
See slide 2 for 
license details

Presented by

Members of

With prior support from

https://pesoproject.org https://rapids.lbl.gov

Consortium for the Advancement 
of Scientific Software
https://cass.community

Refactoring Scientific Software

Anshu Dubey (she/her)
Argonne National Laboratory

Contributors: Anshu Dubey (ANL), Jared O’Neal

Software Sustainability track @ Argonne Training Program on 
Extreme-Scale Computing summer school

https://pesoproject.org/
https://rapids.lbl.gov/
https://cass.community/


2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, and Todd Gamblin, Software 

Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles, Illinois, 2025. DOI: 
10.6084/m9.figshare.29816981.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), 

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the 
National Nuclear Security Administration.

• This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Next-
Generation Scientific Software Technologies (NGSST) program.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department 
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National 
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S. 
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of 
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and 
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for 
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.29816981


3

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 



4

Definition: Refactoring is a disciplined 
technique for restructuring an existing 
body of code, altering its internal structure 
without changing its external behavior.
• Different from development

– You have a working code 
– You know and understand the behavior
– You have a baseline that you can use for 

comparison

What is Refactoring 

• General motivations
– Modularity enhancement 

• Improve sustainability
– Release to outside users

• Easier to use and understand
– Port to new platforms

• Performance portability
– Expand capabilities

• Structural flexibility



5

START

REGRESSION/
UNIT TEST

FIX

REFACTOR PASS
YES

NO

An Example Workflow



6

START

REGRESSION/
UNIT TEST

FIX

REFACTOR DONEPASS
YES

YES

NO

NO

An Example Workflow



7

START INTEGRATION 
TEST

REGRESSION/
UNIT TEST

FIX

REFACTOR

PASS

DONEPASS
YES

YES YES

NO

NO

NO

An Example Workflow



8

START

SUCCESS

INTEGRATION 
TEST

REGRESSION/
UNIT TEST

FIX

REFACTOR

PASS

DONEPASS
YES

YES YES

NO

NO

NO

An Example Workflow



9

Look at the Running Example
We created a code that moves 
particles in a prescribed 
fashion and only handles 
periodic boundaries
• If we want to use other 

methods, we need to break 
that out into a function

• If we want to also handle 
outflow boundary condition, 
we need to allow for 
particles getting lost



10

Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests



11

Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Incorporate verification overheads 
into refactoring cost estimates



12

Considerations for Refactoring
• Know why you are refactoring

– Is it necessary?
– Where should the code be after refactoring.

• Here we have two reasons
– One is enhancing flexibility
– The other is adding capability

• Know your cost estimates
• Know your bounds

– on acceptable behavior change
– error bounds

• bitwise reproduction of results unlikely after 
transition 

• Verification
– Check for coverage provided by 

existing tests
– Develop new tests where there are 

gaps
– Here we need two new tests. 

• One to ensure that behavior does not 
change when we put the method for 
moving particles into a new function

• Another one to ensure that boundary 
conditions are applied correctly

– Make sure tests exist at different 
granularities
• There should be demanding integration 

and system level tests

Incorporate verification overheads 
into refactoring cost estimates

We go back to AI and look at the 
next set of prompts

https://tinyurl.com/yfxtf89t



13

Proportionate to the scope

Map from Here to There: On ramp plan

Invasive large-scale 
change in the code - 
Bad idea

All at once

Scattered independent 
changes - May be OK

All at once



14

Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently



15

Map from Here to There: On ramp plan1
• Turn off all 

modules except 
for the one being 
refactored.

• Have a way of 
testing in 
intermediate 
stages

• Do this for all 
modules that 
need refactoring 
independently • One by one turn on 

more than one 
refactored module



16

Map from Here to There: On ramp plan2



17

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module



18

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment



19

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



20

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



21

Map from Here to There: On ramp plan2
• Build a 

separate 
environment 
for testing 
refactored 
module

• Copy over 
the module 
in this 
isolated 
environment

• Put back 
refactored 
module



22

Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal



23

Refactoring to supporting a different AMR library

A Real-World Example: FLASH to Flash-X

Goal: Replace Paramesh with AMReX

Plan: Getting there from here
• On ramping
• Design
• Intermediate steps
• Realizing the goal

• Cost estimation
– Expected developer time 
– Extent of disruption in production 

schedules

• Get a buy-in from the stakeholders
– That includes the users
– For both development time and disruption



24

Steps in the Flash-X Refactoring : a mix of strategies



25

Steps in the Flash-X Refactoring : a mix of strategies

Part of a 
simpler 
environment for 
refactoring and 
testing 



26

Steps in the Process

built to 
resemble 
behavior 
expected by 
AMReX



27

Steps in the Process

Refactored 
Grid interface 
made 
compatible 
with AMReX



28

Steps in the Process

Bring back 
the real 
environment 
but turn off 
some 
features 
related to 
AMR



29

Steps in the Process

Turn on all 
AMR 
features 
needed in 
the final 
stage



30

Steps in the Process



31

To Have a Good Outcome from Refactoring

1. Know why
2. Know how much
3. Know the cost
4. Plan
5. Have strong testing and verification
6. Get buy-in from stakeholders


	Refactoring Scientific Software
	License, Citation and Acknowledgements
	What is Refactoring �
	What is Refactoring �
	An Example Workflow
	An Example Workflow
	An Example Workflow
	An Example Workflow
	Look at the Running Example
	Considerations for Refactoring
	Considerations for Refactoring
	Considerations for Refactoring
	Map from Here to There: On ramp plan
	Map from Here to There: On ramp plan1
	Map from Here to There: On ramp plan1
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	Map from Here to There: On ramp plan2
	A Real-World Example: FLASH to Flash-X
	A Real-World Example: FLASH to Flash-X
	Steps in the Flash-X Refactoring : a mix of strategies
	Steps in the Flash-X Refactoring : a mix of strategies
	Steps in the Process
	Steps in the Process
	Steps in the Process
	Steps in the Process
	Steps in the Process
	To Have a Good Outcome from Refactoring

