® Spack:

4
@ ﬂ\o Package Management
ASAZ4
® for HPC N

ATPESC 2025 Software Sustainability Track

Todd Gamblin

Spack Project Lead » ¢

Distinguished Member of Technical Staff
Lawrence Livermore National Laboratory

Ll THELINUX FOUNDATION

e

We build codes from hundreds of small, complex pieces

Just when we’re starting to solve the problem of how to create software using reusable parts, it
founders on the nuts-and-bolts problems outside the software itself.

P. DuBois & T. Epperly. Why Johnny Can’t Build. Scientific Programming. Sep/Oct 2003.

* Pros are well khown:

T - =
* Teams can and must reuse each others’ work Z, ¢
 Teams write less code, meet deliverables faster
« Cons: \

Build-time incompatibility; fail fast

* Teams must ensure that components work together
* Integration burden increases with each additional library

* Integration must be repeated with each update to components
« Components must be vetted!

* Managing changes over time is becoming intractable A

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

Modern scientific codes rely on icebergs of dependency libraries

71 packages
188 dependencies

MFEM: LBANN: Neural Nets for HPC
Higher-order finite elements = St =

31 packages, e
s

69 dependencies U a

s

0L

S

> N i
4'/‘-'3‘!“!'%‘:31\-!‘%;‘%\“! =

r-condop:
R Genome Data Analysis Tools

3 ',7_.‘,;7...%;,;1;!\‘

.

Even proprietary software builds on top of open source

_

L J
- 7;\ o \\“‘ \ ///:////f//éf:::;/———f'""""""'" /

2lib ‘ =
Types of Packages

30 12 71

* Open source is critical for nearly every application

* We cannot replace all these OSS components with our own
* How do we put them all together effectively?
* Do you have to integrate this stuff by hand?

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 4

ﬁ
ECP’s E4S stack is even larger than these codes

= i o o e e = &= e
s e = mEe - e e o e iy = o= ey o e e e
o = L s | = o = e == wea == s
e |__ st - [s s e - e e =t
== = = = = s 2 == o
e | o= e = el e e =t sy ||| O =
= = s o = =em =— - et == a ' iy =
e] o = e e
PR e ==
= e
= = s ==
s e === =
e e == =
= = =

* Red boxes are the packages in it (about 100)
* Blue boxes are what else you need to build it (about 600)
* |It’s infeasible to build and integrate all of this manually

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

.

Some history:
How to install software on a supercomputer, circa 2013

1. Download all 16

a T
o ot = =
=] Og_ rED g)r
tarballs you need - =4 2 % o
e = ~ e B
=3 = (o] = ~
(1] ; g !(9'_ (1]
. . | ':h [V]
2. Start building! 9 g 2 _
3 = 2
g He o g
Fay @)
(0] -, =1
: I 8 3
: E., 3 3
8 %a -3 -
= S5 [N (]
oQ 7]
D - A E
()] (0] —
=3
o
[¢]
3 l
® 3. Runcode
4. Segfault!?

5. Startover...

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 6

e

What does a package managers do to help?

¢ Package installation
* Dependency relationships, conflicts
e May drive package-level build systems

* Does not replace
Cmake/Autotools

Package
Manager

* Manages dependencies
* Drives package-level build

SyStemS . High Level e Cmake, Autotools

* Ensures consistency and . e Handle library abstractions
compatibility among builds of Build System K Generate Makefiles, etc.
packages in the ecosystem

* Stores community knowledge

« Cache of package build recipes Low Level * Make, Ninja
. : : . e Handles dependencies amon
* Determining magic configure Build SyStem commandsFi)n a single build ¢

lines takes time

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 /

e

Many package managers (conda, pip, apt, etc.)
make simplifying assumptions about the software ecosystem

* 1:1 relationship between source code and binary (per platform)
* Good for reproducibility (e.g., Debian)
* Bad for performance optimization

* Binaries should be as portable as possible
* What most distributions do
* Again, bad for performance

* Toolchain is the same across the ecosystem
* One compiler, one set of runtime libraries
* Or, no compiler (for interpreted languages) and just one language

Outside these boundaries, users are typically on their own

e

High Performance Computing (HPC)

Code is typically distributed as source
* With exception of vendor libraries, compilers

Often build many variants of the same package .
» Developers’ builds may be very different Oak Ridge National Lab - R/'L(FEI\T "
* Many first-time builds when machines are new Powerd /NVIDIA e B,

Code is optimized for the processor and GPU
* Must make effective use of the hardware s

* Can make 10-100x perf difference

Argonne Nationl Lab

Lawrence Berkeley Intel Xeon / Xe

National Lab
AMD Zen / NVIDIA

Rely heavily on system packages
* Need to use optimized libraries that come with machines

* Need to use host GPU libraries and network :
, FRONTIER A
Multi-language Lawrence Livermore

* G, C++, Fortran, Python, others Oak Ridge National Lab National Lab
allin the same ecosystem AMD Zen / Radeon AMD Zen / Radeon

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 °

e

What about containers?

* Containers provide a great way to reproduce and
distribute an
already-built software stack

* Someone needs to build the container!
* Thisisn’ttrivial
* Containerized applications still have hundreds of dependencies

* Using the OS package manager inside a container is
insufficient

* Most binaries are built unoptimized
* Generic binaries, not optimized for specific architectures

* HPC containers are often optimized per-system
* Not clear that we can ever build one container for all facilities

000

Charliecloud SH IFTER

We need something more flexible to build versions of containers

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

10

Overview & Community

LI THELINUXFOUNDATION

Spack enables Software distribution for HPC

» Spack automates the build and installation of scientific software

» Packages are parameterized, so that users can easily tweak and tune configuration

No installation required: clone and go

$ git clone https://github.com/spack/spack
$ spack install hdf5

Simple syntax enables complex installs

S spack install hdf5@1.10.5 S spack install hdf5@1.10.5 cppflags="-03 —g3"

S spack install hdf5@1.10.5 %clang@6.0 S spack install hdf5@1.10.5 target=haswell

S spack install hdf5@1.10.5 +threadssafe S spack install hdf5@1.10.5 +mpi *mpich@3.2 N
github.com/spack/spack

 Ease of use of mainstream tools, with flexibility needed for HPC

* In addition to CLI, Spack also:
* Generates (but does not require) modules
« Allows conda/virtualenv-like environments
* Provides many devops features (Cl, container generation, more)
» Supports binary “buildcaches” so that you don’t have to build everything from source

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 12

e

Anyone can use Spack!

* End Users of HPC Software

* Install and run HPC applications and tools

* HPC Application Teams
* Manage third-party dependency libraries

* Package Developers
* People who want to package their own software for distribution

* User support teams at HPC Centers
* People who deploy software for users at large HPC sites

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 18

Spack was critical for ECP’s mission to create a

i g I"I'E'L;.J'I"l e

—
i

‘1-—-.

S
4—""_. \
K_
EXASCAHLE COMPUTING PRDOJECT

* Used for building software on the three U.S. exascale
systems

* ECP built the Extreme Scale Scientific Software Stack (E4S)
with Spack — more at https://e4s.io

* Project continues on ASC and ASCR funding

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

4 !!mmh

The Extremeéscale Sca ntific Software

robust, capable exascale software ecosystem.

& " 2
e -
https://eds.io

Dependents by Producer

7
[
d I
k!
1

€‘$ ‘?

Spack was the most depended-upon
project in ECP

14

https://e4s.io/

N
m— NASA-GISS

s Genentech
== BYU

W= ORNL
e Fermilab

= Other

s Max-Planck-Inst

& 3
QO o O
S &
50000 | ANL -
LLNL -
40000 lowa State -
EPFL
s unknown
30000 | ™= FAU
mmm Genentech
20000 4
10000
o4
< >
S S
70000
ANL/UIUC -
600004 LLNL -
lowa State u
50000 1 EPFL
. FAU
. ANL
40000 s Heidelberg -
30000 4
20000 1
10000 -

°
0;
<
o
2,
‘)7

&

2024

&

Contributions (lines of code) over time in packages, by organization

Contributions (lines of code) over time in packages, by organization

LLNL . FAU = ORNL
100000 ANL/UIUC mm 3vGeomatics ~WEE OpenFOAM
lowa State Heidelberg - STU
80000 4 lowa Kirchhoff mmm Fermilab
e EPFL Hamburg = CERN
= ANL Genentech Perimeterinst
F ll 60000 | W LANL W HiSilicon W Other
2016 2020 |
= 20000 1 /
N N N
© 2 S

J J N
> N $
> 3 o

250000 -

200000 -

150000 A

100000 ~

50000 ~

LLNL
ANL/UIUC
lowa

lowa State
AMD
CSCs
EPFL

RIT

CERN
ANL
LANL
HiSilicon

Oregon
SNL
FAU

SJTU
Rice

I Kitware E Intel
Max Planck Fujitsu
B Hamburg Il Pawsey
B RIKEN Heidelberg
William and Mary I OpenFOAM
B CEA CINECA
3vGeomatics Fermilab
m HZDR m Kirchhoff
Perimeterinst Genentech
]
]
]

U. Arizona

ages, by organization

e

Spack sustains the HPC software ecosystem
with the help of many contributors

COUNTRY USERS
United States 23K
Germany 5.3K
(;na 4.6K
Eia 4.5K
L;ited Kingdom 3.3K
5 ;ance 3K
.;pan 2.4K

2023 aggregate documentation user counts from GA4

(note: yearly user counts are almost certainly too large)

200000 -

150000 -

100000 -

50000 -

Over 8,000 software packages
Over 1,300 contributors

Contributions (lines of code) over time in packages, by organization

LLNL OVGU Heidelberg
s ANL/UIUC mm Kitware mmm CINECA
lowa RIKEN OpenFOAM
B lowa State s Hamburg W Kirchhoff
AMD Max Planck Genentech
mmm CERN mm CEA . SjTU
CsCs 3vGeomatics Intel
RIT s HZDR m Oregon
mm HiSilicon SNL
LANL mm FAU . UZH
I EPFL LBL
ANL B Perimeterinst
Emm ORNL B Fujitsu
,Lo“”b ,Le"’b‘ ,Le“f’ W@’b ,1/0\/’\ ,Lo“g’ ,vo"'g ,1/0’19 ’L@?’ ,LQ’{L Wéf’

Contributors continue to grow worldwide!

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

16

Spack users have diverse roles across many types of
institutions

What type of user are you?

@ Research Software Engineer (RSE)
@ Software Developer

@ DevOps/SRE

@® System Administrator
@ User Support Staff

@ Data Scientist

@ Computational Scientist
@® HPC User/ Analyst

Where do you work?

@ DOE/NNSA Lab (e.g., LLNL/LANL/SNL)
@ DOE/Office of Science Lab (e.g., ORN...
@ Other Public Research Lab

@ University HPC/Computing Center

@ University research group

@ Private Research Lab

@ Cloud Provider

@ Company

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 v

e

What does the Spack project look like now?

Vis
SDK A

Package Recipes

Cl Infrastructure

Core tool (CLI + Solver)

SpackCommunity & & 4 @ 2 & 2 & 24 & 4 @ % % & A

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 1

e

We started conversations with Linux Foundation in
December 2021, and talked through mid-2022

* We wanted.:
* A neutral project home
* To encourage more participation in the project
* A way to fund project activities:
* More continuous integration resources
* User meetings, Slack, etc.

* Talked to LF onboarding team

* Learned about LF’s basic requirements:
* Technical charter
* Open Governance
* Trademark assignment

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 19

..

We joined forces with Kokkos to start a larger
umbrella, which eventually became HPSF

* Spack and Kokkos were two of the most adopted @ SpaCk

projects during ECP

4
» kokkos
* Enable performance portability at different levels
e Spack: build level
* Kokkos: application/runtime level
. Goals: wARex @ SPaCK £ o
. oper€ HAMI
* Leverage proven track record of community = @
building %k\':"‘““"‘" = o H PS F TRILINOS
* Leverage industry and labs’ familiarity ES N =~
- Get more projects on board to build an ®ANiobULES AT RIPY

umbrella organization

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 20

With HPSF, we’ve formalized our governance with
the Technical Steering Committee

Todd Gamblin, LLNL Greg Becker Massimiliano Culpo ~ Tammy Dahlgren Wouter Deconinck Ryan Krattiger Mark Krentel
TSC Chair LLNL n.p. complete s.r.| LLNL U. Manitoba Kitware Rice University

John Parent Marc Paterno Luke Peyralans Phil Sakievich Peter Scheibel Adam Stewart Harmen Stoppels
Kitware Fermilab U. Oregon Sandia LLNL TU Munich Stoppels Consulting

Lawrence Livermore 2 1

National Laboratory =~ LLNL-PRES-872707 2

Response to LF/HPSF seems positive

Has Spack’s transition into Linux Foundation / HPSF given you more confidence

in the project?
® Yes
® No
H @ Not sure
Lawrence Livermore

National Laboratory =~ LLNL-PRES-872707 22

242 responses

Spack Usage

LI THELINUXFOUNDATION

Spack provides a spec syntax to describe customized installations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler

$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-03 —g3" set compiler flags
S spack install mpileaks@3.3 target=zen2 set target microarchitecture

spack install mpileaks@3.3 "mpic .2 %gcc@4.9. ependency information
S ki Il mpileaks@3.3 "mpich@3.2 %gcc@4.9.3 " d d inf i

= Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional — specify only what you need.
— Customize install on the command line!

= Spec syntax is recursive
— Full control over the combinatorial build space

LLNL-PRES-806064 S p a C k . i O @ 24

Spack packages are templates
They use a simple Python DSL to define how to build

from spack import *

class Kripke(CMakePackage):
"""Kripke is a simple, scalable, 3D Sn deterministic particle
transport proxy/mini app.

homepage = "https://computation.linl.gov/projects/co-design/kripke"
url = "https://computation.linl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

version(‘1.2.3’, sha256="'3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
version(‘1.2.2’, sha256="'eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
version('1.1’, sha256='232d74072fc7b848fa2adc8albc839ae8fb5f96d50224186601f55554a25f64a’)

variant('mpi', default=True, description='Build with MPI.")
variant('openmp', default=True, description='Build with OpenMP enabled.’)

depends_on('mpi', when="+mpi’)
depends_on('cmake@3.0:', type="build’)

def cmake_args(self):
return [
'-DENABLE_OPENMP=%s" % ('+openmp’ in self.spec),
-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
|

def install(self, spec, prefix):
Kripke does not provide install target, so we have to copy
things into place.
mkdirp(prefix.bin)
install('../spack-build/kripke', prefix.bin)

Not shown: patches, resources, conflicts,

other directives.

LLNL-PRES-806064

} Base package

(CMake support)

Metadata at the class level

Versions

} Variants (build options)
:}- Dependencies

—_— (same spec syntax)

Install logic
in instance methods

S—

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.

spack.io @ »»

Spack Specs can constrain versions of dependencies

=

mpileaks

\

callpath
AHEPAEN s Gyninst

libdwarf

libelf

S spack install mpileaks %intel@12.1 Mibelf@0.8.12

= Spack ensures one configuration of each library per DAG

— Ensures ABI consistency.

— User does not need to know DAG structure; only the dependency names.

= Spack can ensure that builds use the same compiler, or you can mix
— Working on ensuring ABI compatibility when compilers are mixed.

LLNL-PRES-806064

spack.io @

Spack handles ABl-incompatible, versioned interfaces like MPI

mpileaks

mpi

libdwarf

callpath S

dyninst

)l libelf

= mpiis a virtual dependency

= |nstall the same package built with two different MPI implementations:

S spack install mpileaks *mvapich@1.9

$ spack install mpileaks “openmpi@1.4:

= Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

S spack install mpileaks "mpi@2

LLNL-PRES-806064

spack.io €& »

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks Acallpath@1.0+debug Mibelf@0.8.11 User input: abstract spec with some constraints .
spec.json
. spec”: {
g mpileaks m;z;ﬁﬁg'f??f 'mséismﬁ 4
= =linux-ppc64 , ’
"nodes": [
3 \ n{d S
Q) "name": "mpileaks",
ﬁ ::ver;lilon:: =R
arch™:
(0] callpath@l.o callpath@1.0 “platform": “Llinux",
+debug %gcc@a4.7.3+debug elarfomiosipsibelety
=linux-ppc64 tf;g::"; scascade'Lake"
i
},
Y / \ "cﬁmpilﬁr"':‘ o .
name” : gcc,
\, . . : mpiche3.0.4 dyninst@s. 1.2 fversions 110.3.47
mpi dyninst Concretize Ygoced.7.3 Ygcces. 7.3 Store e
=linux-ppc64 =Llinux-ppc64 “parameters": {
"build_system": "autotools",
"stackstart": "o",
},
\ \ "hash": "o7awlh5g6éwccrraondyd2mfmkdtvvnxe"
: libdwarf@20130729 fi=pendencicaiGhl
libdwarf %gcced.7.3 S o O
=linux-ppc64 “hash": "r3s7ywbhvtixgc3bknpgovi3dn2adce2",
"parameters": {
/ / p"deptypes": [
"build",
*Link"
1y
. libelf@.8.11 “virtuals":
libelf@0.8.11 Xgccad.7.3 AR
=linux-ppc64 3
Abstract, normalized spec Concrete spec is fully constrained Detailed provenance stored
with installed package

with some dependencies and can be passed to install

spack.io @

LLNL-PRES-806064

Spack handles combinatorial software complexity

Dependency DAG

=

mpileaks

libdwarf

\

11path — T
Catipath ' — g dyninst [gl libelf

Installation Layout

opt
L—spack
— linux-rhel7-skylake
| L—gcc-8.3.0
| — mpileaks-1.0-hc4smavuzpmaznmvrfzridow2mkphe2e
| F— callpath-1.0.4-daqqpssxb6qgbfrztsezkmhus3xoflbsy
| — openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjvsr
| — dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjvsr
| — libdwarf-20180129-u5eawkvaoc7vonabe6énndkcfwuv233cj
| L— libelf-0.8.13-x46q4wma6ay4pltriijbgizxjrhbaka6

LLNL-PRES-806064

Each unique dependency graph is a unique
configuration.

Each configuration in a unique directory.
— Multiple configurations of the same
package can coexist.

Hash of entire directed acyclic graph (DAG)
is appended to each prefix.

Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.

— No need to use modules or set
LD_LIBRARY_PATH

— Things work the way you built them

spack.io @ »

Spack environments enable users to build customized stacks
from an abstract description

Simple spack.yaml file

spack:
include external configuration
include:
- ../special-config-directory/
- ./config-file.yaml

add package specs to the “specs’ list
specs:

- hdf5

- libelf
- openmpi

Concrete spack.lock file (generated)

{

"concrete_specs": {

"6s63s02kstp3zyvjezglndmavy613nul":

"hdf5": {
"version":
rarch": {

"platfor
"platfori

H
"compiler":
Ilnamell .

Hy
"namespace":
"parameters=

"target":

"version":

"1.10.5",

m": "darwin",
m_os": "mojave",
"x86_64"

{

“clang",

"bui

"19.0.0-apple"

{

B

spack.yaml file with
names of required
dependencies

e o

ﬂ Dependency

packages
build
project

Lockfile describes
exact versions installed

= spack.yaml describes project requirements

= spack.lock describes exactly what versions/configurations
were installed, allows them to be reproduced.

= Can also be used to maintain configuration together with
Spack packages.
— E.g., versioning your own local software stack with consistent
compilers/MPI implementations
— Allows developers and site support engineers to easily version
Spack configurations in a repository

spack.io @ =

Environments have enabled us to add build many features

to support developer workflows

class Cmake (Package):
executables = ['cmake']

spack external find

Automatically find and configure external packages on the system

@classnethod
def determine_spec_details(cls, prefix, exes_in_prefix):
exe_to_path = dict(
(0s.path.basename(p), p) for p in exes_in_prefix
)
if ‘cmake' not in exe_to_path:
return None

cmake = spack.util.executable.Executable(exe_to_path['cmake'])

output = cmake('~-version', output=str) s "oes:

if output: cmake:
match = re.search(r'cmake.*version\s+(\S+)', output) externals:
if match:

- spec: cmake@3.15.1

version_str = match.group(1) prefix: Jusr/local

return Spec('cmake@{0}'.format(version_str))

package.py spack.yaml configuration

spack ci

Automatically generate parallel build pipelines
(more on this later)

gitlab-ci.ym!l Cl pipeline spack containerize

Turn environments into container build recipes
spack.yaml

LLNL-PRES-806064

spack test

Packages know how to run their own test suites

class Libsigsegv(AutotoolsPackage, GNUMirrorPackage):
""GNU lbsigsegvis a ibrary for handling page faults in user mode."""

#...spack package contents
extra_install_tests = ests/ libs'
deftestself)
data_dir = self.test_suite.current_test_data_dir
smoke_test_c = data_dirjoin{ smoke_{est.’]
self.run_test(
15655 self.prefix.include,
"-L5%s %6 self.pref.lib, “Isigseg’,
smoke._test_c,
-0, 'smoke_test'
purpose='check linking')
self.run_test(
“smoke_test!, [} data_dir join('smoke_test.out’),

purpose="run built smoke test)

self.run_test('sigsegy1":[Test passed'], purpose='check sigsegv1 output’)
self.run_test('sigsegv2": Test passed!], purpose='check sgsegv2 output’)

package.py

spack:

pecs:
= gronacs+npi.
container:
s he format of the recipe e.g. docker,
v ity or anything else that 1s currently s
cker

Whether or not to strip binaries
true

strip:
Additional systen packages that are needed at run
0s_packages:
Extra instructions
extra_instructions:
final: |
N echo ‘export PS1="\[$(tput bolO\I\[$(tput setaf 1)

Labels for the inage
labels:
app:

spack develop lets developers work on many packages at once

= Developer features so far have focused on spack env activate .
. . spack add myapplication
single packages (spack dev-build, etc.) ol CEEI SRR

spack develop mfem@4.2.0

= New spack develop feature enables
development environments
— Workon acode $ s
— Develop multiple packages from its spack.yaml axom/ mfem/
dependencies
— Easily rebuild with changes
$ cat spack.yaml

= Builds on spack environments Spads(:)ecs-
— Required changes to the installation model for —.myapplication # depends on axom, mfem
dev packages
— dev packages don’t change paths with develop:

— axom @0.4.0

configuration changes T e

— Allows devs to iterate on builds quickly

spack.io & =»

LLNL-PRES-806064

Teams are building development
front-ends top of on Spack

EPJ Web of Conferences 245, 05035 (2020) https://doi.org/10.105 1/epjconf/202024505035
CHEP 2019

SpackDev: Multi-Package Development with Spack

= We are trying to bring many of the features

LLNL-PRES-806064

Many different approaches:

— Thin mack wrapper for MARBL team at LLNL
— spack-manager at Sandia

— SpackDev at Fermilab

— spack-organizer at CEA

— spack_cmake at LANL

Workflow seems to be converging around
environments + spack develop

from these scripts into core
— Most of the front-ends are opinionated in
one way or another
— We want spack to support but not force
these workflows

Chris Green'", James Amundson', Lynn Garren', Patrick Gartung', and Elizabeth Sexton-
Kennedy?

!Scientific Computing Division, Fjgminiaiaasi
20ffice of the Chief Information # Spack-Manager

o @ / Spack-Manager View page source
Abstract. High Ener
~ hundreds of extefscrhies
experiment-specific Spack-Manager

ment. Managing cohe JUESES!

enough, but managing NSRRI Spack-Manager is a light-weight extension to Spack that is intended to streamline the software

of a large body of co development and deployment cycle for software projects on specific machines. A given software
room for error. project typically has multiple configurations across many machines. Spack-Manager is quite literal in
Spack is a popular P|
focus on the needs of
administrators whose]

.&\
'/4/

1 Spackis serving the package management needs of thousands of software packases. However,
IR IR S RSN neriseei s Snoiborof Spack for thelr Indlvidual appiications specific

New command: spack cmake - Configure a CMake project using a Spack spec

its name, in that it provides a way to manage and organize these configurations across multiple
machines, and multiple projets.

H#45494 Juffer as possible between software packages
provements back to Spack on a regular basis to
@D overoer vants to merge 2 commits nto speck:develop from obezser: spack_cnake_cnd o ot ry to fully mask Spack’s workflow or
8Vel appropriate for the user type.
© Conversation 0 - Commits 2 B Checks 31 Files changed 4
@ toambin iparate user types in a software project, and
@tgamblin Here is my attempt to upstream the tool | mentioned in Slack. I've modified it bit to be more like a regular Spack lired decreases as the user becomes further
‘command, reworked some of the output, added a --dry-run option, and stripped some project specific features. The code psakievich .
an likely stil be generalized a bit more. Right now, it is very specific to C/C++-based projects that use Kokkos for HIP and Atfeast 1 approving reviaw i
CUDA. Below is a bt of motivating text, part of which might end up i the final documentation. pull roquost
Let me know what you think and how it could be improved to better fit into Spack.
Assignees

No one—assian yourself

‘This command was built out of a need to simplify developer's workflows while working on codes that also provide Spack

Peonmancs Yeore

encoded in the Spack package for a given code, and we needed a way to extract that useful logic in a pure CMake-based

spack.io

33

The Road to Spack v1.0

LI THELINUXFOUNDATION

e

The road tov1.0 has been long

* We wanted:

£4 2020
4 2021
4 2022
4 2022
(4 2025
£4 2025
(4 2025

* v1.0:

New ASP-based concretizer
Reuse of existing installations
Stable production ClI

Stable binary cache
Compiler dependencies
Separate builtin repo

Stable package API

* Changes the dependency model for compilers
* Enables users to use entirely custom packages
* Improves reproducibility

* Improves stability &

* Thisis the largest change to Spack... ever.

Lawrence Livermore

National Laboratory =~ LLNL-PRES-872707

How do we handle this?

— Build build dependencies with the "easy” compilers
— Build rest of DAG (the link/run
the fancy compiler

“easy”
dependencies) with

* Works well for porting most scientific codes
— Results in

* What we actually do is run the concretizer

separately for the pure build dependencies and
the link dependencies

-~ K is
with the link version.

= This is soon to be merged in.

0.0
%020

000
00002 ge]

Todd, presenting how simple all
this would be at FOSDEM in 2018

35

W

Spack packages use a lot of (declarative) conditional logic

CudaPackage: a mix-in for packages that use CUDA

class (PackageBase):
variant('cuda’, default=False, cuda is a variant (build option)
description='Build with CUDA')
variant('cuda_arch', cuda_arch is only present
description="CUDA architecture’, if cuda is enabled
values=any_combination_of(cuda_arch_values),
when="+cuda"')
dependency on cuda, but only

depends_on('cuda', when='+cuda") if cuda is enabled

depends_on('cuda@9.0: ", when="cuda_arch=70")
depends_on('cuda@9.0: ", when="cuda_arch=72")
depends_on('cuda@10.0: ', when="cuda_arch=75")

constraints on cuda version

conflicts('%gcc@9:"', when="+cuda Acuda@:10.2.89 target=x86_64:") compiler support for x86_64
conflicts('%gcc@9:', when='+cuda Acuda@:10.1.243 target=ppc64le:') [REIAlCHeJoIoHIIS

There is a lot of expressive power in the Spack package DSL.

Il Lawrence Livermore
National Laboratory LLNL-PRES-872707 55

First challenge: we needed a new concretizer to E

model the expressiveness of the DSL

Contributors

o G ~« newversions
: new dependencies
new constraints

This partis
NP-hard!

package.py repository

N\
spack default config
developefs packages.yam|
N
admins, local preferences config
users packages.yaml
=
users l environment config spack.yaml
Command line constraints
users spack install hdf5@1.12.0 +debug

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

:@ concretizer
[petc)

aaaaaaa

wwwwwww

[==)
— \%ﬂm%

2 o
Concrete spec is t\t"’,ﬁ.q’

fully constrained 'Q!}“ ««««««««
Em .

and can be built.

pppppp

Is stored in spack.lock
file after solve.

37

T

We reimplemented Spack’s concretizer using g
Answer Set Programming (ASP)

* Originally a greedy, custom Python algorithm

* ASP is a declarative programming paradigm
* Looks like Prolog
e Built around modern CDCL SAT solver techniques

* ASP program has 2 parts:
1. Large list of facts generated from recipes (problem instance)
2. Smalllogic program (~700 lines of ASP code)

* Algorithm is conceptually simpler:
e Generate facts for all possible dependencies
e Send facts and our logic program to the solver
* Read results and rebuild the resolved DAG

Some facts for HDF5 package

* Using Clingo, the Potassco grounder/solver package

Il Lawrence Livermore
National Laboratory LLNL-PRES-872707 s

Spack’s concretizer is implemented using

Answer Set Programming (ASP)

ASP looks like Prolog but is converted to SAT with optimization

Facts describe the graph

node("lammps").
node("cuda").

variant_value("lammps", "cuda", "True").

depends_on("lammps", "cuda").

lammps +cuda

First-order rules (with variables) describe how to resolve nodes and metadata

node(Dependency) :- node(Package), depends_on(Package, Dependency).

node("mpi")

—

LLNL-PRES-806064

node("hdf5").
depends_on("hdf5", "mpi").

Ground
Rule

spack.io @ =

Grounding converts a first-order logic program into a
propositional logic program, which can be solved.

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(Dep)
:- node(Pkg),
depends_on(Pkg, Dep).

% at least one is true
1 { node(a); node(b) }.

First-order Logic Program

LLNL-PRES-806064

depends_on(a, b).
depends_on(a, c).
depends_on(b, d).
depends_on(c, d).

node(b) :-
node(c) :-
node(d) :-
node(d) :-

% at least

node(a).
node(a).
node(c).
node(b).

one is true

1 { node(a); node(b) }.

Propositional Program

Answer 1:

node(b) °

node(d)

Answer 2:
node(a)
node(b)
node(c)

node(d)

Stable Models (Answer Sets)

Answer 1: Only node(b) is true
Answer 2: Both node(a) and node(b) are true

spack.io @

W

ASP searches for stable models of the input program

e Stable models are also called answer sets

* A stable model (loosely) is a set of true atoms that can be
deduced from the inputs, where every rule is idempotent.
* Similar to fixpoints
* Put more simply: a set of atoms where all your rules are true!

* Unlike Prolog:

» Stable models contain everything that can be derived (vs. just querying
values)

* Good ways to do optimization to select the “best” stable model
* ASP is guaranteed to complete!

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 4

Second challenge: Spack’s original concretizer
did not reuse existing installations

mpileaks /'//,: t - _— * Hash mat.C.h €S are
: B callpath | g :yninst — i I<RTer 1. Resolve metadata ve I’y Sens |t|Ve tO
: i i : i : 2. Create per-node hashes Sma u Cha nges
E : : E H S A— * In many cases, a
: : : l qo2af23r2npatxdtna3fmwkeennywixp sati Sfy| N g cached or
! : | vyt already installed
| R A spec can be missed
: v Package
|

74mwnxgnénujehpyyalhwizwojwn5zga

* Nix, Spack, Guix,
Conan, and others
reuse this way

2o cache
v [
6zvh4ueem6fSyrcfugh67k2hrtxbgbcs

3. Query for exact hash match

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 42

e

--reuse (now the default) was enabled by ASP

* --reuse tells the solver about all the installed packages!
* Add constraints for all installed packages, with their hash as the associated ID:

installed_hash("openssl","lwatuuysmwkhuahrncywvn77icdhsémn”
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn" , "node" , "openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn?77icdhsémn" , "version","openssl"”,"1.1.1g"
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_platform_set","openssl"”,"darwin™).
imposed_constraint("1lwatuuysmwkhuahrncywvn77icdhsemn" , "node_os_set" ,"openssl"”,"catalina™)
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn” , "node_target_set","openssl","x86_64")
imposed_constraint("1lwatuuysmwkhuahrncywvn77icdhsemn", "variant_set","openssl”,"systemcerts","True").

", "openssl","apple-clang"’

", "openssl","apple-clang","12.0.0").

imposed_constraint("1lwatuuysmwkhuahrncywvn77icdhsémn", "node_compiler_set
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn”, "node_compiler_version_set

imposed_constraint("1lwatuuysmwkhuahrncywvn?77icdhsémn" , "concrete”,"openssl").
imposed_constraint("lwatuuysmwkhuahrncywvn?77icdhsémn" , "depends_on" ,"openssl","zlib","build")
imposed_constraint("lwatuuysmwkhuahrncywvn77icdhsémn", "depends_on" , "openssl”,"z1lib","1link"

imposed_constraint("1lwatuuysmwkhuahrncywvn77icdhsémn”, "hash" ,"z1ib","x2anksgssxsxa7pcnhzg5k3dhgacglze™).

Il Lawrence Livermore
National Laboratory LLNL-PRES-872707 b

Minimizing builds is surprisingly simple in ASP

1. Allow the solver to choose a hash for any package:

{ hash(Package, Hash) : installed_hash(Package, Hash) } 1 :- node(Package).

2. Choosing a hash means we impose its constraints:

impose(Hash hash(Package, Hash

: : . : There’s more to it than this,
3. Define a build as something without a hash: but you get the idea...

build(Package hash(Package, _), node(Package

4. Minimize builds!

ize { 1@100,Package : build(Package) }.

Il Lawrence Livermore a4
National Laboratory LLNL-PRES-872707

With and without --reuse optimization

spackle):solver: solve -I1 hdf5
Best of 9 considered solutions.
Optimization Criteria:
Priority Criterion

number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild
20
[}

(]
0
]
(]
(]
]
(]
(]
]
]
]
]
]
]
]

OCOOONOSOOOOESS

hdf5@1.10.7: ~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=default
Acmake@3 .21 .4 ~doc+ncurses+openssl+ownlibs~qt build_type=Release
Ancurses@6. 2 ~symlinks+termlib abi=none
Apkgconf@1.8.0:
Aopenss1@1.1.11 ~docs certs=system
Aperl@5.34.0 +cpanm+shared+threads
Aberkeley-db@18.1.40 +cxx~docs+stl patches=b231fcc4d5cff@5e5c3a4814
Abzip2@1.0. 8 ~debug~pic+shared
Adiffutils@s3.s8
Alibiconv@l. 16 libs=shared,static
Agdbm@1 . 19
Areadline@g.1
Azlib@1.2.11 +optimize+pic+shared
Aopenmpi@4. 1.1 ~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~legac
Ahwloc@2.6. 0! ~cairo~cuda~gl~1ibudev+1ibxml2~netloc~nviml~opencl~pci~rocm+shc
Alibxml2€2.9.12 ~python
Axz@5.2.5 ~pic libs=shared,static
Alibevent@?2.1.12 +openssl
Aopenssh@8. 7p1l
Alibedit@3.1-20210216

Pure hash-based reuse: all misses

Lawrence Livermore
National Laboratory LLNL-PRES-872707

spackle):spack> spack solve --reuse -Il hdf5
> Best of 10 considered solutions.
> Optimization Criteria:
Priority Criterion
number of packages to build (vs. reuse)
deprecated versions used
version weight
number of non-default variants (roots)
preferred providers for roots
default values of variants not being used (roots)
number of non-default variants (non-roots)
preferred providers (non-roots)
compiler mismatches
0S mismatches
non-preferred 0S's
version badness
default values of variants not being used (non-roots)
non-preferred compilers
target mismatches
non-preferred targets

Installed ToBuild

.
SOUNFPROOOOONSOSOSS S |
OO PO H

hdf5@1.10. 7%apple-clang@12.@.5~cxx~fortran~hl~ipo~java+mpi+shared~szip~threadsafe+tools api=defaul
Acmake@3.21. 1%ap 12.0.5~doc+ncurses+o) sl+ownlibs~qt build_type=Release
clang@12.0.5~symlinks+termlib abi=none
Aopenssl@1.1.11%apple-clang@12.@.5~docs+systemcerts C <
Az1ib@1.2. L lar 5. imize+pic+shared | sk
Aopenmpi@4.1. 1% ¢ 0.5~atomics~cuda~cxx~cxx_exceptions+gpfs~internal-hwloc~java~leg
).5~cairo~cuda~gl~libudev+libxml2~netloc~nvml~opencl~pci~rocm+
python 1
ang@12.0.5 libs=shared,static
Axz@5 .2 .5%a g .0.5~pic libs=shared,static
Apkgconf@1.8.@%ap C .0.5
Alibevent@2.1.12%apple-clan: 5+openssl
Aopenssh@8 . 6pl%apple-clal
Alibedit@3.1-2021021
Aperl@5.34. pple-clang ared+threads d i i ¢
Aberkeley-db@18.1.40%a 0.5+cxx~docs+stl patches=b231fcc4dS5cff@5e5c3a4814f
Abzip2@1.0.8%apple-clan ’ ebug~pic+shared
Agdbm@1 . 19%appl C

With reuse: 16 packages were reusable

-

Third challenge: we needed to allow multiple
versions of build dependencies in the DAG

* Only one configuration per package
allowed in the DAG

* Ensures ABI compatibility butis too
restrictive

* Needed to enable compiler mixing
py-gevent@1.5 py-numpy with compiler dependencies

* Also needed for Python ecosystem

* |nthe example py-numpy needs to use
py-cython@0.29 as a build tool

* That enforces using an old py-gevent,
py-cython@0.29 because newer versions depend on
py-cython@3.0 or greater

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 4

e

Objective: dependency splitting
=T T T T=J * The constraint on build dependencies
~ can be relaxed, without compromising
\ the ABI compatibility

Y
/

/ Py
Unification * Having a single configuration of a

package is now enforced on unification
sets

py-numpy

* These are the set of nodes used
together at runtime (the one shown is
for gptune)

~_—— - * This allows us to use the latest version
of py-gevent, because now we can
py-cython@0.29 have two versions of py-cython

py-cython@3.0

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 4

We want to dynamically “split” nodes when needed

1. Start with deducing single dependency nodes:

node(DependencyName)
.- dependency_holds(PkgName, DependencyName)

Converted node identifier
2. Allow solver to choose to duplicate a node: from name to (name, id)

A
1{ | \

depends_on(PkgNode, node(0..Y-1, DepNode), Type)
: max_dupes(DepNode, Y)

11
.- dependency_holds(PkgNode, DepNode).

3. Re-encode package metadata so that it can be associated with duplicates

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 8

First try at allowing duplicates in a single solve

Total
80 B Starting point
mm First implementation
70
60
50
§' [
2 ncreasea runtimes
£
=
n
0 >> 2X In some cases
20
10
06
O .
SO X AR S @A @A 00 @0 * K0 Q2> & 0@ QR
\\)@‘ &yz‘;*_oé\%\\q"'éz} &,bb\:\o@?’,cé&i&{»q\\\to&o @ *:@\\é{z&zﬁo‘zs“é\;@%\o;@ O e A
? & & @K\@L 78 *& NN \\,<° £ P S F
W < S
N N

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 4

e

Cycle detection in the solver is expensive

path(A, B) :- depends_on(A, B).
path(A, C) :- path(A, B), depends_on(B, C).

% this constraint says "no cycles"
:- path(A, B), path(B, A).

* Has to maintain path() predicate representing paths between nodes

* Cycles are actually rare in solutions

* Switched to post-processing for cycle detection o)
« Only do expensive solve if a cycle is detected in a solution ~ 20%+ improvement

« Eventually moved this calculation into the solver in solve time
using some custom directives from the developers

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 50

e

Unification sets can be expensive too

———_—
’—— ~~

* Unification set creation was
originally recursive for any build
\ dependencies

] * Ends up blowing up grounding

» Mitigation:
* Only create new sets for explicitly
marked build tools

\ * Transitive build dependencies that
’ \ are not from marked build tools go
l)I | into a common unification set

\

* Need better heuristics to split when
N / ~ - necessary for full generality

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 o1

Through many different optimizations, we were able to reclaim enough
performance to make duplicate build dependencies tractable

Solve

First implementation
Optimized cycle detection
Optimized unification sets
Optimized variant propagation
Optimized clingo binaries

eb &

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 52

e

It was not trivial to find a model that was both
performant and tightly coupled

Gk + o) * We tried an iterative version with multiple

User reotl specs

Solve - SEPARATE errori...) - build_requirement('emake@3.21:". SO lves
level O

* Multiple solves had some disadvantages:

Build requirements e Slower due to overhead of multiple solves

from level 0 errorl...) - build ___requ‘.remeﬂt(”pkcjconpu).

st * Not coupled, so feedback from build to run
level 1 environment (and back) was awkward

* Packagers needed to “help” the solver

Build requirements

Prom level 1 P I i
s * Requiring packagers to provide solve hints
levela in packages isn’t practical

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 59

L hallonoe v O add< [amotaoe denendanciec

Fourth Challenge: v1.0 adds language dependencies

depends_on("c", type="build")
depends_on("cxx", type="build")
depends_on("fortran", type="build")

* Spack has historically made these compilers available to every package
* A compiler was actually “something that supports c + cxx + fortran + f77”
* Made for a lot of special cases
* Also makes for duplication of purely interpreted packages (e.g. python)

* Required in 1.0 if you want to use c, cxx, or fortran
* No-opinv0.23 and prior as we prepared for this feature

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 >4

Compiler Dependencies 2ib-19@22.

Compilers are now build dependencies

Runtime libraries modeled as packages gmake@4.4.1

e gcec-runtime is injected as link dependency by gcc Rl IERRE

* packages depend on c, CxXx,
fortran virtuals, which are satisfied by gcc node gcc-runtime@10.5.0

glibc is an automatically detected external

* Injected as a "libc" virtual dependency

* Does not require user configuration gcc@10.5.0

glibc@2.31

Will eventually be able to choose

implementations (e.g., musl)
Build dependency
injected by comper

Link dependency injected by compiler

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 %

I .

Spack 1.x introduces toolchains

toolchains.yaml

toolchains:
clang_gfortran:

- spec: %c=clang
when: %c

- spec: %cxx=clang
when: %cxx

- spec: %fortran=gcc
when: %fortran

- spec: cflags="-03 -g"

- spec: cxxflags="-03 -g"

- spec: fflags="-03 -g"

toolchains:
intel_mvapich2:

- spec: %c=intel-oneapi-compilers @2025.1.1
when: %c

- spec: %cxx=intel-oneapi-compilers @2025.1.1
when: %cxx

- spec: %fortran=intel-oneapi-compilers @2025.1.1
when: %fortran

- spec: %mpi=mvapich2 @2.3.7-1 +cuda
when: %mpi

spack install foo %clang_gfortran spack install foo %intel_mvapich2

® Canlump many dependencies, flags together and use them with a single name
® Anyspecinatoolchain can be conditional
® Only apply when needed

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 %

e &

Configuring compilers in Spack v1.*

Spack v0.x Spack v1.x
compilers.yaml packages.yaml
packages:
: . gcc:
compllerg. externals:
- compiler: . .
- spec: gcc@12.3.1+binutils
spec: gcc@12.3.1)
prefix: /usr
paths:

extra_attributes:
compilers:
c: /usr/bin/gcc
cxx: /usr/bin/g++
fc: /usr/bin/gfortran
modules: [...]

c: /usr/bin/gcc

cxx: /usr/bin/g++

fc: /usr/bin/gfortran
modules: [...]

* We automatically convert compilers.yaml, when no compiler is configured
* We will still support reading the old configuration until at least v1.1
* Allfields from compilers.yaml are supported inextra_attributes

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 5

e

Final challenge: Splitting the package repository

* Spack s two things:
* Command line tool spack
* Package repository with 8,500+ recipes

* Community wanted
* package updates without tool changes (e.g. new bugs)
* tool updates without package changes (reproducibility)

* But coupling between tool and packages was tight
1. Package classes are in core: CMakePackage, AutotoolsBuilder, etc.
2. Compiler wrapper was not a package until recently
3. Packages live in Spack’s GitHub repository with a long (git) history

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 58

Spack now has a Stable Package API

* Repositories define APl version used
* Versioned percommit

* Spack defines APl version(s) supported
* Willcomplain if a repo is too new

* Packages can only import from:
* spack.package
* Core Python

* Any 1.x Spack will support the same
package API as all prior 1.x versions

* Won’t break package APl unless we bump the
major version

Lawrence Livermore

National Laboratory =~ LLNL-PRES-872707

@ Spack

latest

Q

INTRODUCTION
Feature Overview
Getting Started
Spec Syntax

Spack Prerequisites

Spack On Windows

BASIC USAGE

Package Fundamentals
Configuring Compilers
Spack Environments
Frequently Asked Questions

Getting Help

ADVANCED TOPICS
Defining and Using Toolchains

Auditing Packages and
Configuration

Verifying Installations

Filesystem Requirements

LINKS

Tutorial (spack-tutorial.rtfd.io)
Packages (packages.spack.io)
Binaries (binaries.spack.io) &

REFERENCE

Spack Package APl v2.2

This document describes the Spack Package API (spack.package), the stable interface for Spack
package authors. It is assumed you have already read the Spack Packaging Guide.

The Spack Package API is the only module from the Spack codebase considered public API. It re-
exports essential functions and classes from various Spack modules, allowing package authors to
import them directly from spack.package without needing to know Spack'’s internal structure.

Spack Package API Versioning

The current Package API version is v2.2, defined in spack.package_api_version . Notice that the
Package AP is versioned independently from Spack itself:

« The minor version is incremented when new functions or classes are exported from
spack. package .

« The major version is incremented when functions or classes are removed or have breaking
changes to their signatures (a rare occurrence).

This independent versioning allows package authors to utilize new Spack features without waiting for
anew Spack release.

Compatibility between Spack and package repositories is managed as follows:

* Package repositories declare their minimum required Package API version in their repo.yaml file
using the api: vX.Y format.

* Spack checks if the declared API version falls within its supported range, specifically between

spack.min_package_api_version and spack.package_api_version .

Spack version 1.1.0.dev0 supports package repositories with a Package API version between v1.0 and
v2.2, inclusive.

Spack Package API Reference

class spack.package.BaseBuilder(pkg: PackageBase) [source]

Bases: object

An interface for builders, without any phases defined. This class is exposed in the package API,
so that packagers can create a single class to define setup_build_environment() and
spack.phase_callbacks. run_before() and spack.phase_callbacks.run_after() callbacks that
can be shared among different builders.

https://spack.rtfd.io/en/latest/package_api.html

59

e

Package split process

* Sync packages to spack/spack-packages
* Git history is preserved &

* Turn package repositories into Python namespace packages
* spack.pkg.builtinisnow spack_repo.builtin

* Move build systems to spack_repo.builtin.build_systems
* Update packages to use fewer Spack internals
* Enable Cl on spack/spack-packages

* Make Spack support Git-based package repositories

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 60

..

You can now specify the package repo version
in an environment or config

spack:
repos:
Pin a commit builtin:
git: https://github.com/spack/spack-packages.git
commit: aecl1e3051c@e9fc7ef8feadf766435d6f8921490

spack:
repos:
builtin:
Work on git: https://github.com/spack/spack-packages.git
a branch destination: /path/to/clone/of/spack-packages

branch: develop

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 o

T

Useful commands after repo split

1.spack repo migrate:fixes imports in custom repos for you

2.spack repo set --destination ~/spack-pkgs builtin:
put packages in your favorite location

3.(spack repo update: update & pin package repos o™

New docs: https://spack.readthedocs.io/en/latest/repositories.html

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 62

https://spack.readthedocs.io/en/latest/repositories.html

S ————

Bonus feature: Package A
Spack now supports concurrent builds! _—7—___
* We sort of supported this already Dep1 Dep2 Dep3

 Butthe user had to launch multiple spack processes
e eg.,srun -N 4 -n 16 spack install hdf5

* Now spack handles on-node parallelism itself!
* Spack now has a scheduler loop
* Monitors dependencies, starts multiple processes, polls for completion
* User can control max concurrent processes with ‘-p’ Queue:

Slot1 | |Dep 1 Package A

Slot2 | | Dep 2 Dep 3

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 69

But wait! There’s more!

Join us after ISC!

— Join us and 3,800+ others on Spack slack

— Contribute packages, docs, and features on GitHub
— Continue the tutorial at spack-tutorial.rtfd.io

HPSF

Spack s a core projectin the

High Performance Software Foundation] % Star us on GitHub!

'. slack.spack.io github.com/spack/spack
Join us at the Spack User Meeting at
HPSFCon 2026 next year! “ @spackpm.bsky.social @ @spack@hpc.social
¢ @hpsf.bsky.social X @spackpm
hpsf.io spack.io

We hope to make distributing & using HPC software easy!

National Laboratory =~ LLNL-PRES-872707

Lawrence Livermore 64

Hands-on time!

LI THELINUXFOUNDATION

Tutorial Materials

Find these slides and associated scripts here:

spack-tutorial.rtfd.io

We also have a #tutorial chat room on Spack slack.
Join at:

slack.spack.io

You can ask questions here any time!

@ Spack

latest

Q

LINKS

Main Spack Documentation &

TUTORIAL
Basic Installation Tutorial
Environments Tutorial
Configuration Tutorial
Package Creation Tutorial
Stacks Tutorial

Developer Workflows Tutorial
Binary Caches Tutorial

Scripting with Spack

ADDITIONAL SECTIONS
Module Files Tutorial
Spack Package Build Systems

Advanced Topics in Packaging

Tutorial: Spack 101 ¢

This is an introduction to Spack with lectures and live demos. It was la:
HPC Tutorials August 5, 2025. The event was two online half-day tutor

You can use these materials to teach a course on Spack at your own si
and read the live demo scripts to see how Spack is used in practice.

Slides

Download Slides .

Full citation: Alec Scott, Greg Becker, Kathleen
me——Dabhlgren, Peter Scheibel. Managing HPC Softwze
HPCIC Tutorials 2025, Livermore, California, Aug

Video
For the last recorded video of this tutorial, see the HPCIC Tutorial 202:
Live Demos

We provide scripts that take you step-by-step through basic Spack ta:
sections in the slides above.

To run through the scripts, we provide the spack/tutorial container ima

$ docker pull ghcr.io/spack/tutorial:hpcic25
$ docker run -it ghcr.io/spack/tutorial:hpcic25

to start using the container. You should now be ready to run through o

. Basic Installation Tutorial

. Environments Tutorial

. Configuration Tutorial

. Package Creation Tutorial

. Stacks Tutorial

. Developer Workflows Tutorial

. Binary Caches Tutorial

W N O O~ W N =

. Scripting with Spack

Other sections from past tutorials are also available, although they ma
frequently:

Claim a VM instance at: bit.ly/spack-vm

© oo N o o b~ wWwN -

- -
- o

a
J

A

Spack Tutorial VM Instances

B c D E

Instructions: 1. Put your name in a box below to claim an account on a VM instal
2. Log in to your VM:
ssh <IP address>
Login/password are both the username from your column below
Login / Password
IP Address spack1 spack2 spack3 spack4
35.90.43.21
35.91.36.120 Your Name If you’re in the spack2 column,

34.217.149.171

AR AS AFA ArFr

your login and password are
both spack2

ssh spack2@3.73.129.196

Claim a login by putting your name in the Google Sheet

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or

imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government

or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LI THELINUXFOUNDATION

...

Build systems moved to spack/spack-packages

1 from spack_repo.builtin.build_systems.autotools import AutotoolsPackage
2 from spack_repo.builtin.build_systems.cmake import CMakePack

4 from spack.package import =*

5

7 class ZlibNg(AutotoolsPackage, CMakePackage

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 69

e

More on direct dependencies with %

* You could previously write:
pkg %gcc +foo # +foo would associate with pkg, not gcc - will error in 1.0
* Now you’ll need to write:

pkg +foo %gcc # +foo associates with pkg

We want these to be symmetric:

pkg +foo %dep tbar # ‘pkg +foo’' depends on ‘dep +bar’ directly
pkg +foo “dep tbar # ‘pkg +foo' depends on ‘dep +bar’ directly or transitively

* spack style --spec-strings --fix can remedy this automatically
* Fixes YAML files, scripts, package.py files

* Alternative was to have a very hard-to-explain syntax — we surveyed users and they decided it was better to break a bit than to explaining
the subtleties of the first 10 years of Spack forever

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 70

e

Breaking changes 4

1. Itis no longer safe to assume every node has a compiler.
a. Thetokens {compiler}, {compiler.version}, and {compiler.name} in Spec.format expand to
none if a Spec does notdepend on C, C++, or Fortran.
b. spec.compiler willdefaulttothe c compilerif present, else cxx, else fortran for backwards
compatibility.
C. The new defaultinstall tree projectionis
{architecture.platform}/{architecture.target}/{name}-{version}-{hash}

2. The syntax spec["name"] will only search link/run dependencies and
direct build dependencies.

Previously, this would find deep, transitive deps, which was almost always the wrong behavior.
® Youcanstill hop around in the graph, e.g. spec['cmake"]|["bzip2"] will find cmake’s link dependency

3. The % sigil in specs means “direct dependency”.
® Cannowsay: foo %cmake@3.26 “bar %cmake@3.31
° * dependencies are unified, % dependencies are not

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 7

Art vs. science: reusing builds is not quite enough

* We get strange behavior when we have to build new packages
* E.g.: Cmake depends on opensslfor https
* Minimizing builds will toggle this feature off to avoid a dependency

* We want to prioritize reusing a package if the user already installed it

How can we do

* Has to be more important than defaults, or we would never reuse both?
* We want to prioritize package defaults if the package had to be built anyway KH
* Make new builds follow defaults .
~openssl +openssl
/35, A3
=] -
minimize builds > package defaults package defaults > minimize builds

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 72

e

We devised a two-level optimization scheme

Priority ¥ Sums Criteria

build_priority(P, 200) :- build(P), node(P). o o
build_priority(P, 0) :- not build(P), node(P). 203 Criterion 1
202 Criterion 2 e packagt'es
#minimize{ to be built
W@2+Priority,P 201 Criterion 3
: version_weight(P, W), build_priority(P, Priority)
12 100 Number of builds
... . . 3 Criterion 1
* Minimize builds, unless we have to build
Prioritize defaults f A build 2 Criterion 2 For reused
rioritize defaults tor specs we have to bui packages
* Last trick to get this to work: 1 Criterion 3
* All criteria must be formulated as minimizations o
Objective vectors of sums are compared
* No built Configuration can be “better” than a lexicographically from highest to lowest priority

reused configuration

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707 78

About 2/3 of respondents are from the US

Total 2,784
100% of total
1 United States 1,114 (40.01%)
2 Germany 214 (7.69%)
. 1 response =4 3 china 203 (7.29%)
Comparing to our
docu mentation data, 4 United Klngdom 176 (632%)
some countries are 4 responses™= 5 india 116 (4.17%)
under-represented.
6 France 115(4.13%)
3 responses *7 Japan 88 (3.16%)
8 ltaly 85 (3.05%)
9 Switzerland 81(2.91%)
10 Hong Kong 60 (2.16%)
2025 Surve Past month: active users ' canad 46 (1.65%)
y at spack.readthedocs.io 12 Austaia 45 (1.62%)

Lawrence Livermore 74
National Laboratory =~ LLNL-PRES-872707

82% of users are doing HPC; 27% Al

HPC / Simulation
Statistics / Data Analysis
Al/ML

Computer Science
Bioinformatics

High Energy Physics
Web applications
Compiler Testing
Visualization

Embedded Systems
User Support

System Administration
Quantum
DevOps

Lawrence Livermore
National Laboratory =~ LLNL-PRES-872707

45 (18.3%)
67 (27.2%)
74 (30.1%)
22 (8.9%)
21 (8.5%)
16 (6.5%)
15 (6.1%)
21 (8.5%)
5 (2%)
68 (27.6%)
68 (27.6%)
6 (2.4%)
52 (21.1%)

75

204 (82.9%)

75

Most users are also contributors!

No 69 (28%)
Packages 128 (52%)
Core Features 34 (13.8%)
Documentation 19 (7.7%)
Slack Discussions 100 (40.7%)
GitHub Discussions 44 (17.9%)
Issues 121 (49.2%)
Tools/integrations 17 (6.9%)
Spack User Meeting Talk 19 (7.7%)
Spack Community Zoom Me... 15 (6.1%)

Lawrence Livermore 76
National Laboratory =~ LLNL-PRES-872707 76

Most are within 2 releases of latest

0.10
0.1
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.20
0.21
0.22
0.23

1.0.0-alpha* pre-releases
develop (1.0.0dev0)

Lawrence Livermore
National Laboratory

custom fork

LLNL-PRES-872707

1 (0.4%)
1 (0.4%)
1(0.4%)
1(0.4%)
1 (0.4%)
4 (1.6%)
2 (0.8%)
3 (1.2%)
5 (2.1%)
12 (4.9%)
12 (4.9%)
30 (12.3%)
62 (25.5%)

35 (14.4%)

24 (9.9%)

108 (44.4%)

77

140 (57.6%)

77

More users are on stable releases now than on
develop

Percent using release

2020 2021 2022 2025

70
60
5

o

4

o

3

(@)

2

o

1

o O

B develop mLatestrelease

Lawrence Livermore 78
National Laboratory =~ LLNL-PRES-872707

Environments have become the preferred way to
load packages

How do you get installed Spack packages into your environment?

60
50

40

30

.] |
’ I ol | i

2020 2021 2022 2025

o

B load W environments ® Env modules m Lmod m build-env B view B containers

Lawrence Livermore 79

National Laboratory =~ LLNL-PRES-872707 79

There are many packages outside of Spack’s builtin
repo

Do you have your own local Spack package repositories?

244 responses

® No
@ Yes --just one
@ Yes -- several

Lawrence Livermore 80

National Laboratory =~ LLNL-PRES-872707 80

Users want better error messages, more
performance, and a separate package repo

Rank these TBD Spack features by importance

150 | Not Important [l Slightly Important — [Somewhat important [l Very Important — [l Critical

100
50
0 A - — N - - _— " "
ceﬂer error messageSJ Testing / integration with More packages in public Better organized/publicized Better compiler flag Performance/speed Better autodetection of
Pavilion2/ReFrame/other build caches public build caches handling improvements system packages
test tool \

Better GPU compiler

support

r

~\

Separate the builtin repo
from core }

Generate GitHub Actions More developer features Improvements for “spack Better CI Stability / faster SpackOS/support for Cross-compilation More build parallelism
pipelines + build caches test’ PR turnaround custom libc \
Lawrence Livermore 8 1

National Laboratory =~ LLNL-PRES-872707

81

An isolated compilation environment allows Spack

to easily swap compilers

Spack
Process

do_install()

Install dep1 Install dep2 SRl Install package

e e e

Build

Set up environment
Process
CC =spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

CMAKE_PREFIX_PATH=...
LIBRARY_PATH =..

install()

1
1
1
1
1
1
1
1
1
1
1
: PKG_CONFIG_PATH =... PATH = spack/env:$PATH
1
1
1
1
1
1
1
1
1
1

LLNL-PRES-806064

Forked build process isolates environment for each build.
Uses compiler wrappers to:

Add include, lib, and RPATH flags
Ensure that dependencies are found automatically
Load Cray modules (use right compiler/system deps)

Y

ompiler wrappers

spack-cc, spack-c++, spack-f77, spack-f90)

-1 /dep1-prefix/include
-L /dep1-prefix/lib
-WI,-rpath=/dep1-prefix/lib

spack.io €@ =

Core contributions are less diverse, but still comprise many

organizations
LLNL Max Planck TechX
CSCs FAU CERN
B Kitware Bl Perimeterinst B NCSA
1000001 ANL/UIUC Google Amazon
9 B Fermilab Il RIT Bl Cardiff
S 80000 1 SNL William and Mary lowa
IS ANL B HZDR e TAMU-CC
® 600004 ™= U. Arizona Colorado NVIDIA
'5 Hamburg I AMD B Cambridge
40000 4 B CEA NASA-GISS lowa State
ORNL B |LANL B Australi
Il Heidelberg Bl Kirchhoff [
20000 A
0 T T
w&v '»°\'b

LLNL-PRES-806064 8 3 S p a C k - i O @ &

	Slide Number 1
	We build codes from hundreds of small, complex pieces
	Slide Number 3
	Even proprietary software builds on top of open source
	ECP’s E4S stack is even larger than these codes
	Some history: �How to install software on a supercomputer, circa 2013
	What does a package managers do to help?
	Many package managers (conda, pip, apt, etc.) �make simplifying assumptions about the software ecosystem
	High Performance Computing (HPC) �violates many of these assumptions
	What about containers?
	Overview & Community
	Spack enables Software distribution for HPC
	Slide Number 13
	Spack was critical for ECP’s mission to create a �robust, capable exascale software ecosystem.
	Slide Number 15
	Spack sustains the HPC software ecosystem�with the help of many contributors
	Spack users have diverse roles across many types of institutions
	What does the Spack project look like now?
	We started conversations with Linux Foundation in �December 2021, and talked through mid-2022
	We joined forces with Kokkos to start a larger umbrella, which eventually became HPSF
	With HPSF, we’ve formalized our governance with the Technical Steering Committee
	Response to LF/HPSF seems positive
	Spack Usage
	Spack provides a spec syntax to describe customized installations
	Spack packages are templates�They use a simple Python DSL to define how to build
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Spack environments enable users to build customized stacks from an abstract description
	Environments have enabled us to add build many features to support developer workflows
	spack develop lets developers work on many packages at once
	Teams are building development front-ends top of on Spack
	The Road to Spack v1.0
	The road to v1.0 has been long
	Spack packages use a lot of (declarative) conditional logic
	First challenge: we needed a new concretizer to�model the expressiveness of the DSL
	We reimplemented Spack’s concretizer using�Answer Set Programming (ASP)
	Spack’s concretizer is implemented using�Answer Set Programming (ASP)
	Grounding converts a first-order logic program into a propositional logic program, which can be solved.
	ASP searches for stable models of the input program
	Second challenge: Spack’s original concretizer�did not reuse existing installations
	--reuse (now the default) was enabled by ASP
	Minimizing builds is surprisingly simple in ASP
	With and without --reuse optimization
	Third challenge: we needed to allow multiple versions of build dependencies in the DAG
	Objective: dependency splitting
	We want to dynamically “split” nodes when needed
	First try at allowing duplicates in a single solve
	Cycle detection in the solver is expensive
	Unification sets can be expensive too
	Through many different optimizations, we were able to reclaim enough performance to make duplicate build dependencies tractable
	It was not trivial to find a model that was both performant and tightly coupled
	Fourth Challenge: v1.0 adds language dependencies
	Compiler Dependencies
	Spack 1.x introduces toolchains
	Configuring compilers in Spack v1.*
	Final challenge: Splitting the package repository
	Spack now has a Stable Package API
	Package split process
	You can now specify the package repo version �in an environment or config
	Useful commands after repo split
	Bonus feature:�Spack now supports concurrent builds!
	Slide Number 64
	Hands-on time!
	Slide Number 66
	Claim a VM instance at: bit.ly/spack-vms
	Slide Number 68
	Build systems moved to spack/spack-packages
	More on direct dependencies with %
	Breaking changes ⚠️
	Art vs. science: reusing builds is not quite enough
	We devised a two-level optimization scheme
	About 2/3 of respondents are from the US
	82% of users are doing HPC; 27% AI
	Most users are also contributors!
	Most are within 2 releases of latest
	More users are on stable releases now than on develop
	Environments have become the preferred way to load packages
	There are many packages outside of Spack’s builtin repo
	Users want better error messages, more performance, and a separate package repo
	An isolated compilation environment allows Spack �to easily swap compilers
	Core contributions are less diverse, but still comprise many organizations

