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Can the United States Maintain Its
Leadership in High-Performance
- Computing?

A report from the ASCAC Subcommittee on American Competitiveness and Innovation to the ASCR office
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Continue to Rethink Applications [JE==E==
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b-‘;v;nd 2B 24 projects with about 10 people per team e
| * Rely heavily on hardware features and software teams
» Several new to HPC, all with new capabilities )
* We should have another 2 dozen in 10 years!! o

Materials Fusion



Scientific Computing Circa 2007

Exascale report from 2007 Town Halls
Entirely focused on modeling and
simulation

Simulation # Scientific Computing = HPC




New demands for HPC in Science




Digital Twins

« Simulations

« Sensors / data
* Multi-level

* Real-time




Prediction of Atlas computing +$1B
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Machine Learning Drives Computational Demand

Training compute (FLOPs) of milestone Machine Learning gy stame ov er time
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Pre Deep Learning Era
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Deep Larvge Scale Era
OpenAl estimates L
3.4-month doubling!




Is there parallelism?



Always has been




Analytics vs. Simulation Kernels:

Particle methods
Unstructured meshes
Dense Linear Algebra
Sparse Linear Algebra
Spectral methods
Structured Meshes

Monte Carlo methods
Phil Colella

Generalized N-Body
Graph-theory
Linear algebra

Hashing

Sorting
Alignment

Basic Statistics
NRC Report + our paper

Yelick, et al. “The Parallelism Motifs of Genomic Data Analysis”, Philosophical Transactions A, 2020



Weak Scaling has Diminishing Returns

Increase resolution by 10x in each dimension

# Runtime increases &

Increase cores by 1000x




. Amdahl's Law meets Gustafson's Law
Strong and weak scaling

Accelerating a weak-scaled workload

with modern supercomputers yields:
T sorial

e Strong scaling | N e o

(1=p)+N-p

— Most desirable for users Tl-pt e
i .l | p) - ’_,_‘l "\'

— Harder tO ﬂnd (Amdahl) | for a parallelizable fraction p, with

p = Y _ pi;for anode count N; and

m accerators with speedups of X;.
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* Weak scaling
— Limited for super-linear algorithms
— Needs memory capacity to scale
— Data problems also need |/O

See SIAM News, 9/22 Satoshi Matsuoka and Jens
Domke


https://sinews.siam.org/About-the-Author/satoshi-matsuoka
https://sinews.siam.org/About-the-Author/jens-domke
https://sinews.siam.org/About-the-Author/jens-domke
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Disruptions

Implied question: Do these make HPC obsolete?




Al for Science

Al for science

(Y

Observations Hypotheses

ﬁ) ANL-22/91
Ed ;
‘4 Experiments

# .
Weather forecasting Bare eyent selleptlon
in particle collisions
ADVANCED RESEARCH . o ’ ’ .
RICK STEVENS DIRECTIONS ON . g Battery design
VALERIE TAYLOR

Argonne National Laboratory
July 22-23, 2019

Al FOR SCIENCE, ' /' ¢ optimization 5 TierrRe
ENERGY, AND ' | A
SECURITY

Report on Summer 2022 Workshops

Magnetic control of

JEFF NICHOLS nuclear fusion reactors
ARTHUR BARNEY MACCABE P

Oak Ridge National Laboratory . :
August 21-23, 2019

High-throughput
virtual screening
Planning chemical

Jonathan Carter -
synthesis pathway

Lawrence Berkeley National Laboratory

Navigation in the

KATHERINE YELICK

John Feddema i
DAVID BROWN Sandia National Laboratories Neural solvers of hypothesis space
Lawrence Berkeley differential equations

National Laboratory
September 11-12, 2019

Doug Kothe
Oak Ridge National Laboratory

. ‘ Super-resolution 3D
Hydropower station \>A live-cell imaging

location planning

Rob Neely
Lawrence Livermore National Laboratory

Jason Pruet
Los Alamos National Laboratory

Synthetic electronic = Symbolic regression
health record generation

Rick Stevens
Argonne National Laboratory ¥

. Scientific discovery in the age of

s artificial intelligence, 2023
NGy ‘umv oo NS .



Analyze Simulations to Find Hurricanes

Classification
y Localization

Detection

Segmentation

Extending image-based methods to complex, 3D, scientific data sets is non-trivial!

Source: Prabhat




Precision: like adding 4,000 extra tons of
detectors! -

s
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Based on 8/12/2016 slide by Joe Lykken at Fermilab



Design with Physical Laws

Physics-aware learning
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A network with 3D translation- and 3D
rotation-equivariance

Slides from Tess Smidt and Risi Condor; E.g., 2018 paper by Thomas, Smidt, Kearnes, Yang, Li, Kohlhoff, Riley




Automation in Self-Driving Laboratories

A-Lab at LBNL




Five Stages of Al

Acceptance

Denial

Anger
Depression

Bargaining

And this includes Al researchers!



Al in Science

Learning
across

Control of
experiments

Physics-aw
are
Learning

Uncertainty
Quantifi-cati

Sea o Inverse
4 ‘n A——— Nacinn

The Computational Science and Englneerlng communlty
should have a leadership role in addressing UQ, safety,
alignment, and explainability in Al for science and
engineering

Federated

learning on
sensors




Exciting Progress ... But we don't yet have the IC Transitor

High-fidelity parallel entangling gates on aneutral-
atom quantum computer

- . eer .
\ S k]
o
. N
Dopants in - Trapped
Silicon / Diamond ‘ lons
www.sciencedaily.com www.quantumoptics.at
\ Aseries of fast-paced advances in Quantum Error
Correction

. . =

: Photonic

: Circuits o

www.phys.org
(]

Superconducting Topological
Circuits Wires
www.qnl.berkeley.edu www.microsoft.com







Lessons Learned from Clouds

127.0.0.1

5 Ju pyter Lorenz Differential Equations Last Checkpoint: a minute agc

@ B 4 v M B C Code 4 @ CellToolbar

*Cost |
O S VS p rl Ce Exploring the Lorenz System of Differential Equations

In this Notebook we explore the Lorenz system of differential equations:

[} ngn ngn R
. Ava I I a b I I I t a n d re S I I I e n Ce This is one of the classic systems in non-linear differential equations. It exhibits a range of different behaviors as
the parameters (o, f, p) are varied, including what are known as chaotic solutions. This system was originally

developed as a simplified mathematical model for atmospheric convection in 1963.

In [12]: interact(solve_lorenz, N=fixed(1@), angle=(9.,360.),
0=(0.0,50.0), 0=(0.0,50.0));

angle 308.90

*Higher level programming :z::z

B 263
o 28.00




Follow the money, understand the implications
Hyperscalers

Market capitalizations HPC+AI
$3,500

$3,000 {

$2,500

$2,000

$1,500 “Traditional” computing A

$1.000 (-1.7T7% (US[I)) aggregate) -

$500 I‘ —
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Source: Reed, Gannon, Dongarra



HPC community has always punched above its weight
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From https://www.unite.ai/moores-law/
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Faith no Moore
Selected predictions for the end of Moore’s law

1995 2000 2005 2010 2020 2025 2030
G. Moore, Intel

D. Hutcheson,
VLSI Research

I. Chuang, IBM Research

P. Gargani, Intel

L. Krauss, Case Western, . | | | approx 2600
%G, Searkrman CERN e e et

G. Moore, Intel e ‘ 2015-25

Cited reason: M. Kaku, City College of NY @- mnemeneeeea=] 2021-22

Economic limits R. Colwell, DARPA; (formally Intel) O ' 2020-22
Technical limits

G. Moore, Intel

Sources: Intel; press reports; The Economist
https://www.economist.com/technology-quarterly/2016/03/10/horses-for-courses




Dennard Scaling is Long Dead; Moore’s Law Will Follow

107
10°
10°
104
10°
102
10’

10°

Transistors
(thousands)

| Single-Thread
Performance .
(SpecINT x 10%)

Frequency (MHz)

Number of
Logical Cores

Year

M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and K. Rupp




Performance Programming pre 2005




Exascale Architecture Plans (2008)
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Exascale Era Architectures (US DOE Office of Science)
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First-in-Class HPC Systems (Top500)

First Teraflop | First Petaflop | First Exaflop |
ASCI Red Roadrunner Frontier

Year 1997 2008 y{\yy:
Best Tech (nm) 10x —> 65 10x —»

ower (MW) 2x —> 2.4 10x —»
fficienty (GF/W) 400x—> (0.4 100x—>

emory (PB) 40x —> (.04 200x—>
FPUs (K) 100x — 4641000x> 534,000
Foorspace (m”2) 4x —> 557 1x —> 678

Kogge and Dally: Frontier vs the Exascale Report + Wikipedia for ASCI Red



Energy efficiency didn'’t track technology scaling

~Gate Length (nm) | 65 | 32 [ 16 [ 6
Mietal T pitch (am) | 180 | 100 | 64 | 40 _

Energy-" | 1 | 18 [ 28 [ 45
AT | 1 [ 3279203

Rumors of 2nm fabs, but how much will it help?

Kogge and Dally: Frontier vs the Exascale Report: Why so long? and Are We Really There Yet?



Post-Exascale Architecture Plans 2024 (Strawperson-v0)
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Another Exponential?

Jensen Huang's Nvidia GTC Keynote

1000X Al Compute in 8 Years

Blackwell
20,000 TFLOPS
FP4

Hopper
4,000 TFLOPS
FP8
Ampere
19 TFLOPS 130 TFLOPS BF16/FP16
FP16

FP16

2016 2017 2020 2022 2024




SpeC|aI|zat|on Is deep Iearnlng the only appllcanon’?
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Everyone is Making Al Chips...Not everyone is selling them!

Facebook + Intel
Amazon (Echo, Oculus)
Google (TPU, Pixel)

Startups
NVIDIA Traditional . Total Funding in Million US Dollars
AMD chip makers
Intel
IBM “Software”
companies

SambaNova Cerebras Systems Graphcore Mythic
Systems

Apple (SoCs)

: » e Graphcore, Nervana Cerebras, Wave Computing, Horizon
Microsoft ( Al Chlp ) Robotics, Cambricon, DeePhi, Esperanto, SambalNova, Eyeriss,
Tenstorrent, Mythic, ThinkForce, Groq, Lightmatter




Specialization for the masses?

Chiplets

RISC-V Architecture ARM Architecture




Technology and Marketplace: Radically Different than 2008!

What's a post-Exascale strategy for the science community?

Beat them
— Design processors for science
More Co-Design and
don’t forget the math and software
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Join them
— Leverage Al Hardware
for Al in Science
and Simulation ?

B
IGANHASCHEEZEURGER. COM w £l -n.




Post Exascale Computing: Not Business at Usual




