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Science through computing is, 
at best, 

as credible as the software that produces it!
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The Success of Computational Science Creates 
the Challenges of Computational Science
• Positive feedback loop

– More complex codes, simulations 
and analysis

– More moving parts that need to interoperate
– Variety of expertise needed – the only tractable 

development model is through separation of concerns
– It is more difficult to work on the same software in different roles without a software 

engineering process

• Onset of higher platform heterogeneity
– Requirements are unfolding, not known a priori 
– The only safeguard is investing in flexible design and robust software engineering 

process

Better Scientific 
Understanding

Higher Fidelity
Model

More Diverse
Solvers

More Hardware 
Resources

Supercomputers change fast
Especially now!
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Challenges Developing Scientific Applications Today

Technical
• All parts of the model and software 

system can be under research
• Requirements change throughout the 

lifecycle as knowledge grows
• Verification complicated by floating 

point representation
• Real world is messy, so is the 

software
• Increasing architectural diversity

Sociological
• Competing priorities and incentives

– Sponsors often care more about 
scientific publications than software 
per se

– Balancing development and 
maintenance with research

• Limited resources 
• Need for interdisciplinary interactions

– Many different kinds of expertise 
required to be successful
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High-Consequence Software-Related Scientific Failures

Therac-25 (1985-1987)
• Computer-controlled radiation therapy system

• Poor software design, development and 
testing practices allowed flaws that let to at 
least six cases of substantial radiation 
overdoses, three fatal

Mars Climate Orbiter (1999)
• Incorrect trajectory adjustment caused loss of 

the orbiter as it was supposed to enter 
Martian orbit

• Discrepancy in the units used in two different 
software components

• One component didn’t follow specifications
• Inadequate testing at the interface

• Concerns raised earlier in the mission were 
ignored because they weren’t properly 
documented 

Just two of many examples
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Software Under the Microscope

• Mar. 16 2020: Epidemiologist Neil Ferguson 
(Imperial College) briefed UK Parliament on 
computational modeling of COVID-19 
pandemic

– Epidemiological models like this helped prompt 
government action, but have lots of assumptions

• April 1 2020: Nicholas Lewis (independent 
climate science researcher in UK) can’t easily 
see where some of the assumptions come from 
– publishes a blog article
– “Moreover, the computer code… is old, 

unverified, and documented inadequately, if at 
all…”

https://doi.org/10.25561/77482
https://www.nicholaslewis.org/imperial-college-uk-covid-19-numbers-dont-seem-to-add-up/
https://www.nature.com/articles/d41586-020-01003-6

https://doi.org/10.25561/77482
https://www.nicholaslewis.org/imperial-college-uk-covid-19-numbers-dont-seem-to-add-up/
https://www.nature.com/articles/d41586-020-01003-6
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The Press Picks Up the Story

https://www.foxnews.com/world/imperial-college-britain-coronavirus-lockdown-buggy-mess-unreliable
https://www.telegraph.co.uk/technology/2020/05/16/coding-led-lockdown-totally-unreliable-buggy-mess-say-experts/

“Models must be capable of passing the basic 
scientific test of producing the same results given 
the same initial set of parameters…otherwise, 
there is simply no way of knowing whether they 
will be reliable,” said Michael Bonsall, Professor 
of Mathematical Biology at Oxford University.

“In our commercial reality, we would fire 
anyone for developing code like this and any 
business that relied on it to produce software 
for sale would likely go bust,” David Richards, 
co-founder of British data technology 
company WANdisco, told the Daily Telegraph.

Scientists from the University of Edinburgh have further 
claimed that it is impossible to reproduce the same results 
from the same data using the model. The team got different 
results when they used different machines, and even 
different results from the same machines.
“There appears to be a bug in either the creation or re-use 
of the network file. If we attempt two completely identical 
runs, only varying in that the second should use the network 
file produced by the first, the results are quite different,” the 
Edinburgh researchers wrote on the Github file.
A fix was provided, but it was the first of many bugs found 
within the program.

Headline and quotes from the Fox News article

https://www.foxnews.com/world/imperial-college-britain-coronavirus-lockdown-buggy-mess-unreliable
https://www.telegraph.co.uk/technology/2020/05/16/coding-led-lockdown-totally-unreliable-buggy-mess-say-experts/
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What you May Not Have Heard

• April 22 2020: Imperial collaborates with 
Microsoft to refactor and clean up the code, 
which is released on GitHub

• May 10 2020: Phil Bull rebuts criticisms of the 
Imperial code
– Which spurs further discussions within some 

groups focused on scientific software

• May 29 2020: CODECHECK independently 
reproduces results of Imperial’s Report 9

https://github.com/mrc-ide/covid-sim/
https://philbull.wordpress.com/2020/05/10/why-you-can-
ignore-reviews-of-scientific-code-by-commercial-software-
developers/amp/
http://doi.org/10.5281/zenodo.3865491

Many scientists write code that is crappy stylistically, but 
which is nevertheless scientifically correct (following 
rigorous checking/validation of outputs etc). Professional 
commercial software developers are well-qualified to 
review code style, but most don’t have a clue about 
checking scientific validity or what counts as good 
scientific practice. Criticisms of the Imperial Covid-
Sim model from some of the latter are overstated at best.

https://github.com/mrc-ide/covid-sim/
https://philbull.wordpress.com/2020/05/10/why-you-can-ignore-reviews-of-scientific-code-by-commercial-software-developers/amp/
https://philbull.wordpress.com/2020/05/10/why-you-can-ignore-reviews-of-scientific-code-by-commercial-software-developers/amp/
https://philbull.wordpress.com/2020/05/10/why-you-can-ignore-reviews-of-scientific-code-by-commercial-software-developers/amp/
http://doi.org/10.5281/zenodo.3865491
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Some Observations

• Your code is likely to live longer than you expect …
  and may be used in ways you don’t expect …
    by people you don’t know …
Plan for it!

• Increasingly, consequential decisions are made based on computational results
– The codes generating those results may (justifiably) be subject to greater scrutiny

• The scientific credibility of software is strongly connected to good software 
engineering practices
– Documentation
– Testing, verification, and (where possible) validation
– Code readability and quality metrics

Question: Should we excuse scientific software for being “crappy stylistically”?
Hint: crappy code can hide bugs
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More Subtle Impacts on Scientific 
Productivity
• In 2005, the FLASH astrophysics team was 

offered a unique opportunity to access one 
of the biggest machines in the world at that 
time (BG/L) for a dedicated run

• Short notice to prepare
– < 1 month to get ready for 1.5 week run

• Quick and dirty development of particle capability in code
• Error in tracking particles resulted in duplicated tags from round-off
• Had to develop post-processing tools to correctly identify trajectories

– 6 months to process results

FLASH had a software process in place. It was tested regularly. This was one 
instance when the full process could not be applied because of time constraints. 
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Technical Debt

Like monetary debt, the more you accumulate, the harder it is to pay off
• Increases cost of maintenance
• Parts of software may become unusable over time
• Inadequately verified software produces questionable results
• Increases ramp-up time for new developers
• Overall, reduces software and science productivity

The implied cost of additional rework caused by 
choosing an easy (limited) solution now instead of 

using a better approach that would take longer.
-- Wikipedia 
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Scientific Facilities Provide Valuable 
Resources
• Major supercomputers often cost O($100M)
• All cost millions more to operate, annually
• Significant allocations on large supercomputers can 

be worth millions
• Even if you don’t pay the $ you have to spend the 

time and effort to get the allocation
• Alternative scenario: someone else is using an 

experimental user facility, being guided by your 
simulations

• Sponsors’ concern: Are you being a good steward 
of the resources?

• Your concern: Are you getting the most science 
possible out of your work (aka scientific 
productivity)?
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Good scientific process 
requires 

good software practices

Good software practices 
increase

scientific productivity

Software sustainability
increases

scientific productivity

Good software practices 
increase

software sustainability



15

So, What Are Good Software Practices?

• There is no fixed, universally agreed set of best practices for scientific software
– Specifics of what’s appropriate will depend on the software, how it is used, and the team

• Let’s look at a few recommendations from different perspectives…
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Example 1: Best Practices for Scientific Computing (1/2)

1. Write programs for people, not computers.
a. A program should not require its readers to 

hold more than a handful of facts in memory at 
once.

b. Make names consistent, distinctive, and 
meaningful.

c. Make code style and formatting consistent.

2. Let the computer do the work.
a. Make the computer repeat tasks.
b. Save recent commands in a file for re-use.
c. Use a build tool to automate workflows.

3. Make incremental changes.
a. Work in small steps with frequent feedback 

and course correction.
b. Use a version control system.
c. Put everything that has been created manually 

in version control.

4. Don't repeat yourself (or others).
a. Every piece of data must have a single 

authoritative representation in the system.
b. Modularize code rather than copying and 

pasting.
c. Re-use code instead of rewriting it.

5. Plan for mistakes.
a. Add assertions to programs to check their 

operation.
b. Use an off-the-shelf unit testing library.
c. Turn bugs into test cases.
d. Use a symbolic debugger.

Wilson, et al., (2014) https://doi.org/10.1371/journal.pbio.1001745

https://doi.org/10.1371/journal.pbio.1001745
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Example 1: Best Practices for Scientific Computing (2/2)

6. Optimize software only after it works 
correctly.

a. Use a profiler to identify bottlenecks.
b. Write code in the highest-level language 

possible.

7. Document design and purpose, not 
mechanics.

a. Document interfaces and reasons, not 
implementations.

b. Refactor code in preference to explaining how 
it works.

c. Embed the documentation for a piece of 
software in that software.

8. Collaborate.
a. Use pre-merge code reviews.
b. Use pair programming when bringing 

someone new up to speed and when tackling 
particularly tricky problems.

c. Use an issue tracking tool.

Wilson, et al., (2014) https://doi.org/10.1371/journal.pbio.1001745

https://doi.org/10.1371/journal.pbio.1001745
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Example 2: Good Enough Practices in Scientific Computing (1/2)

1.Data management
a. Save the raw data.
b. Ensure that raw data are backed up in more 

than one location.
c. Create the data you wish to see in the world.
d. Create analysis-friendly data.
e. Record all the steps used to process data.
f. Anticipate the need to use multiple tables, 

and use a unique identifier for every record.
g. Submit data to a reputable DOI-issuing 

repository so that others can access and cite 
it.

6. Manuscripts (out of order to save space)
a. Write manuscripts using online tools with rich 

formatting, change tracking, and reference 
management.

b. Write the manuscript in a plain text format 
that permits version control.

Wilson, et al., (2017) https://doi.org/10.1371/journal.pcbi.1005510

2. Software
a. Place a brief explanatory comment at the 

start of every program.
b. Decompose programs into functions.
c. Be ruthless about eliminating duplication.
d. Always search for well-maintained software 

libraries that do what you need.
e. Test libraries before relying on them.
f. Give functions and variables meaningful 

names.
g. Make dependencies and requirements 

explicit.
h. Do not comment and uncomment sections of 

code to control a program's behavior.
i. Provide a simple example or test data set.
j. Submit code to a reputable DOI-issuing 

repository.

https://doi.org/10.1371/journal.pcbi.1005510
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Example 2: Good Enough Practices in Scientific Computing (2/2)

3. Collaboration
a. Create an overview of your project.
b. Create a shared "to-do" list for the project.
c. Decide on communication strategies.
d. Make the license explicit.
e. Make the project citable.

4.Project organization
a. Put each project in its own directory, which is 

named after the project.
b. Put text documents associated with the 

project in the doc directory.
c. Put raw data and metadata in a data 

directory and files generated during cleanup 
and analysis in a results directory.

d. Put project source code in the src directory.
e. Put external scripts or compiled programs in 

the bin directory.
f. Name all files to reflect their content or 

function.

Wilson, et al., (2017) https://doi.org/10.1371/journal.pcbi.1005510

5. Keeping track of changes
a. Back up (almost) everything created by a 

human being as soon as it is created.
b. Keep changes small.
c. Share changes frequently.
d. Create, maintain, and use a checklist for 

saving and sharing changes to the project.
e. Store each project in a folder that is mirrored 

off the researcher's working machine.
f. Add a file called CHANGELOG.txt to the 

project's docs subfolder.
g. Copy the entire project whenever a 

significant change has been made.
h. Use a version control system.

https://doi.org/10.1371/journal.pcbi.1005510
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Example 3: OpenSSF Best Practices Badge Program

• Not specifically intended for scientific software
– OpenSSF = Open Source Security Foundation

• Three levels
• Passing focuses on best practices that well-run FLOSS projects typically already follow. 

Getting the passing badge is an achievement; at any one time only about 10% of projects 
pursuing a badge achieve the passing level.

• Silver is a more stringent set of criteria than passing but is expected to be achievable by 
small and single-organization projects.

• Gold is even more stringent than silver and includes criteria that are not achievable by small 
or single-organization projects.

• Combination of MUST and SHOULD criteria

https://www.bestpractices.dev/en

https://www.bestpractices.dev/en


21

OpenSSF Best Practices Criteria Summary
• Basics

– Basic project website content (P, S)
– FLOSS license (P)
– Documentation (P, S)
– Project oversight (S, G)
– Accessibility and internationalization (S)

• Change control
– Public version controlled source repo. (P, G)
– Unique version numbering (P)
– Release notes (P)
– Previous versions (S)

• Reporting
– Bug-reporting process (P, S)
– Vulnerability reporting process (P, S)

• Quality
– Working build system (P, S, G)
– Automated test suite (P, S, G)
– New functionality testing (P, S)
– Warning flags (P, S)
– Coding standards (S, G)
– Installation system (S)
– Externally-maintained components (S)

• Security
– Secure development knowledge (P, S)
– Use basic good crypto. practices (P, S, G)
– Secured delivery against MITM attacks (P, G)
– Publicly known vulnerabilities fixed (P)
– Secure release (S)

• Analysis
– Static code analysis (P, S)
– Dynamic code analysis (P, S, G)

(P, S, G) denotes additional criteria required 
at passing, silver, or gold certification levels
Each topic area listed will have one or more 
specific criteria
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Example 4: Good Practices for High-Quality Scientific Computing

Good Practices for Software Development
• Invest in design

– Create the framework into which all of the 
capabilities you need will fit naturally

• Invest in development of tests and automated 
testing
– How can you convince yourself that the code is 

correct…after every change?
• Capture and summarize the thought process

– Document the reasoning behind the design 
and other choices

• Use optimal rigor in your software process
– Too little can compromise code quality
– Too much can reduce developer productivity

• Pick and choose from software engineering 
research
– Often requires adaptation for scientific software

Good Practices for Using Software
• Understand the capabilities and limitations

– Is your science case breaking assumptions 
built into the code?

– How would you know?
• Know the parameters

– Are you using the knobs correctly?
• Practice rigorous verification and validation 

for each new science use
– New science cases push your code in new 

ways
• Develop a methodology for capturing, 

analyzing, and archiving results
• Fork code for science use

– Separate new development from supporting 
the science runs

Anshu Dubey (2022) https://doi.org/10.1109/MCSE.2023.3259259

We’ll return to some of these points 
in the module on reproducibility…

We’ll expand on some of these 
points in the coming slides…

https://doi.org/10.1109/MCSE.2023.3259259
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Software Engineering Advice Often Needs Adaptation for 
Scientific Software
• The OpenSSF Best Practices are a good example of software engineering 

advice “in the wild”
• Experiences reported in the wild often don’t consider the special nature of 

scientific software
• But that doesn’t mean we should ignore software engineering research 

experience
– Many useful concepts, approaches, and tools we can just adopt

• Some approaches may need to be adapted to work for scientific software
– Find out how colleagues have addressed the challenges you’re facing

• Probably you will find multiple ways
– In the end, some approaches may not work well

• Don’t be afraid to experiment with adaptations
– Consider using the PSIP process (coming up)
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How Much (Time, Effort) Should I Spend on Software 
Engineering?
• Your project should include “just enough” software engineering so that you can 

meet your short-term and longer-term scientific goals effectively
• Take a graduated approach

– Early on, maybe your project is exploratory and you’re the only user (and developer), basic 
practices may suffice

– As the project gains developers and/or users, give more thought to software engineering and 
adjust practices

– As the science being done with the code gains greater visibility, give more thought to software 
engineering and adjust practices

– If you anticipate the software being used to make consequential decisions, probably better to 
consider “more” software engineering from the start

– Make a practice of re-evaluating your software engineering needs on a regular basis
• Changes may creep up on you without you noticing
• Consider putting an annual reminder on your calendar (seriously!)
• Plus, whenever significant changes take place
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Continual, Incremental Software Process Improvement
Target: your project should include “just enough” software 
engineering so that you can meet your short-term and 
longer-term scientific goals effectively

1. Identify your team’s “pain points” in your software 
development processes

– Help: RateYourProject assessment tool: 
https://rateyourproject.org/

2. Set a goal for something to improve
– Target processes and behaviors, not just tasks
– Pick something that you can address in a few months that 

will give you a noticeable benefit

3. Agree on a plan to address it, identify 
markers of progress and what is “done”

– Write them down
– Help: Progress tracking card examples:

https://bssw-psip.github.io/ptc-catalog/catalog

4. Work your plan, track your progress
5. When you are done, celebrate…
…then pick a new pain point to address

C
os

t

ProgressStart Finish

Old Process
New Process

The new process costs something to 
implement, but it pays off over time

Productivity and Sustainability Improvement Planning
https://bssw.io/psip

A goal of BSSw.io is to provide resources for 
improving your software processes.  If you 
find useful resources that aren’t on BSSw.io, 
consider contributing.  Its easy and quick.

https://rateyourproject.org/
https://bssw-psip.github.io/ptc-catalog/catalog
https://bssw.io/psip
ttps://bssw.io/
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About Today’s Tutorial

• There are many useful topics that could help you improve your scientific software 
development process

• We’re going to focus on a few topics where the software engineering advice in 
the wild typically doesn’t address scientific software
– Designing software for flexibility and extensibility
– Software packaging for HPC environments
– Testing strategies for complex high-performance computing software
– Code refactoring
– Considerations for licensing your software
– Reproducibility
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