
extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

Principles of HPC I/O

Phil Carns

carns@mcs.anl.gov

Mathematics and Computer Science Division

Argonne National Laboratory

August 7, 2025

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

What is HPC I/O?

HPC I/O: storing and retrieving persistent scientific
data on a high-performance computing platform

– Data is usually stored on a parallel file system that has
been optimized to rapidly store and access enormous
volumes of data.

– This is an important job! Valuable CPU time is wasted if
applications spend too long waiting for data.

– It also means that parallel file systems are quite specialized
and have some unusual properties.

Today’s lectures are really
all about the proper care
and feeding of exotic
parallel file systems.

open()
write()
close()

Scientific application processes

Persistent data sets

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

A look under the hood

• A typical workstation/laptop has only
one storage device.

• The path between applications and
storage is short.

• Properties:
• Low latency
• Low bandwidth

Workstation (laptop) storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

A look under the hood

• In contrast, an HPC storage system manages
many (e.g., thousands of) disaggregated
devices.

• Paths between applications and storage
devices are quite long, but numerous.

• Properties:
• High latency
• High bandwidth

Workstation (laptop) storage pathHPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Striping / Layout

• Large files (or sets of files) are not
generally stored on a single storage device.

• They are distributed across multiple
servers (and then each server further
distributes across storage devices).

• This is referred to as data layout or
striping.

• Different file systems use different striping
strategies.

• It can usually be tuned to better suit your
application.

Example of a single logical file
striped across all available
servers and storage devices

HPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Is that all?

HPC system storage path

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Is that all?

Each HPC storage system is a special unicorn.
Some systems have:

• In-system storage: low latency but not shared
• Burst buffers: high performance with limited

capacity
• Multiple file systems: storage systems optimized

for different kinds of data
• Object stores: alternative methods of organizing

data

Don’t worry. The tools and techniques that
we will teach today will help to tame this
complexity. The important thing to know for
now is why HPC storage systems need
specialized techniques.

HPC system storage path

We’ll give some examples near
the end of this talk.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Presenting storage to HPC applications

A parallel file system can be accessed just like any
other file system:

• open() / close() / read() / write() for binary data
• fopen() / fclose() / fprintf() for text data
• Various language-specific bindings

• Data is organized in a hierarchy of directories
and files.

• We call this API the “POSIX interface”; it is
standardized across all UNIX-like systems.

• This API works, and is great for compatibility, but
it was created 50 years ago before the rise of
parallel computing.

• The API has no concept of
parallel access; semantics for
that are largely undefined.

• Files are unstructured streams
of bytes.

• File descriptors are stateful and
unique to each process.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Rank 0: lseek(0); write(256 KiB);
Rank 1: lseek(32 MiB); write(256 KiB);

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB) between
them. Assume we are writing reasonably large
chunks to optimize bandwidth.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Rank 0: lseek(0); write(256 KiB);
Rank 1: lseek(32 MiB); write(256 KiB);

Why is it difficult to access files concurrently with POSIX?
Example 1: writing different parts of the same file

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this example, we have a big gap (32 MiB) between
them. Assume we are writing reasonably large
chunks to optimize bandwidth.

• The writes probably map to different servers and
devices.

• There is no device contention, and both I/O
operations can be executed at the same time.

• There is also no coordination of which path each
write will take, though, and eventually you will want
access adjacent data...

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this case the writes still don’t overlap, but they
access adjacent bytes.

Rank 0: lseek(0); write(256 KiB);
Rank 1: lseek(256 KiB); write(256 KiB);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 2: writing adjacent parts of the same file

• Consider a case in which two ranks write data
simultaneously to different parts of a file.

• In this case the writes still don’t overlap, but they
access adjacent bytes.

• The writes are likely to access the same server and
storage device because of locality.

• Counterintuitively, this almost certainly causes
conflicting access. The granularity of caching and
locking has no relationship to the access size.

• Uncoordinated adjacent access can cause “false
sharing” and serialize I/O operations that should have
proceeded in parallel.

Rank 0: lseek(0); write(256 KiB);
Rank 1: lseek(256 KiB); write(256 KiB);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

Rank 0: open(“a”); write(256 KiB);
Rank 1: open(“b”); write(256 KiB);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent
servers and storage devices. This probably works well
at small scale.

Rank 0: open(“a”); write(256 KiB);
Rank 1: open(“b”); write(256 KiB);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
Example 3: writing separate files

• Consider a case in which two ranks write data
simultaneously to different files.

• There is no possibility of I/O conflict. That should be
good, right?

• The writes are indeed issued to independent servers
and storage devices. This probably works well at small
scale.

• Directories are hierarchical, though, so processes will
conflict at open() time to coordinate access to the parent
directory. This problem gets progressively worse at scale.

• It also makes the file system spend more time
managing metadata (names, permissions, attributes)
than performing productive data transfer.

• It also (eventually) places more burden on the user to
manage files.

Rank 0: open(“a”); write(256 KiB);
Rank 1: open(“b”); write(256 KiB);

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Why is concurrent access hard?
The common theme

There is a common underlying problem in each of the preceding
examples:

Fundamentally, the sequential POSIX API cannot
describe a complete, coordinated parallel access
pattern to the file system.

Because each process issues I/O operations independently, the
storage system must service each one in isolation (even if there
are thousands or even millions in flight). There isn’t much
opportunity to aggregate or structure the flow of data.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Help is on the way: Application-level I/O interface layers

Storage System

POSIX API

I/O Middleware

High-level Libraries

H5Fopen()

MPI_File_open()

open()

(vendor
specific)

Application
And optional runtime bindings

(e.g., Python)

• High level interfaces translate between
scientific data concepts (hierarchical, multi-
dimensional, multi-variable, with rich
metadata) and file system constructs
(directories and opaque files) h y d ’
have to. Benefits include:

• Performance portability

• Expressive interfaces

• Future proofing

• Interoperability

• ’ w y f y have to use POSIX; we can
help with that too!

• We will discuss all of these layers, and how to
use them effectively, in depth today.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

One final warning: even if you do everything right,
… performance can still be surprising

– Thousands of storage devices will never
perform perfectly at the same time.

– You are sharing storage with many other users
across multiple HPC systems.

– You are also sharing storage with remote
transfers, tape archives, and more.

Compute nodes belong exclusively to you during a
job allocation, but the storage system does not.
Storage performance varies in ways that are
fundamentally different from compute
performance.

Best practice: take multiple samples of I/O
performance to fully understand subtle changes.
Want a demonstration of what variance you can
expect? See the hands-on/variance exercise.

ALCF project file systems

Sofia Globus HPSSAurora Polaris

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Parting thoughts on the Principles of HPC I/O:
HPC I/O optimization is an ongoing process

Observe

Understand

Optimize

Measure your application and
be mindful of your storage needs.

Use facility resources to
understand what’s possible.

Apply techniques that you’ve
learned today to improve
performance and usability.

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

HPC storage systems

We mentioned earlier that each
HPC system has its own unique
storage architecture.
What kinds of high-performance
storage systems can you find at
the Office of Science compute
facilities?
Let’s take a quick tour!

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

HPC storage systems

Oak Ridge (OLCF) Lawrence Berkeley (NERSC) Argonne (ALCF)

https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#nvme

• Orion parallel file system (Lustre)
• Multiple storage tiers are transparently combined:

• Metadata tier: ~10 PiB capacity
• Performance tier: ~11 PiB capacity, ~10 TiB/s performance
• Capacity tier: ~680 PiB capacity, ~5 TiB/s performance

• File layouts: Orion uses a sophisticated progressive file layout. Unlike
some Lustre file systems, it is not recommended for you to manually
change file stripe settings on Orion!

• Node-local SSDs on Frontier
• NVMe drives provide 5 GiB/s read and 2 GiB/s write per node.
• Excellent for latency, but they are not shared between nodes or

accessible outside of your job.
• You must explicitly request them in your job script.
• You must explicitly stage data on and off of them.

Facility documentation is your
friend! Some of the systems
that we discuss will change over
time.

https://github.com/radix-io/hands-on
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/data/index.html#orion-lustre-hpe-clusterstor-filesystem
https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#nvme

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

HPC storage systems

Oak Ridge (OLCF) Lawrence Berkeley (NERSC) Argonne (ALCF)

https://docs.nersc.gov/filesystems/
https://docs.nersc.gov/filesystems/perlmutter-scratch/

• Perlmutter Scratch parallel file system (Lustre)
• Unlike the Orion file system at OLCF, the Perlmutter scratch file system

consists of a single all-flash (high-performance) tier of storage.
• 35 PiB capacity, 5 TiB/s throughput
• File layouts: 1 server per file by default

• This layout is great for small files accessed by single processes, but
y ’ w h f y d f
parallel.

https://github.com/radix-io/hands-on
https://docs.nersc.gov/filesystems/
https://docs.nersc.gov/filesystems/perlmutter-scratch/
https://docs.nersc.gov/filesystems/perlmutter-scratch/
https://docs.nersc.gov/filesystems/perlmutter-scratch/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

HPC storage systems

Oak Ridge (OLCF) Lawrence Berkeley (NERSC) Argonne (ALCF)

https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/

• Flare and Eagle parallel file systems (Lustre)
• Similar caveats as Polaris Scratch: you may need to tune the Lustre

settings for your use case; the default settings are only optimal for small,
non-shared files.

• Polaris also has local NVMe drives
• Similar caveats as Frontier local disks: you need to think about how to

stage data.
• Aurora also has a DAOS storage system

• 230 PiB capacity, 30 TiB/s throughput.
• Under the covers it is a distributed object store.

• You can access it like a conventional file system or use libraries like
HDF5 or PyTorch that have been adapted to access DAOS natively.

• W ’ b h w h f ! DAOS is remarkably
fast but has a little bit more of a learning curve.

https://github.com/radix-io/hands-on
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/data-management/filesystem-and-storage/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/

extremecomputingtraining.anl.gov
https://github.com/radix-io/hands-on

Hands on exercises:
https://github.com/radix-io/hands-on

Thank you!

Any questions before we move on to
the next presentation?

https://github.com/radix-io/hands-on

extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Default Section
	Slide 1: Principles of HPC I/O
	Slide 2: What is HPC I/O?
	Slide 3: A look under the hood
	Slide 4: A look under the hood
	Slide 5: Striping / Layout
	Slide 6: Is that all?
	Slide 7: Is that all?
	Slide 8: Presenting storage to HPC applications
	Slide 9: Why is it difficult to access files concurrently with POSIX? Example 1: writing different parts of the same file
	Slide 10: Why is it difficult to access files concurrently with POSIX? Example 1: writing different parts of the same file
	Slide 11: Why is concurrent access hard? Example 2: writing adjacent parts of the same file
	Slide 12: Why is concurrent access hard? Example 2: writing adjacent parts of the same file
	Slide 13: Why is concurrent access hard? Example 3: writing separate files
	Slide 14: Why is concurrent access hard? Example 3: writing separate files
	Slide 15: Why is concurrent access hard? Example 3: writing separate files
	Slide 16: Why is concurrent access hard? The common theme
	Slide 17: Help is on the way: Application-level I/O interface layers
	Slide 18: One final warning: even if you do everything right, … performance can still be surprising
	Slide 19: Parting thoughts on the Principles of HPC I/O: HPC I/O optimization is an ongoing process

	system tour
	Slide 20: HPC storage systems
	Slide 21: HPC storage systems
	Slide 22: HPC storage systems
	Slide 23: HPC storage systems
	Slide 24
	Slide 25: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

