsSum = 0;

for (int col = 0; col < M; ++col) {

thisRowsSum += A(row ,col) * x(col);

}

valueToUpdate += y(row) * thisRowsSum;

}, result);

Problem: What if we don’t have
enough rows to saturate the GPU?

Solutions?
▶ Atomics

▶ Thread teams

July 31, 2025 106/149

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

July 31, 2025 106/149

Example: inner product (2)

Using an atomic with every element is doing scalar integration with
atomics. (See module 3)

Instead, you could envision doing a large number of
parallel reduce kernels.

for each row

Functor functor(row , ...);

parallel_reduce(M, functor);

}

This is an example of hierarchical work.

Important concept: Hierarchical parallelism

Algorithms that exhibit hierarchical structure can exploit
hierarchical parallelism with thread teams.

July 31, 2025 107/149

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

July 31, 2025 107/149

Example: inner product (3)

Important concept: Thread team

A collection of threads which are guaranteed to be executing
concurrently and can synchronize.

High-level strategy:
1. Do one parallel launch of N teams.

2. Each team handles a row.

3. The threads within teams perform a reduction.

4. The thread teams perform a reduction.

July 31, 2025 108/149

Example: inner product (4)

The final hierarchical parallel kernel:

parallel_reduce("yAx",

team_policy(N, Kokkos ::AUTO),

KOKKOS_LAMBDA (const member_type & teamMember , double & update) {

int row = teamMember.league_rank ();

double thisRowsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (int col, double & innerUpdate) {

innerUpdate += A(row, col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}, result);

July 31, 2025 109/149

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

July 31, 2025 109/149

TeamPolicy (0)

Important point

Using teams is changing the execution policy.

“Flat parallelism” uses RangePolicy:

We specify a total amount of work.

// total work = N

parallel_for("Label",

RangePolicy <ExecutionSpace >(0,N), functor);

“Hierarchical parallelism” uses TeamPolicy:

We specify a team size and a number of teams.

// total work = numberOfTeams * teamSize

parallel_for("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize), functor);

July 31, 2025 110/149

TeamPolicy (1)

Important point

When using teams, functor operators receive a team member.

using member_type = typename TeamPolicy <ExecSpace >:: member_type;

void operator ()(const member_type & teamMember) {

// How many teams are there?
const unsigned int league_size = teamMember.league_size ();

// Which team am I on?
const unsigned int league_rank = teamMember.league_rank ();

// How many threads are in the team?
const unsigned int team_size = teamMember.team_size ();

// Which thread am I on this team?
const unsigned int team_rank = teamMember.team_rank ();

// Make threads in a team wait on each other:
teamMember.team_barrier ();

}

July 31, 2025 111/149

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

July 31, 2025 111/149

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

July 31, 2025 111/149

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

July 31, 2025 111/149

TeamThreadRange (2)

We shouldn’t be hard-coding the work mapping...

operator () (member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

‘‘do a reduction ’’(‘‘over M columns ’’,

[=] (const int col) {

thisRowsSum += A(row ,col) * x(col);

});

if (teamMember.team_rank () == 0) {

update += (row) * thisRowsSum;

}

}

If this were a parallel execution,
we’d use Kokkos::parallel reduce.

Key idea: this is a parallel execution.

⇒ Nested parallel patterns

July 31, 2025 112/149

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {

thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

▶ The mapping of work indices to threads is
architecture-dependent.

▶ The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

▶ Intrateam reduction handled by Kokkos.

July 31, 2025 112/149

TeamThreadRange (3)

TeamThreadRange:

operator () (const member_type & teamMember , double & update) {

const int row = teamMember.league_rank ();

double thisRowsSum;

parallel_reduce(TeamThreadRange(teamMember , M),

[=] (const int col , double & thisRowsPartialSum) {

thisRowsPartialSum += A(row , col) * x(col);

}, thisRowsSum);

if (teamMember.team_rank () == 0) {

update += y(row) * thisRowsSum;

}

}

▶ The mapping of work indices to threads is
architecture-dependent.

▶ The amount of work given to the TeamThreadRange need
not be a multiple of the team size.

▶ Intrateam reduction handled by Kokkos.

July 31, 2025 113/149

Nested parallelism

Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <ExecutionSpace >(numberOfTeams , teamSize),

KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */

parallel_inner(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const unsigned int indexWithinBatch [, . . .]) {

/* inner body */

} [, . . .]);
/* end of outer body */

} [, . . .]);

▶ parallel outer and parallel inner may be any
combination of for and/or reduce.

▶ The inner lambda may capture by reference, but
capture-by-value is recommended.

▶ The policy of the inner lambda is always a TeamThreadRange.

▶ TeamThreadRange cannot be nested.

July 31, 2025 114/149

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

July 31, 2025 114/149

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

July 31, 2025 114/149

What should the team size be?

In practice, you can let Kokkos decide:

parallel_something(

TeamPolicy <ExecutionSpace >(numberOfTeams , Kokkos ::AUTO),

/* functor */);

GPUs

▶ Special hardware available for coordination within a team.

▶ Within a team 32 (NVIDIA) or 64 (AMD) threads execute
“lock step.”

▶ Maximum team size: 1024; Recommended team size:
128/256

Intel Xeon Phi:

▶ Recommended team size: # hyperthreads per core

▶ Hyperthreads share entire cache hierarchy
a well-coordinated team avoids cache-thrashing

July 31, 2025 115/149

Exercise: TeamPolicy

Details:

▶ Location: Exercises/team policy/

▶ Replace RangePolicy<Space> with TeamPolicy<Space>

▶ Use AUTO for team size

▶ Make the inner loop a parallel reduce with TeamThreadRange

policy

▶ Experiment with the combinations of Layout, Space, N to view
performance

▶ Hint: what should the layout of A be?

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with Exercise 4 for very non-square matrices

▶ Compare behavior of CPU vs GPU

July 31, 2025 116/149

Reminder, Exercise #4 with Flat Parallelism

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 04 (Layout) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

uncoalesced

cached

uncached

July 31, 2025 117/149

Exercise: TeamPolicy

 0

 100

 200

 300

 400

 500

 600

 1 10 100 1000 10000 100000 1x106 1x107 1x108 1x109

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 05 (Layout/Teams) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

HSW Left
HSW Right
KNL Left
KNL Right
Pascal60 Left
Pascal60 Right

coalesced

cached

cached

July 31, 2025 118/149

Three-level parallelism (0)

Exposing Vector Level Parallelism
▶ Optional third level in the hierarchy: ThreadVectorRange

▶ Can be used for parallel for, parallel reduce, or
parallel scan.

▶ Maps to vectorizable loop on CPUs or (sub-)warp level
parallelism on GPUs.

▶ Enabled with a runtime vector length argument to
TeamPolicy

▶ There is no explicit access to a vector lane ID.

▶ Depending on the backend the full global parallel region has
active vector lanes.

▶ TeamVectorRange uses both thread and vector parallelism.

July 31, 2025 119/149

Three-level parallelism (1)
Anatomy of nested parallelism:

parallel_outer("Label",

TeamPolicy <>(numberOfTeams , teamSize , vectorLength),

KOKKOS_LAMBDA (const member_type & teamMember [, . . .]) {

/* beginning of outer body */

parallel_middle(

TeamThreadRange(teamMember , thisTeamsRangeSize),

[=] (const int indexWithinBatch [, . . .]) {

/* begin middle body */

parallel_inner(

ThreadVectorRange(teamMember , thisVectorRangeSize),

[=] (const int indexVectorRange [, . . .]) {

/* inner body */

} [,) ;
/∗ end midd le body ∗/

}[, ...]) ;
p a r a l l e l m i d d l e (
TeamVectorRange (teamMember , someSize) ,

[=] (con s t i n t indexTeamVector [, . . .]) {
/∗ ne s t ed body ∗/

} [, . . .]) ;
/∗ end o f ou t e r body ∗/

}[, ...]) ;

July 31, 2025 120/149

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

July 31, 2025 120/149

Sum sanity checks (0)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", RangePolicy <>(0, numberOfThreads),

KOKKOS_LAMBDA (size_t& index , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfThreads * 10

July 31, 2025 121/149

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

July 31, 2025 121/149

Sum sanity checks (1)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

partialSum += thisThreadsSum;

}, totalSum);

totalSum = numberOfTeams * team size * 10

July 31, 2025 122/149

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisTeamsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);

partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

July 31, 2025 122/149

Sum sanity checks (2)

Question: What will the value of totalSum be?

int totalSum = 0;

parallel_reduce("Sum", TeamPolicy <>(numberOfTeams , team_size),

KOKKOS_LAMBDA (member_type& teamMember , int& partialSum) {

int thisTeamsSum = 0;

parallel_reduce(TeamThreadRange(teamMember , team_size),

[=] (const int index , int& thisTeamsPartialSum) {

int thisThreadsSum = 0;

for (int i = 0; i < 10; ++i) {

++ thisThreadsSum;

}

thisTeamsPartialSum += thisThreadsSum;

}, thisTeamsSum);

partialSum += thisTeamsSum;

}, totalSum);

totalSum = numberOfTeams * team size * team size * 10

July 31, 2025 123/149

Restricting Execution: single pattern

The single pattern can be used to restrict execution

▶ Like parallel patterns it takes a policy, a lambda, and
optionally a broadcast argument.

▶ Two policies: PerTeam and PerThread.

▶ Equivalent to OpenMP single directive with nowait

// Restrict to once per thread

single(PerThread(teamMember), [&] () {

// code

});

// Restrict to once per team with broadcast

int broadcastedValue = 0;

single(PerTeam(teamMember), [&] (int& broadcastedValue_local) {

broadcastedValue_local = special value assigned by one;

}, broadcastedValue);

// Now everyone has the special value

July 31, 2025 124/149

Exercise: TeamVectorLoop

The previous example was extended with an outer loop over
“Elements” to expose a third natural layer of parallelism.

Details:

▶ Location: Exercises/team vector loop/

▶ Use the single policy instead of checking team rank

▶ Parallelize all three loop levels.

Things to try:

▶ Vary problem size and number of rows (-S ...; -N ...)

▶ Compare behavior with TeamPolicy Exercise for very non-square
matrices

▶ Compare behavior of CPU vs GPU

July 31, 2025 125/149

Exercise: TeamVectorLoop

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 1 10 100 1000 10000 100000 1x106

B
an

dw
id

th
 (

G
B

/s
)

Number of Rows (N)

<y|Ax> Exercise 06 (Three Level Parallelism) Fixed Size
KNL: Xeon Phi 68c HSW: Dual Xeon Haswell 2x16c Pascal60: Nvidia GPU

2L HSW Begin
3L HSW

2L KNL Begin
3L KNL

2L Pascal60 Begin
3L Pascal60

July 31, 2025 126/149

Section Summary

▶ Hierarchical work can be parallelized via hierarchical
parallelism.

▶ Hierarchical parallelism is leveraged using thread teams
launched with a TeamPolicy.

▶ Team “worksets” are processed by a team in nested
parallel for (or reduce or scan) calls with a
TeamThreadRange, ThreadVectorRange, and
TeamVectorRange policy.

▶ Execution can be restricted to a subset of the team with the
single pattern using either a PerTeam or PerThread policy.

July 31, 2025 127/149

Kokkos Tools
Leveraging Kokkos’ built-in instrumentation.

Learning objectives:

▶ The need for Kokkos-aware tools.

▶ How instrumentation helps.

▶ Simple profiling tools.

▶ Simple debugging tools.

July 31, 2025 128/149

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

July 31, 2025 128/149

Profiling C++ Code

Output from NVIDIA NVProf for Trilinos Tpetra

What are those Kernels doing?

July 31, 2025 129/149

Why is it so bad?

Generic code obscures what is happening from the tools
Historically a lot of profiling tools are coming from a Fortran and C
world:

▶ Focused on functions and variables
▶ C++ has a lot of other concepts:

▶ Classes with member functions
▶ Inheritance
▶ Template Metaprogramming

▶ Abstraction Models (Generic Programming) obscure things
▶ From a profiler perspective interesting stuff happens in the

abstraction layer (e.g. #pragma omp parallel)
▶ Symbol names get really complex due to deep template layers

July 31, 2025 130/149

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

▶ E.g. nvtx for NVIDIA, ITT for Intel.

▶ Allows to name regions

▶ Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

▶ Knows about parallel dispatch

▶ Knows about allocations, deallocations and deep copy

▶ Provides region markers

▶ Leverages naming information (kernels, Views)

July 31, 2025 130/149

Instrumentation to the Rescue

Instrumentation enables context information to reach tools.

Most profiling tools have an instrumentation interface

▶ E.g. nvtx for NVIDIA, ITT for Intel.

▶ Allows to name regions

▶ Sometimes can mark up memory operations.

KokkosP

Kokkos has its own instrumentation interface KokkosP, which can
be used to write tools.

▶ Knows about parallel dispatch

▶ Knows about allocations, deallocations and deep copy

▶ Provides region markers

▶ Leverages naming information (kernels, Views)

July 31, 2025 131/149

The Kokkos Tools

There are two components to Kokkos Tools: the KokkosP
instrumentation interface and the actual Tools.

KokkosP Interface

▶ The internal instrumentation layer of Kokkos.

▶ Always available even in release builds.

▶ Zero overhead if no tool is loaded.

Kokkos Tools

▶ Tools leveraging the KokkosP instrumentation layer.
▶ Are loaded at runtime by Kokkos.

▶ Set KOKKOS TOOLS LIBS environment variable to load a shared
library.

▶ Compile tools into the executable and use the API callback
setting mechanism.

July 31, 2025 132/149

How does it Work
Download tools from
https://github.com/kokkos/kokkos-tools

▶ Tools are largely independent of the Kokkos configuration
▶ May need to use the same C++ standard library.
▶ Use the same tool for CUDA and OpenMP code for example.

▶ We recommend you build the tools with CMake

cd kokkos -tools && cmake -B build

cmake --build build --parallel 4

cmake --install build --prefix /where/to/install/the/tools

Loading Tools:

▶ Set KOKKOS TOOLS LIBS environment variable to the full path
to the shared library of the tool.

▶ Kokkos dynamically loads symbols from the library during
initialize and fills function pointers.

▶ If no tool is loaded the overhead is a function pointer
comparison to nullptr.

https://github.com/kokkos/kokkos-tools

July 31, 2025 133/149

An Example Code

View <double*> a("A",N);

View <double*, HostSpace > h_a = create_mirror_view(a);

Profiling :: pushRegion("Setup");

parallel_for("Init_A",RangePolicy <h_exec_t >(0,N),

KOKKOS_LAMBDA(int i) { h_a(i) = i; });

deep_copy(a,h_a);

Profiling :: popRegion ();

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

View <double*> tmp("Tmp",N);

parallel_scan("K_1",RangePolicy <exec_t >(0,N),

KOKKOS_LAMBDA(int i, double& lsum , bool f) {

if(f) tmp(i) = lsum;

lsum += a(i);

});

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += tmp(i);

},sum);

}

Profiling :: popRegion ();

July 31, 2025 134/149

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0

_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE

_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory

<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter

<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >

(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <

main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

July 31, 2025 134/149

An Example Code: Nvprof
Output of: nvprof ./test.cuda

Let us make one larger:
_ZN6Kokkos4Impl33cuda_parallel_launch_local_memoryINS0

_14ParallelReduceINS0_18CudaFunctorAdapterIZ4mainEUliRdE

_NS_11RangePolicyIJNS_4CudaEEEEdvEES8_NS_11InvalidTypeES7_EEEEvT_

And demangled:
void Kokkos ::Impl:: cuda_parallel_launch_local_memory

<Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter

<main ::{ lambda(int , double &)#1} , Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy > >

(Kokkos ::Impl:: ParallelReduce <Kokkos ::Impl:: CudaFunctorAdapter <

main ::{ lambda(int , double &)#1}, Kokkos :: RangePolicy <Kokkos ::Cuda >,

double , void >, Kokkos ::Cuda , Kokkos :: InvalidType , Kokkos :: RangePolicy >)

July 31, 2025 135/149

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

▶ Simple tool producing a summary similar to nvprof

▶ Good way to get a rough overview of whats going on

▶ Writes a file HOSTNAME-PROCESSID.dat per process

▶ Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools

cd kokkos -tools/profiling/simple_kernel_timer

make

export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda

kp_reader *.dat

July 31, 2025 135/149

An Example Code

Aaa this is horrifying can’t we do better??

Lets use SimpleKernelTimer from Kokkos Tools:

▶ Simple tool producing a summary similar to nvprof

▶ Good way to get a rough overview of whats going on

▶ Writes a file HOSTNAME-PROCESSID.dat per process

▶ Use the reader accompanying the tool to read the data

Usage:

git clone git@github.com:kokkos/kokkos -tools

cd kokkos -tools/profiling/simple_kernel_timer

make

export KOKKOS_TOOLS_LIBS=${PWD}/ kp_kernel_timer.so
export PATH=${PATH}:${PWD}
cd ${WORKDIR}
./text.cuda

kp_reader *.dat

July 31, 2025 136/149

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

July 31, 2025 136/149

An Example Code
Output from SimpleKernelTimer:

Will introduce Regions later.

Kernel Naming

Naming Kernels avoid seeing confusing Profiler output!

July 31, 2025 137/149

Revisiting Tpetra

Lets look at Tpetra again with the Simple Kernel Timer Loaded:

At the top we get Region output:

July 31, 2025 138/149

Revisiting Tpetra

Then we get kernel output:

July 31, 2025 139/149

Memory Utilization

Understanding MemorySpace Utilization is critical

Three simple tools for understanding memory utilization:

▶ MemoryHighWaterMark: just the maximum utilization for
each memory space.

▶ MemoryUsage: Timeline of memory usage.
▶ MemoryEvents: allocation, deallocation and deep copy.

▶ Name, Memory Space, Pointer, Size

July 31, 2025 140/149

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

▶ Find where time is spent outside of kernels.

▶ Group Kernels which belong together.
▶ Structure code profiles.

▶ For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");

...

Kokkos :: Profiling :: popRegion ();

July 31, 2025 140/149

Push/Pop Regions

Adding region markers to capture more code structure
Region Markers are helpful to:

▶ Find where time is spent outside of kernels.

▶ Group Kernels which belong together.
▶ Structure code profiles.

▶ For example bracket setup or solve phase.

Simple Push/Pop interface:

Kokkos :: Profiling :: pushRegion("Label");

...

Kokkos :: Profiling :: popRegion ();

July 31, 2025 141/149

Space Time Stack

The simplest tool to leverage regions is the Space Time Stack:

▶ Bottom Up and Top Down data representation

▶ Can do MPI aggregation if compiled with MPI support

▶ Also aggregates memory utilization info.

July 31, 2025 142/149

The Delayed Error Problem

Non-Blocking Dispatch implies asynchronous error reporting!

Profiling :: pushRegion("Iterate");

for(int r=0; r<10; r++) {

parallel_for("K_1" ,2*N, KOKKOS_LAMBDA(int i) {a(i) = i;});

printf("Passed␣point␣A\n");

double sum;

parallel_reduce("K_2",N, KOKKOS_LAMBDA(int i, double& lsum) {

lsum += a(i); },sum);

}

Profiling :: popRegion ();

Output of the run:

./test.cuda

Passed point A

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaStreamSynchronize(m_stream) error(cudaErrorIllegalAddress):

an illegal memory access was encountered

Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :312

Traceback functionality not available

Aborted (core dumped)

July 31, 2025 143/149

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

July 31, 2025 143/149

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

July 31, 2025 143/149

Kernel Logger for Debugging

Debugging with Tools

Kokkos Tools can be used to implement Debugging functionality.

The KernelLogger is a tool to localize errors and check the actual
runtime flow of a code.

▶ As other tools it inserts fences - which check for errors.

▶ Prints out Kokkos operations as they happen.

Output from the above test case with KernelLogger:
KokkosP: Allocate <Cuda > name: A pointer: 0x7f598b800000 size: 8000000

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 0

KokkosP: Kokkos ::View:: initialization [A]

KokkosP: Execution of kernel 0 is completed.

KokkosP: Entering profiling region: Iterate

KokkosP: Executing parallel -for kernel on device 0 with unique execution identifier 1

KokkosP: Iterate

KokkosP: K_1

terminate called after throwing an instance of ’std:: runtime_error ’

what (): cudaDeviceSynchronize () error(cudaErrorIllegalAddress): an illegal memory access was encountered /ascldap/users/crtrott/Kokkos/kokkos/core/src/Cuda/Kokkos_Cuda_Instance.cpp :143

Traceback functionality not available

July 31, 2025 144/149

The Standard Profiling Approach

The standard Kokkos profiling approach

Understand Kokkos Utilization (SimpleKernelTimer)

▶ Check how much time in kernels

▶ Identify HotSpot Kernels

Run Memory Analysis (MemoryEvents)

▶ Are there many allocations/deallocations - 5000/s is OK.

▶ Identify temporary allocations which could be hoisted

Identify Serial Code Regions (SpaceTimeStack)

▶ Add Profiling Regions

▶ Find Regions with low fraction of time spend in Kernels

Dive into individual Kernels

▶ Use connector tools (next subsection) to analyze kernels.

▶ E.g. use roof line analysis to find underperforming code.

July 31, 2025 145/149

Exercise - Terrible MiniMD

Analyse a MiniMD variant with a serious performance issue.

Details:

▶ Location: Exercises/tools minimd/

▶ Use standard Profiling Approach.

▶ Find the code location which causes the performance issue.

▶ Run with miniMD.exe -s 20

What should happen:

▶ Performance should be

▶ About 50% of time in a Force compute kernel

▶ About 25% in neighbor list creation

July 31, 2025 146/149

Basic Tool Summary

▶ Kokkos Tools provide an instrumentation interface KokkosP
and Tools to leverage it.

▶ The interface is always available - even in release builds.

▶ Zero overhead if no tool is loaded during the run.

▶ Dynamically load a tool via setting KOKKOS TOOLS LIBS

environment variable.

▶ Set callbacks directly in code for tools compiled into the
executable.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 147/149

What we didn’t cover

This was a short introduction
Didn’t cover many things:

▶ Full BuildSystem integration.

▶ Advanced data structures.

▶ Atomic operations and Scatter Contribute patterns.

▶ Team Scratch memory (GPU shared memory).

▶ SIMD vectorization.

▶ MPI and PGAS integration.

▶ All Tools for Profiling, Debugging and Tuning.

July 31, 2025 148/149

The Kokkos Lectures

The Kokkos Lectures

Join The Kokkos Lectures for all of those and more in-depth
explanations or do them on your own.

▶ Module 1: Introduction, Building and Parallel Dispatch

▶ Module 2: Views and Spaces

▶ Module 3: Data Structures + MultiDimensional Loops

▶ Module 4: Hierarchical Parallelism

▶ Module 5: Tasking, Streams and SIMD

▶ Module 6: Internode: MPI and PGAS

▶ Module 7: Tools: Profiling, Tuning and Debugging

July 31, 2025 149/149

Find More

Online Resources:
▶ https://github.com/kokkos:

▶ Primary Kokkos GitHub Organization

▶ https://github.com/kokkos/kokkos-tutorials/wiki/
Kokkos-Lecture-Series:
▶ Slides, recording and Q&A for the Full Lectures

▶ https://github.com/kokkos/kokkos/wiki:
▶ Wiki including API reference

▶ https://kokkosteam.slack.com:
▶ Slack channel for Kokkos.
▶ Please join: fastest way to get your questions answered.
▶ Can whitelist domains, or invite individual people.

https://github.com/kokkos
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos/wiki
https://kokkosteam.slack.com

