
Spack:
Package Management
for HPC

ATPESC 2025 Software Sustainability Track

Todd Gamblin
Spack Project Lead
Distinguished Member of Technical Staff
Lawrence Livermore National Laboratory

2LLNL-PRES-872707

• Component-based software development dates back to the 60’s
• M.D. McIlroy, Mass Produced Software Components. NATO SE Conf., 1968

• Pros are well known:
• Teams can and must reuse each others’ work
• Teams write less code, meet deliverables faster

• Cons:
• Teams must ensure that components work together
• Integration burden increases with each additional library
• Integration must be repeated with each update to components
• Components must be vetted!

• Managing changes over time is becoming intractable

We build codes from hundreds of small, complex pieces

Build-time incompatibility; fail fast

Appears to work; subtle errors later

Just when we’re starting to solve the problem of how to create software using reusable parts, it
founders on the nuts-and-bolts problems outside the software itself.

P. DuBois & T. Epperly. Why Johnny Can’t Build. Scientific Programming. Sep/Oct 2003.

3LLNL-PRES-872707

Modern scientific codes rely on icebergs of dependency libraries
71 packages

188 dependencies
LBANN: Neural Nets for HPCMFEM:

Higher-order finite elements
31 packages,

69 dependencies

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependencies

4LLNL-PRES-872707

Even proprietary software builds on top of open source

• Open source is critical for nearly every application
• We cannot replace all these OSS components with our own

• How do we put them all together effectively?
• Do you have to integrate this stuff by hand?

LLNL ARES

30 12 71

5LLNL-PRES-872707

ECP’s E4S stack is even larger than these codes

• Red boxes are the packages in it (about 100)
• Blue boxes are what else you need to build it (about 600)
• It’s infeasible to build and integrate all of this manually

6LLNL-PRES-872707

Some history:
How to install software on a supercomputer, circa 2013

configure
make

Fight with compiler...

make

Tweak configure args...

make install

make
configure

configure
make

make install

cmake
make

make install

1. Download all 16
tarballs you need

2. Start building!

3. Run code
4. Segfault!?
5. Start over…

7LLNL-PRES-872707

• Does not replace
Cmake/Autotools

• Manages dependencies
• Drives package-level build

systems
• Ensures consistency and

compatibility among builds of
packages in the ecosystem

• Stores community knowledge
• Cache of package build recipes
• Determining magic configure

lines takes time

What does a package managers do to help?

• Package installation
• Dependency relationships, conflicts
• May drive package-level build systems

Package
Manager

• Cmake, Autotools
• Handle library abstractions
• Generate Makefiles, etc.

High Level
Build System

• Make, Ninja
• Handles dependencies among

commands in a single build

Low Level
Build System

8LLNL-PRES-872707

• 1:1 relationship between source code and binary (per platform)
• Good for reproducibility (e.g., Debian)
• Bad for performance optimization

• Binaries should be as portable as possible
• What most distributions do
• Again, bad for performance

• Toolchain is the same across the ecosystem
• One compiler, one set of runtime libraries
• Or, no compiler (for interpreted languages) and just one language

Many package managers (conda, pip, apt, etc.)
make simplifying assumptions about the software ecosystem

Outside these boundaries, users are typically on their own

9LLNL-PRES-872707

• Code is typically distributed as source
• With exception of vendor libraries, compilers

• Often build many variants of the same package
• Developers’ builds may be very different
• Many first-time builds when machines are new

• Code is optimized for the processor and GPU
• Must make effective use of the hardware
• Can make 10-100x perf difference

• Rely heavily on system packages
• Need to use optimized libraries that come with machines
• Need to use host GPU libraries and network

• Multi-language
• C, C++, Fortran, Python, others

all in the same ecosystem

High Performance Computing (HPC)
violates many of these assumptions

Oak Ridge National Lab
Power9 / NVIDIA

Summit

Lawrence Berkeley
National Lab

AMD Zen / NVIDIA

NERSC-9
Perlmutter

Oak Ridge National Lab
AMD Zen / Radeon

Lawrence Livermore
National Lab

AMD Zen / Radeon

Argonne National Lab
Intel Xeon / Xe

Aurora

Some Supercomputers

RIKEN
Fujitsu/ARM a64fx

Fugaku

10LLNL-PRES-872707

• Containers provide a great way to reproduce and
distribute an
already-built software stack

• Someone needs to build the container!
• This isn’t trivial
• Containerized applications still have hundreds of dependencies

• Using the OS package manager inside a container is
insufficient

• Most binaries are built unoptimized
• Generic binaries, not optimized for specific architectures

• HPC containers are often optimized per-system
• Not clear that we can ever build one container for all facilities

What about containers?

We need something more flexible to build versions of containers

Overview & Community

12LLNL-PRES-872707

• Spack automates the build and installation of scientific software

• Packages are parameterized, so that users can easily tweak and tune configuration

• Ease of use of mainstream tools, with flexibility needed for HPC

• In addition to CLI, Spack also:
• Generates (but does not require) modules
• Allows conda/virtualenv-like environments
• Provides many devops features (CI, container generation, more)
• Supports binary “buildcaches” so that you don’t have to build everything from source

$ spack install hdf5@1.10.5
$ spack install hdf5@1.10.5 %clang@6.0
$ spack install hdf5@1.10.5 +threadssafe

$ spack install hdf5@1.10.5 cppflags="-O3 –g3"
$ spack install hdf5@1.10.5 target=haswell
$ spack install hdf5@1.10.5 +mpi ^mpich@3.2

$ git clone https://github.com/spack/spack
$ spack install hdf5

No installation required: clone and go

Simple syntax enables complex installs

github.com/spack/spack

Spack enables Software distribution for HPC

13LLNL-PRES-872707

Anyone can use Spack!

• End Users of HPC Software
• Install and run HPC applications and tools

• HPC Application Teams
• Manage third-party dependency libraries

• Package Developers
• People who want to package their own software for distribution

• User support teams at HPC Centers
• People who deploy software for users at large HPC sites

14LLNL-PRES-872707

Spack was critical for ECP’s mission to create a
robust, capable exascale software ecosystem.

• Used for building software on the three U.S. exascale
systems

• ECP built the Extreme Scale Scientific Software Stack (E4S)
with Spack – more at https://e4s.io

• Project continues on ASC and ASCR funding

https://e4s.io

Spack was the most depended-upon
project in ECP

https://e4s.io/

15LLNL-PRES-872707

Spack is 12 years old!
2016

Spring
2018

Fall
2018

Fall
2020

Spring
2021

Fall
2021

2023

2024

16LLNL-PRES-872707

Spack sustains the HPC software ecosystem
with the help of many contributors

Over 8,000 software packages
Over 1,300 contributors

Contributors continue to grow worldwide!

2023 aggregate documentation user counts from GA4
(note: yearly user counts are almost certainly too large)

17LLNL-PRES-872707

Spack users have diverse roles across many types of
institutions

What type of user are you?

Where do you work?

18LLNL-PRES-872707

What does the Spack project look like now?

Spack Community

Core tool (CLI + Solver)

Package Recipes

xSDKLLNL
stackE4S

Vis
SDK . . .

CI Infrastructure

AppAWS

19LLNL-PRES-872707

• We wanted:
• A neutral project home

• To encourage more participation in the project
• A way to fund project activities:

• More continuous integration resources
• User meetings, Slack, etc.

• Talked to LF onboarding team
• Learned about LF’s basic requirements:

• Technical charter
• Open Governance
• Trademark assignment

We started conversations with Linux Foundation in
December 2021, and talked through mid-2022

20LLNL-PRES-872707

• Spack and Kokkos were two of the most adopted
projects during ECP

• Enable performance portability at different levels
• Spack: build level
• Kokkos: application/runtime level

• Goals:
• Leverage proven track record of community

building
• Leverage industry and labs’ familiarity
• Get more projects on board to build an

umbrella organization

We joined forces with Kokkos to start a larger
umbrella, which eventually became HPSF

20

Open HAMI

21LLNL-PRES-872707

With HPSF, we’ve formalized our governance with
the Technical Steering Committee

21

Todd Gamblin, LLNL
TSC Chair

Greg Becker
LLNL

Massimiliano Culpo
n.p. complete s.r.l

Tammy Dahlgren
LLNL

Wouter Deconinck
U. Manitoba

Ryan Krattiger
Kitware

Mark Krentel
Rice University

John Parent
Kitware

Marc Paterno
Fermilab

Luke Peyralans
U. Oregon

Phil Sakievich
Sandia

Peter Scheibel
LLNL

Adam Stewart
TU Munich

Harmen Stoppels
Stoppels Consulting

22LLNL-PRES-872707

Response to LF/HPSF seems positive

Spack Usage

LLNL-PRES-806064
24spack.io

 Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

 Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=zen2 set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency information

LLNL-PRES-806064
25spack.io

Spack packages are templates
They use a simple Python DSL to define how to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

Not shown: patches, resources, conflicts,
other directives.

from spack import *

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle
 transport proxy/mini app.
 """

 homepage = "https://computation.llnl.gov/projects/co-design/kripke"
 url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
 version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
 version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

 variant('mpi', default=True, description='Build with MPI.’)
 variant('openmp', default=True, description='Build with OpenMP enabled.’)

 depends_on('mpi', when='+mpi’)
 depends_on('cmake@3.0:', type='build’)

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
 '-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

 def install(self, spec, prefix):
 # Kripke does not provide install target, so we have to copy
 # things into place.
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

LLNL-PRES-806064
26spack.io

 Spack ensures one configuration of each library per DAG
— Ensures ABI consistency.
— User does not need to know DAG structure; only the dependency names.

 Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

Spack Specs can constrain versions of dependencies

$ spack install mpileaks %intel@12.1 ^libelf@0.8.12

LLNL-PRES-806064
27spack.io

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

 mpi is a virtual dependency

 Install the same package built with two different MPI implementations:

 Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

LLNL-PRES-806064
28spack.io

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install

Abstract, normalized spec
with some dependencies

N
orm

alize

Concretize Store

spec.json

Detailed provenance stored
with installed package

LLNL-PRES-806064
29spack.io

opt
└── spack
 ├── linux-rhel7-skylake
 │ └── gcc-8.3.0
 │ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

 Each unique dependency graph is a unique
configuration.

 Each configuration in a unique directory.
— Multiple configurations of the same

package can coexist.

 Hash of entire directed acyclic graph (DAG)
is appended to each prefix.

 Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Spack handles combinatorial software complexity

Installation Layout

Dependency DAG

opt
└── spack
 ├── linux-rhel7-skylake
 │ └── gcc-8.3.0
 │ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

Hash

LLNL-PRES-806064
30spack.io

 spack.yaml describes project requirements

 spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

 Can also be used to maintain configuration together with
Spack packages.
— E.g., versioning your own local software stack with consistent

compilers/MPI implementations
— Allows developers and site support engineers to easily version

Spack configurations in a repository

Spack environments enable users to build customized stacks
from an abstract description
Simple spack.yaml file

install build
project

spack.yaml file with
names of required

dependencies

Lockfile describes
exact versions installed

Dependency
packages

Concrete spack.lock file (generated)

LLNL-PRES-806064
31spack.io

Environments have enabled us to add build many features
to support developer workflows

Automatically find and configure external packages on the system

spack.yaml configurationpackage.py

spack external find

spack containerize
Turn environments into container build recipes

spack.yaml

.gitlab-ci.yml CI pipeline

Automatically generate parallel build pipelines
(more on this later)

spack ci

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
 """GNU libsigsegv is a library for handling page faults in user mode."""

 # ... spack package contents ...

 extra_install_tests = ‘tests/.libs’

 def test(self):
 data_dir = self.test_suite.current_test_data_dir
 smoke_test_c = data_dir.join(‘smoke_test.c’)

 self.run_test(
 'cc’, [
 '-I%s' % self.prefix.include,
 '-L%s' % self.prefix.lib, '-lsigsegv’,
 smoke_test_c,
 '-o', 'smoke_test'
]
 purpose='check linking’)

 self.run_test(
 ‘smoke_test’, [], data_dir.join('smoke_test.out’),
 purpose=‘run built smoke test’)

 self.run_test('sigsegv1': ['Test passed’], purpose='check sigsegv1 output’)
 self.run_test('sigsegv2': ['Test passed’], purpose='check sigsegv2 output’)

spack test
Packages know how to run their own test suites

package.py

LLNL-PRES-806064
32spack.io

 Developer features so far have focused on
single packages (spack dev-build, etc.)

 New spack develop feature enables
development environments
— Work on a code
— Develop multiple packages from its

dependencies
— Easily rebuild with changes

 Builds on spack environments
— Required changes to the installation model for

dev packages
— dev packages don’t change paths with

configuration changes
— Allows devs to iterate on builds quickly

spack develop lets developers work on many packages at once

LLNL-PRES-806064
33spack.io

Teams are building development
front-ends top of on Spack

 Many different approaches:
— Thin mack wrapper for MARBL team at LLNL
— spack-manager at Sandia
— SpackDev at Fermilab
— spack-organizer at CEA
— spack_cmake at LANL

 Workflow seems to be converging around
environments + spack develop

 We are trying to bring many of the features
from these scripts into core
— Most of the front-ends are opinionated in

one way or another
— We want spack to support but not force

these workflows

The Road to Spack v1.0

35LLNL-PRES-872707

• We wanted:
 2020 New ASP-based concretizer
 2021 Reuse of existing installations
 2022 Stable production CI
 2022 Stable binary cache
 2025 Compiler dependencies
 2025 Separate builtin repo
 2025 Stable package API

• v1.0:
• Changes the dependency model for compilers
• Enables users to use entirely custom packages
• Improves reproducibility
• Improves stability

• This is the largest change to Spack… ever.

The road to v1.0 has been long

Todd, presenting how simple all
this would be at FOSDEM in 2018

36LLNL-PRES-872707

cuda is a variant (build option)

cuda_arch is only present
if cuda is enabled

dependency on cuda, but only
if cuda is enabled

Spack packages use a lot of (declarative) conditional logic

constraints on cuda version

compiler support for x86_64
and ppc64le

CudaPackage: a mix-in for packages that use CUDA

There is a lot of expressive power in the Spack package DSL.

37LLNL-PRES-872707

First challenge: we needed a new concretizer to
model the expressiveness of the DSL

• new versions
• new dependencies
• new constraints

package.py repository

local preferences config
packages.yaml

yaml

local environment config spack.yamlyaml

admins,
users

users

Command line constraints
spack install hdf5@1.12.0 +debug

Contributors

default config
packages.yaml

yamlspack
developers

users

concretizer

Concrete spec is
fully constrained
and can be built.

Is stored in spack.lock
file after solve.

This part is
NP-hard!

38LLNL-PRES-872707

• Originally a greedy, custom Python algorithm
• ASP is a declarative programming paradigm

• Looks like Prolog
• Built around modern CDCL SAT solver techniques

• ASP program has 2 parts:
1. Large list of facts generated from recipes (problem instance)
2. Small logic program (~700 lines of ASP code)

• Algorithm is conceptually simpler:
• Generate facts for all possible dependencies
• Send facts and our logic program to the solver
• Read results and rebuild the resolved DAG

• Using Clingo, the Potassco grounder/solver package

We reimplemented Spack’s concretizer using
Answer Set Programming (ASP)

Some facts for HDF5 package

LLNL-PRES-806064
39spack.io

Spack’s concretizer is implemented using
Answer Set Programming (ASP)

node("mpi") node("hdf5").
depends_on("hdf5", "mpi").

node("lammps").
node("cuda").
variant_value("lammps", "cuda", "True").
depends_on("lammps", "cuda").

lammps

cuda

+cuda

Facts describe the graph

node(Dependency) :- node(Package), depends_on(Package, Dependency).

First-order rules (with variables) describe how to resolve nodes and metadata

ASP looks like Prolog but is converted to SAT with optimization

Ground
Rule

LLNL-PRES-806064
40spack.io

Grounding converts a first-order logic program into a
propositional logic program, which can be solved.

a

cb

d

a

cb

d

b

d

Answer 1: Only node(b) is true
Answer 2: Both node(a) and node(b) are true

41LLNL-PRES-872707

• Stable models are also called answer sets
• A stable model (loosely) is a set of true atoms that can be

deduced from the inputs, where every rule is idempotent.
• Similar to fixpoints
• Put more simply: a set of atoms where all your rules are true!

• Unlike Prolog:
• Stable models contain everything that can be derived (vs. just querying

values)
• Good ways to do optimization to select the “best” stable model
• ASP is guaranteed to complete!

ASP searches for stable models of the input program

42LLNL-PRES-872707

Second challenge: Spack’s original concretizer
did not reuse existing installations

• Hash matches are
very sensitive to
small changes

• In many cases, a
satisfying cached or
already installed
spec can be missed

• Nix, Spack, Guix,
Conan, and others
reuse this way

Package
cache

6zvh4ueem6f5yrcfugh67k2hrtxbgbcs

74mwnxgn6nujehpyyalhwizwojwn5zga

4xxvh5ldm7gm32ngtixcm2odaer3cvvb

k2yumgxwq6ijubivfpbjpmrrbzyqcoot

qo2af23r2npatxdtna3fmwkeennywixp

cwx4qwk4bkamf4gjrglmxfu3bhasyt74

1. Resolve metadata

2. Create per-node hashes

3. Query for exact hash match

??

43LLNL-PRES-872707

--reuse (now the default) was enabled by ASP

• --reuse tells the solver about all the installed packages!
• Add constraints for all installed packages, with their hash as the associated ID:

44LLNL-PRES-872707

Minimizing builds is surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

2. Choosing a hash means we impose its constraints:

3. Define a build as something without a hash:

4. Minimize builds!

There’s more to it than this,
but you get the idea…

45LLNL-PRES-872707

With and without --reuse optimization

Pure hash-based reuse: all misses With reuse: 16 packages were reusable

46LLNL-PRES-872707

• Only one configuration per package
allowed in the DAG

• Ensures ABI compatibility but is too
restrictive

• Needed to enable compiler mixing
with compiler dependencies

• Also needed for Python ecosystem
• In the example py-numpy needs to use

py-cython@0.29 as a build tool
• That enforces using an old py-gevent,

because newer versions depend on
py-cython@3.0 or greater

Third challenge: we needed to allow multiple
versions of build dependencies in the DAG

gptune

py-cython@0.29

py-gevent@1.5 py-numpy

47LLNL-PRES-872707

• The constraint on build dependencies
can be relaxed, without compromising
the ABI compatibility

• Having a single configuration of a
package is now enforced on unification
sets

• These are the set of nodes used
together at runtime (the one shown is
for gptune)

• This allows us to use the latest version
of py-gevent, because now we can
have two versions of py-cython

Objective: dependency splitting

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

Unification
Set

48LLNL-PRES-872707

We want to dynamically “split” nodes when needed

node(DependencyName)
 :- dependency_holds(PkgName, DependencyName)

1. Start with deducing single dependency nodes:

2. Allow solver to choose to duplicate a node:
Converted node identifier
from name to (name, id)

1 {
 depends_on(PkgNode, node(0..Y-1, DepNode), Type)
 : max_dupes(DepNode, Y)
} 1
 :- dependency_holds(PkgNode, DepNode).

3. Re-encode package metadata so that it can be associated with duplicates

49LLNL-PRES-872707

First try at allowing duplicates in a single solve

Increased runtimes by
>> 2x in some cases

50LLNL-PRES-872707

Cycle detection in the solver is expensive

• Has to maintain path() predicate representing paths between nodes
• Cycles are actually rare in solutions

• Switched to post-processing for cycle detection
• Only do expensive solve if a cycle is detected in a solution

• Eventually moved this calculation into the solver
using some custom directives from the developers

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

% this constraint says "no cycles"
:- path(A, B), path(B, A).

50%+ improvement
in solve time

51LLNL-PRES-872707

• Unification set creation was
originally recursive for any build
dependencies

• Ends up blowing up grounding

• Mitigation:
• Only create new sets for explicitly

marked build tools
• Transitive build dependencies that

are not from marked build tools go
into a common unification set

• Need better heuristics to split when
necessary for full generality

Unification sets can be expensive too

gptune

py-gevent@23.7 py-numpy

py-cython@0.29py-cython@3.0

52LLNL-PRES-872707

Through many different optimizations, we were able to reclaim enough
performance to make duplicate build dependencies tractable

53LLNL-PRES-872707

• We tried an iterative version with multiple
solves

• Multiple solves had some disadvantages:
• Slower due to overhead of multiple solves
• Not coupled, so feedback from build to run

environment (and back) was awkward
• Packagers needed to “help” the solver

• Requiring packagers to provide solve hints
in packages isn’t practical

It was not trivial to find a model that was both
performant and tightly coupled

54LLNL-PRES-872707

• Spack has historically made these compilers available to every package
• A compiler was actually “something that supports c + cxx + fortran + f77”
• Made for a lot of special cases
• Also makes for duplication of purely interpreted packages (e.g. python)

• Required in 1.0 if you want to use c, cxx, or fortran
• No-op in v0.23 and prior as we prepared for this feature

Fourth Challenge: v1.0 adds language dependencies

55LLNL-PRES-872707

• Compilers are now build dependencies

• Runtime libraries modeled as packages
• gcc-runtime is injected as link dependency by gcc
• packages depend on c, cxx,

fortran virtuals, which are satisfied by gcc node

• glibc is an automatically detected external
• Injected as a `libc` virtual dependency
• Does not require user configuration

• Will eventually be able to choose
implementations (e.g., musl)

Compiler Dependencies

56LLNL-PRES-872707

toolchains:
 clang_gfortran:
 - spec: %c=clang
 when: %c
 - spec: %cxx=clang
 when: %cxx
 - spec: %fortran=gcc
 when: %fortran
 - spec: cflags="-O3 -g"
 - spec: cxxflags="-O3 -g"
 - spec: fflags="-O3 -g"

• Can lump many dependencies, flags together and use them with a single name
• Any spec in a toolchain can be conditional

• Only apply when needed

Spack 1.x introduces toolchains
toolchains.yaml

toolchains:
 intel_mvapich2:
 - spec: %c=intel-oneapi-compilers @2025.1.1
 when: %c
 - spec: %cxx=intel-oneapi-compilers @2025.1.1
 when: %cxx
 - spec: %fortran=intel-oneapi-compilers @2025.1.1
 when: %fortran
 - spec: %mpi=mvapich2 @2.3.7-1 +cuda
 when: %mpi

spack install foo %clang_gfortran spack install foo %intel_mvapich2

57LLNL-PRES-872707

packages:
 gcc:
 externals:
 - spec: gcc@12.3.1+binutils
 prefix: /usr
 extra_attributes:
 compilers:
 c: /usr/bin/gcc
 cxx: /usr/bin/g++
 fc: /usr/bin/gfortran
 modules: [...]

• We automatically convert compilers.yaml, when no compiler is configured
• We will still support reading the old configuration until at least v1.1
• All fields from compilers.yaml are supported in extra_attributes

Configuring compilers in Spack v1.*

compilers:
 - compiler:
 spec: gcc@12.3.1
 paths:
 c: /usr/bin/gcc
 cxx: /usr/bin/g++
 fc: /usr/bin/gfortran
 modules: [...]

compilers.yaml packages.yaml
Spack v0.x Spack v1.x

58LLNL-PRES-872707

• Spack is two things:
• Command line tool spack
• Package repository with 8,500+ recipes

• Community wanted
• package updates without tool changes (e.g. new bugs)
• tool updates without package changes (reproducibility)

• But coupling between tool and packages was tight
1. Package classes are in core: CMakePackage, AutotoolsBuilder, etc.
2. Compiler wrapper was not a package until recently
3. Packages live in Spack’s GitHub repository with a long (git) history

Final challenge: Splitting the package repository

59LLNL-PRES-872707

• Repositories define API version used
• Versioned per commit

• Spack defines API version(s) supported
• Will complain if a repo is too new

• Packages can only import from:
• spack.package
• Core Python

• Any 1.x Spack will support the same
package API as all prior 1.x versions

• Won’t break package API unless we bump the
major version

Spack now has a Stable Package API

https://spack.rtfd.io/en/latest/package_api.html

60LLNL-PRES-872707

• Sync packages to spack/spack-packages
• Git history is preserved

• Turn package repositories into Python namespace packages
• spack.pkg.builtin is now spack_repo.builtin

• Move build systems to spack_repo.builtin.build_systems

• Update packages to use fewer Spack internals

• Enable CI on spack/spack-packages

• Make Spack support Git-based package repositories

Package split process

61LLNL-PRES-872707

spack:
 repos:
 builtin:
 git: https://github.com/spack/spack-packages.git
 commit: aec1e3051c0e9fc7ef8feadf766435d6f8921490

You can now specify the package repo version
in an environment or config

spack:
 repos:
 builtin:
 git: https://github.com/spack/spack-packages.git
 destination: /path/to/clone/of/spack-packages
 branch: develop

Pin a commit

Work on
a branch

62LLNL-PRES-872707

1.spack repo migrate: fixes imports in custom repos for you

2.spack repo set --destination ~/spack-pkgs builtin:
put packages in your favorite location

3.(spack repo update: update & pin package repos)

New docs: https://spack.readthedocs.io/en/latest/repositories.html

Useful commands after repo split

https://spack.readthedocs.io/en/latest/repositories.html

63LLNL-PRES-872707

Slot 1

Slot 2

Queue:

Dep 1

Dep 2

Package A

Dep 3

Bonus feature:
Spack now supports concurrent builds!

• We sort of supported this already
• But the user had to launch multiple spack processes
• e.g., srun -N 4 -n 16 spack install hdf5

• Now spack handles on-node parallelism itself!
• Spack now has a scheduler loop
• Monitors dependencies, starts multiple processes, polls for completion
• User can control max concurrent processes with ‘-p’

Package A

Dep 1 Dep 2 Dep 3

64LLNL-PRES-872707

But wait! There’s more!

We hope to make distributing & using HPC software easy!

github.com/spack/spack
Star us on GitHub!slack.spack.io

— Join us and 3,800+ others on Spack slack
— Contribute packages, docs, and features on GitHub
— Continue the tutorial at spack-tutorial.rtfd.io

@spackpm
@spackpm.bsky.social @spack@hpc.social

hpsf.io

Spack is a core project in the
High Performance Software Foundation

Join us after ISC!

Join us at the Spack User Meeting at
HPSFCon 2026 next year!

spack.io

@hpsf.bsky.social

Hands-on time!

Find these slides and associated scripts here:

spack-tutorial.rtfd.io

Tutorial Materials

We also have a #tutorial chat room on Spack slack.
Join at:

You can ask questions here any time!

slack.spack.io

Claim a VM instance at: bit.ly/spack-vms

Claim a login by putting your name in the Google Sheet

ssh spack2@3.73.129.196

If you’re in the spack2 column,
your login and password are
both spack2

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or

implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,

LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

69LLNL-PRES-872707

Build systems moved to spack/spack-packages

70LLNL-PRES-872707

• You could previously write:

• Now you’ll need to write:

• We want these to be symmetric:

• spack style --spec-strings --fix can remedy this automatically
• Fixes YAML files, scripts, package.py files
• Alternative was to have a very hard-to-explain syntax – we surveyed users and they decided it was better to break a bit than to explaining

the subtleties of the first 10 years of Spack forever

More on direct dependencies with %

pkg %gcc +foo # +foo would associate with pkg, not gcc – will error in 1.0

pkg +foo %gcc # +foo associates with pkg

pkg +foo %dep +bar # `pkg +foo` depends on `dep +bar` directly
pkg +foo ^dep +bar # `pkg +foo` depends on `dep +bar` directly or transitively

71LLNL-PRES-872707

1. It is no longer safe to assume every node has a compiler.
a. The tokens {compiler}, {compiler.version}, and {compiler.name} in Spec.format expand to

none if a Spec does not depend on C, C++, or Fortran.
b. spec.compiler will default to the c compiler if present, else cxx, else fortran for backwards

compatibility.
c. The new default install tree projection is

{architecture.platform}/{architecture.target}/{name}-{version}-{hash}

2. The syntax spec["name"] will only search link/run dependencies and
direct build dependencies.

• Previously, this would find deep, transitive deps, which was almost always the wrong behavior.
• You can still hop around in the graph, e.g. spec["cmake"][”bzip2"] will find cmake’s link dependency

3. The % sigil in specs means “direct dependency”.
• Can now say: foo %cmake@3.26 ^bar %cmake@3.31
• ^ dependencies are unified, % dependencies are not

Breaking changes

72LLNL-PRES-872707

Art vs. science: reusing builds is not quite enough
• We get strange behavior when we have to build new packages

• E.g.: Cmake depends on openssl for https
• Minimizing builds will toggle this feature off to avoid a dependency

• We want to prioritize reusing a package if the user already installed it
• Has to be more important than defaults, or we would never reuse

• We want to prioritize package defaults if the package had to be built anyway
• Make new builds follow defaults

Installed

To build

cmake
~openssl

ncurses

minimize builds > package defaults

cmake +openssl

ncurses openssl

package defaults > minimize builds

How can we do
both?

73LLNL-PRES-872707

• Minimize builds, unless we have to build
• Prioritize defaults for specs we have to build

• Last trick to get this to work:
• All criteria must be formulated as minimizations
• No built configuration can be “better” than a

reused configuration

We devised a two-level optimization scheme

For reused
packages

For packages
to be built

Criterion 1

Criterion 2

Criterion 3

Criterion 1

Criterion 2

Criterion 3

Number of builds

Priority

201

202

203

1

2

3

100

CriteriaSums

Objective vectors of sums are compared
lexicographically from highest to lowest priority

build_priority(P, 200) :- build(P), node(P).
build_priority(P, 0) :- not build(P), node(P).

% priority + 200 IF we are building
#minimize{
 W@2+Priority,P
 : version_weight(P, W), build_priority(P, Priority)
}.

74LLNL-PRES-872707

About 2/3 of respondents are from the US

Comparing to our
documentation data,
some countries are
under-represented.

74

ch

de
uk

fr

ca

USA
1 response

4 responses

3 responses

2025 Survey Past month: active users
at spack.readthedocs.io

75LLNL-PRES-872707

82% of users are doing HPC; 27% AI

75

76LLNL-PRES-872707

Most users are also contributors!

76

77LLNL-PRES-872707

Most are within 2 releases of latest

77

78LLNL-PRES-872707

More users are on stable releases now than on
develop

78

0

10

20

30

40

50

60

70

2020 2021 2022 2025

Percent using release

develop Latest release

79LLNL-PRES-872707

Environments have become the preferred way to
load packages

79

0

10

20

30

40

50

60

2020 2021 2022 2025

load environments Env modules Lmod build-env view containers

80LLNL-PRES-872707

There are many packages outside of Spack’s builtin
repo

80

81LLNL-PRES-872707

Users want better error messages, more
performance, and a separate package repo

81

LLNL-PRES-806064
82spack.io

An isolated compilation environment allows Spack
to easily swap compilers

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:

— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

LLNL-PRES-806064
83spack.io

Core contributions are less diverse, but still comprise many
organizations

83

	Slide Number 1
	We build codes from hundreds of small, complex pieces
	Slide Number 3
	Even proprietary software builds on top of open source
	ECP’s E4S stack is even larger than these codes
	Some history: �How to install software on a supercomputer, circa 2013
	What does a package managers do to help?
	Many package managers (conda, pip, apt, etc.) �make simplifying assumptions about the software ecosystem
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Overview & Community
	Spack enables Software distribution for HPC
	Slide Number 13
	Spack was critical for ECP’s mission to create a �robust, capable exascale software ecosystem.
	Slide Number 15
	Spack sustains the HPC software ecosystem�with the help of many contributors
	Spack users have diverse roles across many types of institutions
	What does the Spack project look like now?
	We started conversations with Linux Foundation in �December 2021, and talked through mid-2022
	We joined forces with Kokkos to start a larger umbrella, which eventually became HPSF
	With HPSF, we’ve formalized our governance with the Technical Steering Committee
	Response to LF/HPSF seems positive
	Spack Usage
	Spack provides a spec syntax to describe customized installations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Spack environments enable users to build customized stacks from an abstract description
	Environments have enabled us to add build many features to support developer workflows
	spack develop lets developers work on many packages at once
	Teams are building development front-ends top of on Spack
	The Road to Spack v1.0
	The road to v1.0 has been long
	Spack packages use a lot of (declarative) conditional logic
	First challenge: we needed a new concretizer to�model the expressiveness of the DSL
	We reimplemented Spack’s concretizer using�Answer Set Programming (ASP)
	Spack’s concretizer is implemented using�Answer Set Programming (ASP)
	Grounding converts a first-order logic program into a propositional logic program, which can be solved.
	ASP searches for stable models of the input program
	Second challenge: Spack’s original concretizer�did not reuse existing installations
	--reuse (now the default) was enabled by ASP
	Minimizing builds is surprisingly simple in ASP
	With and without --reuse optimization
	Third challenge: we needed to allow multiple versions of build dependencies in the DAG
	Objective: dependency splitting
	We want to dynamically “split” nodes when needed
	First try at allowing duplicates in a single solve
	Cycle detection in the solver is expensive
	Unification sets can be expensive too
	Through many different optimizations, we were able to reclaim enough performance to make duplicate build dependencies tractable
	It was not trivial to find a model that was both performant and tightly coupled
	Fourth Challenge: v1.0 adds language dependencies
	Compiler Dependencies
	Spack 1.x introduces toolchains
	Configuring compilers in Spack v1.*
	Final challenge: Splitting the package repository
	Spack now has a Stable Package API
	Package split process
	You can now specify the package repo version �in an environment or config
	Useful commands after repo split
	Bonus feature:�Spack now supports concurrent builds!
	Slide Number 64
	Hands-on time!
	Slide Number 66
	Claim a VM instance at: bit.ly/spack-vms
	Slide Number 68
	Build systems moved to spack/spack-packages
	More on direct dependencies with %
	Breaking changes ⚠️
	Art vs. science: reusing builds is not quite enough
	We devised a two-level optimization scheme
	About 2/3 of respondents are from the US
	82% of users are doing HPC; 27% AI
	Most users are also contributors!
	Most are within 2 releases of latest
	More users are on stable releases now than on develop
	Environments have become the preferred way to load packages
	There are many packages outside of Spack’s builtin repo
	Users want better error messages, more performance, and a separate package repo
	An isolated compilation environment allows Spack �to easily swap compilers
	Core contributions are less diverse, but still comprise many organizations

