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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 
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Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility
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Look at the Running Example
We created a code that moves 
particles in a prescribed 
fashion and only handles 
periodic boundaries
• If we want to use other 

methods, we need to break 
that out into a function

• If we want to also handle 
outflow boundary condition, 
we need to allow for 
particles getting lost
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Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests



11

Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Incorporate verification overheads 
into refactoring cost estimates



12

Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Incorporate verification overheads 
into refactoring cost estimates

We go back to AI and look at the 
next set of prompts

https://tinyurl.com/yfxtf89t
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Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale 
change in the code - 
Bad idea

All at once

Scattered independent 
changes - May be OK

All at once
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Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently
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Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently • One by one turn on 

more than one 
refactored module
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Map from Here to There: On ramp plan2
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Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module
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Map from Here to There: On ramp plan2
• Build a 
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refactored 
module
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the module 
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Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal
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Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal

• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and disruption
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Steps in the Flash-X Refactoring : a mix of strategies
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Steps in the Flash-X Refactoring : a mix of strategies

Part of a 
simpler 
environment for 
refactoring and 
testing 
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Steps in the Process

built to 
resemble 
behavior 
expected by 
AMReX
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Steps in the Process

Refactored 
Grid interface 
made 
compatible 
with AMReX
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Steps in the Process

Bring back 
the real 
environment 
but turn off 
some 
features 
related to 
AMR
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Steps in the Process

Turn on all 
AMR 
features 
needed in 
the final 
stage
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Steps in the Process
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To Have a Good Outcome from Refactoring

1. Know why
2. Know how much
3. Know the cost
4. Plan
5. Have strong testing and verification
6. Get buy-in from stakeholders
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