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Terminology

A few of the terms used when talking about this topic…
Reproducibility

Replicability
Reliability

Correctness
Accuracy

Transparency
Credibility

They don’t mean exactly the same thing…
…but for the purposes of this presentation, the differences don’t really matter
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Reproducible vs Replicable: A Special Note

• Historically different communities have 
defined these two differently

• With the increased focus, there has also been 
an effort to unify the language

• Consensus around the definitions of 
Claerbout, et al.
– Others are in the process of switching their 

terminology to match, i.e., ACM

• Reproducible: Another team is able to obtain 
the same result using the authors’ 
experimental environment

• Replicable: Another team is able to obtain 
consistent results using a different 
experimental environment

doi:10.17226/25303

doi:10.2172/1481626

https://doi.org/10.17226/25303
https://doi.org/10.2172/1481626


5

Why Reproducibility is Important
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Transparency & 
Reproducibility

• NY Times highlights “problems”.
• Only one of many cited 

examples.
• Computational science had been 

spared this “spotlight”.

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html 

http://www.nytimes.com/2015/08/28/science/many-social-science-findings-not-as-strong-as-claimed-study-says.html
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Example: Behavior of pure water just above homogeneous 
nucleation temperature (~ - 40 °C/°F) 
• Debenedetti/Princeton (2009): 2 possible phases: High or low 

density
• Chandler/Berkeley (2011): Only 1 phase: High density

– “LAMMPS codes used in refs 5 and 12 are standard and documented, 
with scripts freely available upon request.”

• Debenedetti tries to reproduce Chandler’s results, unsuccessfully
• Debenedetti (with colleague Palmer) to Chandler: “Send us your 

code”
– Chandler responded only after intervention by editor of Nature

• Palmer identified a bug/feature in Chandler’s code: a change 
intended merely to speed up the code gave different results
– Code was not actually “standard and documented”; paper was not 

reproducible
– When replaced with a more standard approach, results matched 

Debenedetti’s
• Took seven years to resolve!
• Would testing have caught this?

doi:10.1063/PT.6.1.20180822a

https://doi.org/10.1063/PT.6.1.20180822a
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Example: Python Behaves Differently on Different Platforms

• Scripts for analyzing experimental nuclear magnetic resonance (NMR) data
• Scripts use Python's glob module (listing filenames matching a pattern)
• Module ordered results differently in Linux and Mac Mojave
• Results depended on the

order in which files were
processed

• Casts doubt on results in
150 papers

• Would testing have 
caught this?

https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-scripts-not-so-cross-platform/

https://arstechnica.com/information-technology/2019/10/chemists-discover-cross-platform-python-scripts-not-so-cross-platform/
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Science through computing is, 
at best, 

as credible as the software that produces it!
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Incentives for Paying Attention to Reproducibility

Common statement: “I would love to do a better job on my software, but I need to:
• Get this paper submitted
• Complete this project task
• Do something my employer values more

Goal: Change incentives to include valuing of better software, better science
This is a long-term goal, requiring a culture change in (computational) science 
which is in the early stages
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Data Management Plans

Funders and the Community Setting Expectations for Your Data 
(Including Your Software)

• Most research sponsors require data 
management plans as part of proposals

• “Data” includes software (increasingly called 
out explicitly)

• Example: NSF policy on Dissemination and 
Sharing of Research Results
– Investigators can keep their legal rights over 

their intellectual property, but they still have to 
make their results, data, and collections 
available to others

– Policies will be implemented via
• Proposal review
• Award negotiations and conditions
• Support/incentives

FAIR Principles for Research Software
• How to make all research outcomes, 

including software, optimally reusable by 
humans and machines?

• Findability
– Software is described with rich metadata and a 

unique and assigned a persistent identifier

• Accessibility
– Metadata are retrievable by their identifier, even 

when the software is no longer available

• Interoperability
– Software exchanges data in a way that meets 

domain-relevant community standards

• Reusability
– Software has a clear license, detailed provenance, 

and meets domain-relevant community standards
• Also FAIR Principles for Data 

https://www.nsf.gov/bfa/dias/policy/dmp.jsp
https://www.nsf.gov/bfa/dias/policy/dmp.jsp
https://doi.org/10.1038/s41597-022-01710-x
https://www.go-fair.org/fair-principles/
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Increasing Attention on Reproducibility from Publishers
• More publication venues are adding reproducibility recognition or requirements
• ACM Replicated Reproducible Computational Results (RCR)

– ACM TOMS, TOMACS
– http://toms.acm.org/replicated-computational-results.cfm 

• ACM Badging
– Functional, reusable, available, replicated, reproduced
– https://www.acm.org/publications/policies/artifact-review-and-badging-current

• These conferences have artifact evaluation appendices:
– CGO, PPoPP, PACT, RTSS and SC
– http://fursin.net/reproducibility.html

• NISO Committee on Reproducibility and Badging
– https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-computational-

and-computing 
– Publishers: ACM, IEEE, figshare, STM, Reed Elsevier, Springer Nature

http://toms.acm.org/replicated-computational-results.cfm
https://www.acm.org/publications/policies/artifact-review-and-badging-current
http://fursin.net/reproducibility.html
https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-computational-and-computing
https://www.niso.org/niso-io/2019/01/new-niso-project-badging-scheme-reproducibility-computational-and-computing
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Increasing Attention on Reproducibility for 
Your Own Sake
• Supercomputer cycles are scarce resources
• No one wants to spend their precious allocation running 

simulations two or three times to be confident of the 
results
– Though this ends up happening more than most people admit
– And it could still be wrong!

• But lots of people need to have confidence in your 
results
– You
– Your project lead or boss
– Your sponsor
– Your reviewers or referees
– Your readers

• Need to think about how to build credibility without 
repeating runs
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How to Improve Reproducibility
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Strategies for Improving Reproducibility During Development (1/3)

• Solid versioning practices are fundamental to reproducibility
• Version control of code, documentation, and other artifacts

– Frequent commits (perhaps to a separate development branch) 

• Provide versioning information in key output(s)
– Version numbers (i.e., semantic versioning) are useful, but when do you increment them?
– Automatic identifiers (i.e., git commit hash) are less ambiguous, but may not be as meaningful
– Is the code you’re building modified from the version in the repository? (Not often done in 

practice)

• Maintaining documentation (and other artifacts) in sync with code
– You’ll forget
– Or you won’t have (make) time to go back to it
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Strategies for Improving Reproducibility During Development (2/3)
• Build in quality from the start
• Define and follow coding standards

– Not just code style
– Expectations for kinds and extent of documentation, types and rigor of tests

• Develop tests as you code
– Write tests while the code is fresh in your mind
– Test Driven Development (TDD) means write tests before code, then code to pass the tests

• Require increasingly rigorous testing as the code becomes more “public”
– Testing has costs, need to balance level of risk against cost of creating and executing tests
– Also think about frequency of tests at different levels of cost (c.f. continuous integration)

• Practice peer code review
– Per commit – should meet standards, and be understood and judged correct by reviewer
– Pair experienced reviewers with less experienced coders to help ensure quality
– Retrospective if you have a lot of existing unreviewed code
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Strategies for Improving Reproducibility During Development (3/3)
• Understand the numerics of your code
• Floating point numbers are just approximations to real numbers

– Many numerical methods have “quirks” too
• If you’re using reduced- or mixed-precision computations, carefully compare with 

full-precision versions
– On paper during development of the algorithms
– Maybe provide an alternative full-precision computational path 

• Consider the possible effects of non-determinism due to concurrency
– Floating point calculations done in different order may yield different results
– Maybe useful to have an option to force deterministic computation
– Look for testing/verification methods that don’t depend on bitwise reproducibility

• Know your error bounds and develop tests against them
– E.g., conservation rules apply to many physical quantities

• Consider consulting subject matter experts for help
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Strategies for Improving Reproducibility After Development

• Testing, testing, and more testing!
• Add “regression tests”

– If you fix a bug, add a test to make sure that 
bug doesn’t creep back in

• Add more tests
– Be creative
– Think about common cases, then corner cases
– Think about misuse (unintentional or 

intentional)
– Think about synthetic tests with synthetic data
– Think about low-cost tests that can be “always 

on” (even if they’re not so stringent)
– Can you detect silent data corruption?

• Test your third-party dependencies
– Are your tools doing what you think they’re 

doing?
– What if you’re using a new version?
– How do you decide if it is okay to upgrade to a 

new version?

• Test your tests!
– Make sure tests fail when they’re supposed to!

• Thoroughly verify the code
– Does the code do what you intended it to do?
– On all relevant platforms (compilers, 

hardware, etc.)

• Test regularly
– To identify and document where changes to 

the underlying platform change code 
behavior/results
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Digression – “Physics” (or Math)-Based Testing Strategies

• Use what you know (or can construct) about the model you’re studying to 
test its implementation

• Synthetic operators with known properties
– Spectrum (huge diagonals)
– Rank (by construction)

• Invariance principles
– Translational, rotational, etc.
– Physical symmetries
– Mathematical symmetries

• Conservation rules
– Fluxes, energy, mass, etc.

• …
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Digression – Design by Contract Programming

• Building testing into your routines 
– To complement, not replace, other testing

• The interface to a routine can be thought of as a contract between caller and the 
callee (the routine)
– What does the routine expect on input?  preconditions
– What does the routine guarantee at completion? postconditions
– What does the routine leave unchanged?  invariants

• Given valid inputs (preconditions satisfied) a routine should guarantee valid 
outputs (postconditions satisfied, invariants maintained)
– If the preconditions are not satisfied, the routine should return an error
– Emphasize low-costs tests that can be always-on
– May need to be able to switch enforcement of expensive tests on/off (but try not to!)

• Making the contract explicit facilitates correct use of routines
– Especially when routine is reused in another context
– Especially by those not intimately familiar with them
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Strategies for Improving Reproducibility by Planning Experiments
• Plan your experiments thoroughly

– If you’re in a team, designate one 
person to coordinate the experimental 
campaign

– Know what you need (in the code, as 
inputs, as outputs to capture/analyze, 
etc.)

– Know what to expect (in results, 
performance/cost, etc.)

– How will you convince yourself that 
your results are trustworthy? 

• Develop helpful diagnostics
– Low overhead ways of confirming the 

health of the run
• Are conserved quantities conserved?
• Has any quantity become unphysical?

• Develop hierarchy of analysis
– Full analysis of runs is often not feasible while 

simulations are running
– Intermediate level analysis can give further insight 

into health of the simulation

• Perform pilot/test runs to build confidence in 
correctness, performance, scaling
– Often useful to pursue an incremental/layered 

strategy

• Ensure that you have the resources to store 
and/or analyze the outputs
– What can you afford to archive?
– What will you need to process and delete?
– What will you need to process during execution or 

stream?

Consider: use a lab notebook to keep track of all this planning: 
motivation, reasoning and decisions, consequences (more to follow)
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Strategies for Improving Reproducibility During Experiments
• Can you reproduce the code used for each and every experiment?

– Three years later?
• Use only well-defined versions of code (i.e., official “releases”, tags, etc.)

– Separate ongoing development from science campaigns using separate branches
• Main or development branches are often moving targets

– Capture the exact version of the code used for each experiment
• Is the code you’re building exactly what’s in the version control repo?

– Don’t change versions during a related series of experiments (unless you have to)
• Make changes only to the science branch
• Reconcile the science branch changes with the development branch only after the science is done

– If you have to change versions, know exactly what changed
• Capture the exact version of the code used for each experiment

• Use only versions of code that have been thoroughly verified
• Continue to use regular testing to identify changes due to the underlying platform

– E.g., compiler release introduces a new optimization that changes numerical results
• Consider capturing version information of key libraries, compilers, and other dependencies used to 

build code
– Not often done, in practice

• Put this info into your lab notebook too!
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Conversations with Carlo

• As researchers’ careers progress
– The problems become more complex and larger
– Previous informal techniques for executing a study start to fail
– The researchers sense that something is missing
– They invent processes and tools to compensate

This happened to Carlo and at some point, he realized that
“I had re-invented the lab notebook!”

Carlo Graziani is a Computational Scientist at ANL
BSSw blog article HPC and the Lab Manager

https://bssw.io/blog_posts/hpc-and-the-lab-manager
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A minimal definition of a lab notebook

A goal of keeping a lab notebook is "...to write with enough detail and clarity that 
another scientist could pick up the notebook at some time in the future, repeat the 
work based on the written descriptions, and make the same observations that 
were originally recorded. If this guideline is followed, even the original author will 
be able to understand the notes when looking back on them after considerable 
time has passed!”
 - Howard Kanare, Writing the Laboratory Notebook (emphasis added)

https://files.eric.ed.gov/fulltext/ED344734.pdf
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Lab notebooks are…

• A fundamental part of communication as well as rigorous, reproducible science in a lab,
• A common-place or required part of an experimental laboratory,
• Populating a scientific “lab notebook” was an “automated” process at the observatory,
• A tool for preventing scientific fraud, and
• Record of invention and defending against allegations of fraud.

Lab notebooks
• Should be used regularly,
• Should be comprehensive and never filtered,
• Don’t need perfect grammar and full sentences,
• Content is frozen at creation, and
• Hopefully contains more than just data (e.g., motivation, reasoning, conclusions).

They focus on data and information more than knowledge and understanding, but
people interact, evolve, and grow by collaborating through the notebook.
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Example notebook entries

A bad example

Monday July 25, 2022
9:05 am - Do study ABC
8:47 pm - Lot’s of interesting data!
              - Results are in GCE

A better example

Monday July 25, 2022 (Jared)
9:05 am - Continuing work for study ABC.  (See July 7)
- I presently believe that if A happens, then B must also 
happen.
- To verify this, I intend to

• …
• ***

9:30 am - Started executing this experiment on Bebop.
• Built debug version of binary with Intel 20.4
• Based on clean commit 5a43b21c
• Build log saved to my_test_2022.log
• No errors or warnings emitted
• Used job script run_my_test with 

configuration 24 (Job ID 123456)
• Stdout/err & results saved in folder ABC

10:07 am - Analysis run with script 
analyze_my_test.py and results saved in same 
folder.
- Since no peak seen around 1.5 MeV, I was wrong.  
But based on this, I now believe that if A happens, then 
C must also happen.
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No one likes writing lab notes

• This attitude comes from lack of experience & awareness
– Good notes are implicit communication & sharing
– Good notes can be turned into procedures

• Lab notes become more useful as time passes
– Our memory fades
– It can take years before we see the benefit
– The beneficiary is often our “future self”

• Writing but not reading lab notes is a good thing
– Lab notes are most useful when something has gone wrong

“Lab notes are a waste of time. I write notes but never use them.”
        - Almost all newcomers to lab notebooks
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Criteria for lab notebooks for computing?

• Paper won’t work.  We work anywhere and sometimes in distributed way.
• Should notebooks be public and how to do that?
• How many different types of notebooks do we need?
• Do we use a single electronic lab notebook (ELN) or distribute notes across a 

suite of tools?
• How can we use automation appropriately to overcome difficulties and increase 

productivity?

We likely need multiple streams of lab notes
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Different streams of lab notes

• Lab notebook for changes to scientific instrument
– Changes in code repo necessary for study
– Changes to SW environments
– Changes to build/job files and build systems

• Lab notebook to detail how experiment was designed and executed
• Lab notebook for data analysis tools
• Right tool for the job

– We don’t want a single 10,000-line README
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Which leads us to documentation

Documentation is knowledge communication & can build understanding

• Data at the bottom.  Knowledge as we move up?

• Some documents frozen at creation.  Others are living.

• Does this capture how hard it is to do documentation in a distributed, digital world?

DIKW pyramid (unaltered) – 
Wikipedia/Longlivetheux

https://commons.wikimedia.org/wiki/File:DIKW_Pyramid.svg
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Git lab notes stream

Keep lab notes for your software as close to the “instrument” as possible

Details not obvious from commit diff:
Motivation, reasoning, consequences

Testing notes

This is only one component of the lab notebook 
for software – combine with pull requests

*This message is missing a title as the first line.
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Pull request as a “filtered” notebook entry

• A pull request is an aggregation of commits to a git repo
– Individual commits are linked to the pull request

• The PR allows for additional content that’s distinct from the individual commits
• Use PR description to record process to verify correctness of changes

– 2-2.5 days effort carried out over a week
– Copy/pasted from previous PR and adapted first (designed process)
– Improved as carried out process – converging on a quasi-procedure
– Filtered so that reviewers aren’t overwhelmed
– Helped organize effort & design good tests

• Additional benefits
– Senior reviewers provide feedback & suggest improvements
– Junior reviewers exposed to work habits of other people

• Example: Flash-X PR #247 on next slide
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Example: 
Flash-X
PR #247
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README lab notes streams

• High-level road maps with motivation, documented decisions, and conclusions
– Concise living docs that function as executive summaries
– Higher up in documentation hierarchy

• Low-level notes such as managing software stack
– Traceability of SW environment & therefore verification
– Can be turned into procedures
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High-level 
README
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Low-level 
README
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Capturing data context & metadata (distinct from the data)

• Build dates, user, system name, git hashes, configuration data in file headers
– Self-documenting files

• Build & job logs
– Software environment info (e.g., modules, ldd output)
– git diffs
– Environment variables

• Automate as much as possible
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Jupyter notebooks

• Jupyter notebook can put context & metadata next to data
– High-level design & motivation up top
– Low-level lab notes for acquiring data
– Load & use data
– Generate visualizations in place
– Comment on results

• Where do notebooks fit into the documentation hierarchy?
• Repetitive use of notebook?

– Limit amount of code in notebook
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How to organize your “virtual” (multi-stream) lab notebook?

• It should be
– Easy to create and maintain lab notes
– Easy to concentrate more on executing work & less on documenting it
– Easy to find what you need

• Each stream should
– Have a clear identity for what it records
– Not contain notes contained in other streams
– Be recorded by using the right tool for the job
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Strategies for Improving Reproducibility with Lab Notebooks

• Be thorough in capturing provenance
–  Agents (codes), entities (inputs, outputs, etc.), activities (the transformation)

• Capture code version
• Capture all inputs/configuration information for each experiment
• Use multiple systems to ensure that you can correctly associate inputs, outputs, 

and code versions
– Systematic directory and file naming conventions (document them!)
– Separate written notes (paper notebook, electronic notebook)

• Lab notebooks aren’t just for people who literally work in a laboratory!
– Scripts to orchestrate experiments (versioned and captured)
– Version control (if data is not too large)

• Capture important outputs (as feasible)
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Strategies for Improving Reproducibility After Experiments

• Continue provenance capture through data analysis/reduction process
– Agents (codes), entities (inputs, outputs, etc.), activities (the transformation)

• Script as much of your analysis/reduction as possible
– Prefer scriptable tools over those requiring human interaction
– Keep the scripts under version control

• Document your process thoroughly
– Separately from scripts, etc.
– E.g., in your lab notebook
– Especially where human interaction is required

• Capture key intermediates in the reduction process
– The longer the processing pipelines, the more likely problems will creep in
– The more you capture, the more you will have for verification (and to find problems) later

• Capture the data (in machine-readable form) used to produce graphs and tables
– Expected by basic data management plans
– And an increasing number of publishers
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Tools May Help with Reproducibility

Just a small sampling…
• Containers to capture the software
• Resources for finding, understanding, and debugging floating point math 

problems: http://fpanalysistools.org/
• Cloud platforms to publish and reproduce research code and data

– E.g., https://CodeOcean.com

• DOIs and hosting of data, code, documents, etc.
– E.g., https://zenodo.org/, https://FigShare.com

Make sure to test and understand your tools thoroughly before using them 
for something important!

http://fpanalysistools.org/
https://codeocean.com/
https://zenodo.org/
https://figshare.com/
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Summary
• The credibility of your science derives from the credibility of your code (and 

process)
• Science stakeholders are ratcheting up expectations for reproducibility
• Reproducible results are a necessity, not a luxury

– There is no credible science without full provenance
• Computational science campaigns can be expensive in time and resources

– Care and planning is vital to ensure that outcomes meet expectations
• There are strategies to improve reproducibility in all phases of the scientific 

process
– During development
– After development
– During experiments
– After experiments

• They amount to better software development practices
– The same kinds of practices advocated for reasons of productivity, sustainability, 

maintainability, etc.
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Other resources
• The FAIR Guiding Principles for Scientific Data Management and Stewardship. Mark D. Wilkinson, et al. 

https://doi.org/10.1038/sdata.2016.18
• FAIR for Research Software (FAIR4RS) Working Group: https://www.rd-alliance.org/groups/fair-for-research-

software-fair4rs-wg/forum/
• Editorial: ACM TOMS Replicated Computational Results Initiative. Michael A. Heroux. 2015. ACM Trans. 

Math. Softw. 41, 3, Article 13 (June 2015), 5 pages. DOI: http://dx.doi.org/10.1145/2743015
• Enhancing Reproducibility for Computational Methods. Victoria Stodden, Marcia McNutt, David H. Bailey, 

Ewa Deelman, Yolanda Gil, Brooks Hanson, Michael A. Heroux, John P.A. Ioannidis, Michela Taufer Science 
(09 Dec 2016), pp. 1240-1241. DOI: 10.1126/science.aah6168

• Simple experiments in reproducibility and technical trust by Mike Heroux and students (work in progress),
https://betterscientificsoftware.github.io/Trust-Tools/

• What every scientist should know about floating-point arithmetic. David Goldberg. 
https://doi.org/10.1145/103162.103163

• Carlo Graziani, HPC and the Lab Manager.  Better Scientific Software. https://bssw.io/blog_posts/hpc-
and-the-lab-manager. Nov 17, 2021.

• Howard M. Kanare, Writing the Laboratory Notebook. American Chemical Society, Washington, D.C., 1985.
• Nicole Brewer, Jupyter4Science: Better Practices for Using Jupyter Notebooks for Science.  Better 

Scientific Software. https://bssw.io/items/jupyter4science-better-practices-for-using-jupyter-notebooks-for-
science. March 17, 2024.

https://doi.org/10.1038/sdata.2016.18
https://www.rd-alliance.org/groups/fair-for-research-software-fair4rs-wg/forum/
https://www.rd-alliance.org/groups/fair-for-research-software-fair4rs-wg/forum/
http://dx.doi.org/10.1145/2743015
https://doi.org/10.1126/science.aah6168
https://betterscientificsoftware.github.io/Trust-Tools/
https://doi.org/10.1145/103162.103163
https://bssw.io/blog_posts/hpc-and-the-lab-manager
https://bssw.io/blog_posts/hpc-and-the-lab-manager
https://files.eric.ed.gov/fulltext/ED344734.pdf
https://bssw.io/items/jupyter4science-better-practices-for-using-jupyter-notebooks-for-science
https://bssw.io/items/jupyter4science-better-practices-for-using-jupyter-notebooks-for-science
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