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• Investing some thought in design of software makes it possible to maintain, reuse and 
extend it

• Even if some research software begins its life as a one-off use case, it often gets reused
– Without proper design it is likely to accrete features haphazardly and become a monstrosity

• Acquires a lot of technical debt in the process

– Many projects have had this happen 
– Most end up with a hard reset and start over again

• In this module we will cover general design principles and those that are tailored for 
scientific software

• We will also work through two use cases

definition from https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english

Introduction

https://enterprisersproject.com/article/2020/6/technical-debt-explained-plain-english
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Designing Software – High Level Phases

 Features and 
capabilities

 Constraints
 Limitations
 Target users
 Other …..

Requirements 
gathering

 Understand design 
space

 Decompose into 
high level 
components

 Bin components 
into types

Decomposition 

 Understand 
component hierarchy

 Figure out 
connectivity among 
components 

 Articulate 
dependencies

Connectivity
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Simple Use Case
• Many applications combine mesh and 

particles
– Particles have positions associated with them
– They interchange physical quantities with the 

mesh
– They change positions based on interactions

• We will build a uniformly discretized 2D 
cartesian mesh and initialize with a lattice of 
particles
– We will divide the mesh into blocks
– We will associate each particle with a single block
– We will move particles to different locations which 

may change the block they are associated with 
– We will need to handle particles that leave the 

domain
• To make sure that we are doing it correctly we 

need
– Ways of verifying that particle is associated with 

the right block
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Requirements gathering 

• Components we need
– Mesh generator – with mesh divided into blocks
– Particles generator – in a 2D lattice
– For each particle ability to locate the block  on which the particle resides
– Making the particles change position

• To verify that we are doing it correctly we need to make 
sure that 
– The mesh is generated correctly
– The particles are initialized in a lattice and associated with blocks correctly
– After moving the particles change their associations correctly
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Decomposition
This is a small design space
Several requirements can 

directly map to components 
Driver
Mesh initialization 
Data structure
Division into blocks

 Particle initialization
Position
Association with a mesh block

 Particle mover
 Tests

Binning components
Infrastructure Components
Driver
 Initialization 
Mesh with division into blocks
Particles position

 Association with a mesh block

Components that are specific to one 
instance
 Boundary conditions
 Particle mover

Components for verification
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Connectivity

Initialization 
of 

Particle 
positions

Mesh 
generation 

Particle 
mover

Boundary 
conditions

Mesh 
decomposition 

Block 
association

Driver
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Connectivity

Initialization 
of 

Particle 
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generation 

Particle 
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Research Software Challenges

• Many parts of the model and 
software system can be under 
research

• Requirements change throughout the 
lifecycle as knowledge grows

• Verification complicated by floating 
point representation

• Real world is messy

More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources
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Additional Considerations for Research Software

Considerations

 Multidisciplinary 
 Many facets of knowledge
 To know everything is not feasible

 Two types of code components
 Infrastructure (mesh/IO/runtime …)
 Science models (numerical methods)

 Codes grow
 New ideas => new features
 Code reuse by others 

Design Implications

 Separation of Concerns
 Shield developers from unnecessary 

complexities

 Work with different lifecycles
 Long-lasting vs quick changing
 Logically vs mathematically complex

 Extensibility built in
 Ease of adding new capabilities
 Customizing existing capabilities
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More Complex Application Design – Sedov Blast Wave

Description

High pressure at the center cause a shock 
to moves out in a circle. High resolution is 
needed only at and near the shock

Requirements 
• Adaptive mesh refinement

– Easiest with finite volume methods

• Driver
• I/O
• Initial condition
• Boundary condition
• Shock Hydrodynamics
• Ideal gas equation of state
• Method of verification
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Deeper Dive into Requirements

• Adaptive mesh refinement  divide domain into blocks
– Blocks need halos to be filled with values from neighbors or boundary conditions

• At fine-coarse boundaries there is interpolation and restriction
– Blocks are dynamic, go in and out of existence
– Conservation needs reconciliation at fine-coarse boundaries

• Shock hydrodynamics
– Solver for Euler’s equations at discontinuities
– EOS provides closure
– Riemann solver
– Halo cells are fine-coarse boundaries need EOS after interpolation

• Method of verification
– An indirect way of checking – shock distance traveled can be computed analytically
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Components Deeper Dive into some Components
• Driver

– Iterate over blocks
– Implement connectivity

• Mesh 
– Data containers
– Halo cell fill, including application of 

boundary conditions
– Reconciliation of quantities at fine-coarse 

block boundaries
– Re-mesh when refinement patterns change

• I/O
– Getting runtime parameters and possibly 

initial conditions
– Writing checkpoint and analysis data

Binned Components
Unchanging or slow changing 

infrastructure
Mesh
 I/O
Driver
Comparison utility -- testing

Components evolving with 
research – physics solvers
 Initial and boundary conditions
Hydrodynamics
 EOS
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Connectivity

Mesh

I/O

Initial conditions Boundary 
conditions

Driver

Hydrodynamics EOS

Tests
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Requirements

Software Architecture API  Design

Implement

Test

Maintain

Augment

Model

API

Design
Develop

Validate

Integrate

Infrastructure Capabilities

A Design Model for Separation of Concerns
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Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

domain sections 
as stand-alone 
computation unit 

collection of
components 

Spatial
decomposition

Exploring design space – Abstractions

base
abstraction

Constraints
• Only infrastructure components 

have global view
• All physics solvers have block view 

only 
Other Design Considerations
• Data scoping
• Interfaces in the API

Minimal Mesh API
• Initialize_mesh
• Halo_fill
• Access_to_data_containers
• Reconcile_fluxes
• Regrid
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Separation of Concerns Applied

Real view : A 
whole domain 
with many 
operators

Functional 
decomposition

domain sections 
as stand-alone 
computation unit 

collection of
components 

Spatial
decomposition

Parallelization
and scaling
optimization

Memory
access and 
compute
optimization

Implemented by 
domain experts 
and applied 
mathematicians

Implemented by
software and 
performance
engineers
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Takeaways so far

• Differentiate between slow changing and fast changing 
components of your code

• Understand the requirements of your infrastructure
• Implement separation of concerns
• Design with portability, extensibility, reproducibility and 

maintainability in mind
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More Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More 
Hardware 
Resources

Platform complexity

So
ftw

ar
e 

co
m

pl
ex

ity

Distributed 
memory
model

Heterogeneous
models

New Paradigm Because of Platform Heterogeneity
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Mechanisms Needed by the Code 

Mechanisms to map work to 
computational targets
• Figuring out the map

• Expression of dependencies 
• Cost models

• Expressing the map

Mechanisms to move work and 
data to computational targets
• Moving between devices

• Launching work at the destination
• Hiding latency of movement

• Moving data off node 

Mechanisms to unify expression of 
computation
• Minimize maintained variants of source 

suitable for all computational devices
• Reconcile differences in data structures

So, what do we need?

• Abstractions layers 
• Code transformation tools
• Data movement orchestrators
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Mechanisms Needed by the Code: Example of Flash-X

Mechanisms to map work to 
computational targets

DSL for recipes with code 
generator

Mechanisms to move work and 
data to computational targets

    Domain specific runtime

Mechanisms to unify expression of 
computation

   Macros with inheritance 

Composability in the source
A toolset of each mechanism

Independent tool sets
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State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops 
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption
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State of Practice – Abstractions and Runtimes

• Still very focused on GPU
– Majority of ECP applications park their data on the GPU and just work there

• Abstractions -- data structures and parallelization of loops 
• Limitations

– No way to handle algorithmic variants in a unified way
– No way to transfer domain knowledge based possible optimizations to the tools

• None of the prevalent languages allow a good way to define data locality
– Boutique HPC languages like chapel do – but chicken and egg problem with adoption

The holy grail for scientists – write equation and generate code

Is there another way?

Very limited success in some domains

We have been developing one 
for Flash-X – started under ECP 

and TEAMS, continuing with 
RAPIDS and ENAF
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ORCHA: Overview
• ORCHA consists of three tools: CG-Kit, Macroprocessor, and Milhoja
• A user expresses the control flow of the simulation in a “recipe”
• CG-Kit reads and parses the given recipe, statically optimizes the control flow graph
• Macroprocessor selects the right definition for the target and translates the static 

physics code (similar to what Kokkos/AMReX do for C++ codes)
• Milhoja handles data transfers and kernel launching

The magic component that puts everything together – Flash-X-RecipeTools

• These are the application specific parts of ORCHA – need to be developed for each application

• They do code generation for application specific task functions and data packets

• Key design choice to avoid having to change applications intrusively to become compatible with 
ORCHA 
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Orthogonal Axes of Challenges and Optimization
Have a way of rearranging data locality and moving data and computation

Let the human-in-the-loop dictate this

CG-Kit – recipes in python
 -- templates for different variants
 -- express where to compute what
 --  emit code in Fortran/C/C++

Milhoja – flatten/decompose data and 
move it to the target
  -- combine data into one data packet
  -- decompose into smaller 
computational sections if needed

• If tools only execute what they are 
told to, they are simpler

• Code generation is our friend – 
especially when it is simple forward 
map
– And is not entangled with the details 

of the arithmetic

If N blocks are sent to the 
device, we need N copies of all 
block-wise scratch
For all data items we need 

device pointers
Code internally decorated with 

directives
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Code Generators

• Two Classes
– Data packet generators

• Parse the interface files 
• Collect all data to be put into a data packet
• Generate code that will flatten all data into data packets

– Task function generators
• Consolidate functions to be invoked 
• Bookended by internode communication
• Unpack data packets

• Decorate interface definitions with needed metadata
Example  -- this link will work only if you have access to the Flash-X code repository. 
Please email flash-x@lists.cels.anl.gov with your github username to get access

https://github.com/Flash-X/Flash-X/blob/ylee/try_pushTile_spark/source/physics/Hydro/HydroMain/Spark/Hydro_interface.ini
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ORCHA: Workflow

User-written 
Recipe Flash-X RecipeTools 

(CG-Kit)

Flash-X Source Code 
(with Macros)

Milhoja Code 
Generator

Macroprocessor

MainDriver 
(invoke Milhoja 

Runtime)

TaskFunctions

DataPackets

Compiler

ExecutableMilhoja Runtime



32

ORCHA: Example 1
• Sedov explosion test

– Hydrodynamics with an ideal-gas EOS

Begin
    addNode(HydroBegin, GPU), dep(Root)
    addNode(HydroCompute, GPU), dep(HydroBegin)
End

ORCHA Begin

TaskFuncion A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

ORCHA End

Recipe (user input):
Generated / transformed codes:

• Hydro exposes  2 interfaces to ORCHA

• Every exposed interface is required to be thread-safe for the whole call-
stack, and should be compilable for the target

• In the file where the interfaces are defined, we annotations as comments 
provide complete inventory of data that is needed for the computation

• Recipetools recursively parse the annotations, cumulate all the data that 
is part of one taskfunction and generate code for assembling data 
packets and task functions

A DataPacket can 
collect N AMR 
blocks, where N is 
a runtime 
parameter
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ORCHA: Example 2
• Cellular detonation

– Hydrodynamics, nuclear burn, and Helmholtz EOS are needed

Begin
    addNode(HydroBegin, GPU), dep(Root)
    addNode(HydroCompute, GPU), dep(HydroBegin)
    addNode(BurnCompute, CPU), dep(HydroCompute)
    addNode(BurnUpdate, CPU), dep(BurnCompute)
End

ORCHA Begin

TaskFuncion A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

TaskFunction B
- BurnCompute_CPU
- BurnUpdate_CPU

TileWrapper B

ORCHA End

Recipe (user input): Generated / transformed code:

• Burn exposes 2  interfaces to ORCHA

• Can only run on CPU – third party library  dependence

• EOS needs to compiled for both CPU and GPU, both 
Hydro and Burn call 
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ORCHA: Example 2
• Cellular detonation

– Hydrodynamics, nuclear burn, and Helmholtz EOS are needed

Begin
    addNode(HydroBegin, [CPU, GPU]), dep(Root)
    addNode(HydroCompute, [CPU, GPU]), dep(HydroBegin)
    addNode(BurnCompute, CPU), dep(HydroCompute)
    addNode(BurnUpdate, CPU), dep(BurnCompute)
End

ORCHA Begin

TaskFunction B
- HydroBegin_CPU
- HydroCompute_CPU

TileWrapper B

TaskFunction A
- HydroBegin_GPU
- HydroCompute_GPU

DataPacket A

TaskFunction C
- BurnCompute_CPU
- BurnUpdate_CPU

TileWrapper C

ORCHA End

Recipe (user input): Generated / transformed code:

Runtime: (GPU + CPU)Hydro → (CPU)Burn
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Final takeaways

• Requirements gathering and intentional design are indispensable for sustainable 
software development

• Many books and online resources available for good design principles
• Research software poses additional constraints on design because of its 

exploratory nature
– Scientific research software has further challenges
– High performance computing research software has even more challenges
– That are further exacerbated by the ubiquity of accelerators in platforms

• Separation of concerns at various granularities, and abstractions enable 
sustainable software design 
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