
See slide 2 for
license details

Presented by

Members of

With prior support from

https://pesoproject.org https://rapids.lbl.gov

Consortium for the Advancement
of Scientific Software
https://cass.community

Scientific Software Design

Anshu Dubey (she/her)
Argonne National Laboratory

Software Sustainability track @ Argonne Training Program on Extreme-
Scale Computing summer school

Contributors: Anshu Dubey (ANL), David E. Bernholdt (ORNL)

https://pesoproject.org/
https://rapids.lbl.gov/
https://cass.community/

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, and Todd Gamblin, Software

Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles, Illinois, 2025. DOI:
10.6084/m9.figshare.29816981.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Next-
Generation Scientific Software Technologies (NGSST) program.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.29816981

3

• Investing some thought in design of software makes it possible to maintain, reuse and
extend it

• Even if some research software begins its life as a one-off use case, it often gets reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process

– Many projects have had this happen
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored for
scientific software

• We will also work through two use cases

definition from https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

Introduction

https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

4

Designing Software – High Level Phases

 Features and
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements
gathering

 Understand design
space

 Decompose into
high level
components

 Bin components
into types

Decomposition

 Understand
component hierarchy

 Figure out
connectivity among
components

 Articulate
dependencies

Connectivity

5

Simple Use Case
• Many applications combine mesh and

particles
– Particles have positions associated with them
– They interchange physical quantities with the

mesh
– They change positions based on interactions

• We will build a uniformly discretized 2D
cartesian mesh and initialize with a lattice of
particles
– We will divide the mesh into blocks
– We will associate each particle with a single block
– We will move particles to different locations which

may change the block they are associated with
– We will need to handle particles that leave the

domain
• To make sure that we are doing it correctly we

need
– Ways of verifying that particle is associated with

the right block

6

Requirements gathering

• Components we need
– Mesh generator – with mesh divided into blocks
– Particles generator – in a 2D lattice
– For each particle ability to locate the block on which the particle resides
– Making the particles change position

• To verify that we are doing it correctly we need to make
sure that
– The mesh is generated correctly
– The particles are initialized in a lattice and associated with blocks correctly
– After moving the particles change their associations correctly

7

Decomposition
This is a small design space
Several requirements can

directly map to components
Driver
Mesh initialization
Data structure
Division into blocks

 Particle initialization
Position
Association with a mesh block

 Particle mover
 Tests

Binning components
Infrastructure Components
Driver
 Initialization
Mesh with division into blocks
Particles position

 Association with a mesh block

Components that are specific to one
instance
 Boundary conditions
 Particle mover

Components for verification

8

Connectivity

Initialization
of

Particle
positions

Mesh
generation

Particle
mover

Boundary
conditions

Mesh
decomposition

Block
association

Driver

9

Connectivity

Initialization
of

Particle
positions

Mesh
generation

Particle
mover

Boundary
conditions

Tests

Mesh
decomposition

Block
association

Driver

10

Connectivity

Initialization
of

Particle
positions

Mesh
generation

Particle
mover

Boundary
conditions

Mesh
decomposition

Block
association

Driver

11

Connectivity

Initialization
of

Particle
positions

Mesh
generation

Particle
mover

Boundary
conditions

Tests

Mesh
decomposition

Block
association

Driver

12

Research Software Challenges

• Many parts of the model and
software system can be under
research

• Requirements change throughout the
lifecycle as knowledge grows

• Verification complicated by floating
point representation

• Real world is messy

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

13

Additional Considerations for Research Software

Considerations

 Multidisciplinary
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others

Design Implications

 Separation of Concerns
 Shield developers from unnecessary

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities

14

More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock
to moves out in a circle. High resolution is
needed only at and near the shock

Requirements
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification

15

Deeper Dive into Requirements

• Adaptive mesh refinement  divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically

16

Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh
– Data containers
– Halo cell fill, including application of

boundary conditions
– Reconciliation of quantities at fine-coarse

block boundaries
– Re-mesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing

infrastructure
Mesh
 I/O
Driver
Comparison utility -- testing

Components evolving with
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS

17

Connectivity

Mesh

I/O

Initial conditions Boundary
conditions

Driver

Hydrodynamics EOS

Tests

18

Requirements

Software Architecture API Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns

19

Real view : A
whole domain
with many
operators

Functional
decomposition

domain sections
as stand-alone
computation unit

collection of
components

Spatial
decomposition

Exploring design space – Abstractions

base
abstraction

Constraints
• Only infrastructure components

have global view
• All physics solvers have block view

only
Other Design Considerations
• Data scoping
• Interfaces in the API

Minimal Mesh API
• Initialize_mesh
• Halo_fill
• Access_to_data_containers
• Reconcile_fluxes
• Regrid

20

Separation of Concerns Applied

Real view : A
whole domain
with many
operators

Functional
decomposition

domain sections
as stand-alone
computation unit

collection of
components

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and
compute
optimization

Implemented by
domain experts
and applied
mathematicians

Implemented by
software and
performance
engineers

21

Takeaways so far

• Differentiate between slow changing and fast changing
components of your code

• Understand the requirements of your infrastructure
• Implement separation of concerns
• Design with portability, extensibility, reproducibility and

maintainability in mind

22

More Scientific
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More
Hardware
Resources

Platform complexity

So
ftw

ar
e

co
m

pl
ex

ity

Distributed
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity

23

Mechanisms Needed by the Code

Mechanisms to map work to
computational targets
• Figuring out the map

• Expression of dependencies
• Cost models

• Expressing the map

Mechanisms to move work and
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node

Mechanisms to unify expression of
computation
• Minimize maintained variants of source

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers
• Code transformation tools
• Data movement orchestrators

24

Mechanisms Needed by the Code: Example of Flash-X

Mechanisms to map work to
computational targets

DSL for recipes with code
generator

Mechanisms to move work and
data to computational targets

 Domain specific runtime

Mechanisms to unify expression of
computation

 Macros with inheritance

Composability in the source
A toolset of each mechanism

Independent tool sets

25

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

26

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

27

State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

We have been developing one
for Flash-X – started under ECP

and TEAMS, continuing with
RAPIDS and ENAF

28

ORCHA: Overview
• ORCHA consists of three tools: CG-Kit, Macroprocessor, and Milhoja
• A user expresses the control flow of the simulation in a “recipe”
• CG-Kit reads and parses the given recipe, statically optimizes the control flow graph
• Macroprocessor selects the right definition for the target and translates the static

physics code (similar to what Kokkos/AMReX do for C++ codes)
• Milhoja handles data transfers and kernel launching

The magic component that puts everything together – Flash-X-RecipeTools

• These are the application specific parts of ORCHA – need to be developed for each application

• They do code generation for application specific task functions and data packets

• Key design choice to avoid having to change applications intrusively to become compatible with
ORCHA

29

Orthogonal Axes of Challenges and Optimization
Have a way of rearranging data locality and moving data and computation

Let the human-in-the-loop dictate this

CG-Kit – recipes in python
 -- templates for different variants
 -- express where to compute what
 -- emit code in Fortran/C/C++

Milhoja – flatten/decompose data and
move it to the target
 -- combine data into one data packet
 -- decompose into smaller
computational sections if needed

• If tools only execute what they are
told to, they are simpler

• Code generation is our friend –
especially when it is simple forward
map
– And is not entangled with the details

of the arithmetic

If N blocks are sent to the
device, we need N copies of all
block-wise scratch
For all data items we need

device pointers
Code internally decorated with

directives

30

Code Generators

• Two Classes
– Data packet generators

• Parse the interface files
• Collect all data to be put into a data packet
• Generate code that will flatten all data into data packets

– Task function generators
• Consolidate functions to be invoked
• Bookended by internode communication
• Unpack data packets

• Decorate interface definitions with needed metadata
Example -- this link will work only if you have access to the Flash-X code repository.
Please email flash-x@lists.cels.anl.gov with your github username to get access

https://github.com/Flash-X/Flash-X/blob/ylee/try_pushTile_spark/source/physics/Hydro/HydroMain/Spark/Hydro_interface.ini

31

ORCHA: Workflow

User-written
Recipe Flash-X RecipeTools

(CG-Kit)

Flash-X Source Code
(with Macros)

Milhoja Code
Generator

Macroprocessor

MainDriver
(invoke Milhoja

Runtime)

TaskFunctions

DataPackets

Compiler

ExecutableMilhoja Runtime

32

ORCHA: Example 1
• Sedov explosion test

– Hydrodynamics with an ideal-gas EOS

Begin
 addNode(HydroBegin, GPU), dep(Root)
 addNode(HydroCompute, GPU), dep(HydroBegin)
End

ORCHA Begin

TaskFuncion A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

ORCHA End

Recipe (user input):
Generated / transformed codes:

• Hydro exposes 2 interfaces to ORCHA

• Every exposed interface is required to be thread-safe for the whole call-
stack, and should be compilable for the target

• In the file where the interfaces are defined, we annotations as comments
provide complete inventory of data that is needed for the computation

• Recipetools recursively parse the annotations, cumulate all the data that
is part of one taskfunction and generate code for assembling data
packets and task functions

A DataPacket can
collect N AMR
blocks, where N is
a runtime
parameter

33

ORCHA: Example 2
• Cellular detonation

– Hydrodynamics, nuclear burn, and Helmholtz EOS are needed

Begin
 addNode(HydroBegin, GPU), dep(Root)
 addNode(HydroCompute, GPU), dep(HydroBegin)
 addNode(BurnCompute, CPU), dep(HydroCompute)
 addNode(BurnUpdate, CPU), dep(BurnCompute)
End

ORCHA Begin

TaskFuncion A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

TaskFunction B
- BurnCompute_CPU
- BurnUpdate_CPU

TileWrapper B

ORCHA End

Recipe (user input): Generated / transformed code:

• Burn exposes 2 interfaces to ORCHA

• Can only run on CPU – third party library dependence

• EOS needs to compiled for both CPU and GPU, both
Hydro and Burn call

34

ORCHA: Example 2
• Cellular detonation

– Hydrodynamics, nuclear burn, and Helmholtz EOS are needed

Begin
 addNode(HydroBegin, [CPU, GPU]), dep(Root)
 addNode(HydroCompute, [CPU, GPU]), dep(HydroBegin)
 addNode(BurnCompute, CPU), dep(HydroCompute)
 addNode(BurnUpdate, CPU), dep(BurnCompute)
End

ORCHA Begin

TaskFunction B
- HydroBegin_CPU
- HydroCompute_CPU

TileWrapper B

TaskFunction A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

TaskFunction C
- BurnCompute_CPU
- BurnUpdate_CPU

TileWrapper C

ORCHA End

Recipe (user input): Generated / transformed code:

Runtime: (GPU + CPU)Hydro → (CPU)Burn

35

Final takeaways

• Requirements gathering and intentional design are indispensable for sustainable
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable
sustainable software design

36

References

• Dubey Anshu, “Insights from the software design of a multiphysics
multicomponent scientific code” Computing in Science & Engineering, 2021.
DOI:10.1109/MCSE.2021.3069343

• Dubey, Anshu, et al. "Flash-X: A multiphysics simulation software
instrument." SoftwareX 19 (2022): 101168. DOI:10.1016/j.softx.2022.101168

• Rudi, Johann, et al. "CG-Kit: Code Generation Toolkit for Performant and
Maintainable Variants of Source Code Applied to Flash-X Hydrodynamics
Simulations." arXiv preprint arXiv:2401.03378 (2024).

• O’Neal, Jared, et al. "Domain-specific runtime to orchestrate computation on
heterogeneous platforms." European Conference on Parallel Processing. Cham:
Springer International Publishing, 2021. DOI:10.1007/978-3-031-06156-1_13

• Dubey, Anshu, et al. "A tool and a methodology to use macros for abstracting
variations in code for different computational demands." Future Generation
Computer Systems (2023). DOI:10.1016/j.future.2023.07.014

36

https://doi.org/10.1109/MCSE.2021.3069343
https://doi.org/10.1016/j.softx.2022.101168
https://arxiv.org/abs/2401.03378
https://doi.org/10.1007/978-3-031-06156-1_13
https://doi.org/10.1016/j.future.2023.07.014

	Scientific Software Design
	License, Citation and Acknowledgements
	Introduction
	Designing Software – High Level Phases
	Simple Use Case
	Requirements gathering
	Decomposition
	Connectivity
	Connectivity
	Connectivity
	Connectivity
	Research Software Challenges
	Additional Considerations for Research Software
	More Complex Application Design – Sedov Blast Wave�
	Deeper Dive into Requirements
	Components
	Connectivity
	A Design Model for Separation of Concerns
	Exploring design space – Abstractions
	Separation of Concerns Applied
	Takeaways so far
	Slide Number 22
	Mechanisms Needed by the Code
	Mechanisms Needed by the Code: Example of Flash-X
	State of Practice – Abstractions and Runtimes
	State of Practice – Abstractions and Runtimes
	State of Practice – Abstractions and Runtimes
	ORCHA: Overview
	Slide Number 29
	Code Generators
	ORCHA: Workflow
	ORCHA: Example 1
	ORCHA: Example 2
	ORCHA: Example 2
	Final takeaways
	References

