
See slide 2 for
license details

Presented by

Members of

With prior support from

https://pesoproject.org https://rapids.lbl.gov

Consortium for the Advancement
of Scientific Software
https://cass.community

Anshu Dubey (she/her)
Argonne National Laboratory

Software Testing and Verification

Contributors: Anshu Dubey (ANL), David E. Bernholdt (ORNL), Patricia
Grubel (LANL), Rinku Gupta (ANL), Alicia Klinvex (SNL), Mark C. Miller
(LLNL), Jared O’Neal (ANL), David M. Rogers (ORNL), Gregory R.
Watson (ORNL)

Software Sustainability track @ Argonne Training Program on Extreme-
Scale Computing summer school

https://pesoproject.org/
https://rapids.lbl.gov/
https://cass.community/

2

License, Citation and Acknowledgements
License and Citation
• This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0).
• The requested citation the overall tutorial is: Anshu Dubey, David E. Bernholdt, and Todd Gamblin, Software

Sustainability track, in Argonne Training Program on Extreme-Scale Computing, St. Charles, Illinois, 2025. DOI:
10.6084/m9.figshare.29816981.

• Individual modules may be cited as Speaker, Module Title, in Tutorial Title, …

Acknowledgements
• This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR),

and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration.

• This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Next-
Generation Scientific Software Technologies (NGSST) program.

• This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department
of Energy under Contract No. DE-AC02-06CH11357.

• This work was performed in part at the Lawrence Livermore National Laboratory, which is managed by Lawrence Livermore National
Security, LLC for the U.S. Department of Energy under Contract No. DE-AC52-07NA27344.

• This work was performed in part at the Los Alamos National Laboratory, which is managed by Triad National Security, LLC for the U.S.
Department of Energy under Contract No.89233218CNA000001

• This work was performed in part at the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC for the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

• This work was performed in part at Sandia National Laboratories. Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.6084/m9.figshare.29816981

3

What is Testing

• When you compile it, you are testing for defects in syntax
• When you run it for the first time you are testing for correctness
• When you add any code and run it again, you are testing it again
• When you break down your development into smaller chunks you test each

chunk, then you combine the chunks, and you test again.

Whenever you write a code you are doing it

4

What is Testing

• When you compile it, you are testing for defects in syntax
• When you run it for the first time you are testing for correctness
• When you add any code and run it again, you are testing it again
• When you break down your development into smaller chunks you test each

chunk, then you combine the chunks, and you test again.

Whenever you write a code you are doing it

Testing is an integral part of code development

5

What is Testing

• When you compile it, you are testing for defects in syntax
• When you run it for the first time you are testing for correctness
• When you add any code and run it again, you are testing it again
• When you break down your development into smaller chunks you test each

chunk, then you combine the chunks, and you test again.

Whenever you write a code you are doing it

Testing is an integral part of code development

So, what is the whole fuss about testing?

6

What is Testing

• When you compile it, you are testing for defects in syntax
• When you run it for the first time you are testing for correctness
• When you add any code and run it again, you are testing it again
• When you break down your development into smaller chunks you test each

chunk, then you combine the chunks, and you test again.

Whenever you write a code you are doing it

Testing is an integral part of code development

So, what is the whole fuss about testing?

Formalization of the process intimidates people
because they think of writing tests as an overhead

7

How to Think About Building Tests

You start by
thinking about

what is the
correct

behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

8

How to Think About Building Tests

You start by
thinking about

what is the
correct

behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

You also think
about what
would be

wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

9

How to Think About Building Tests

You start by
thinking about

what is the
correct

behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

You also think
about what
would be

wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

Let us work through an example …

• You want a large prime number for
encryption

• As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

10

How to Think About Building Tests

You start by
thinking about

what is the
correct

behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

You also think
about what
would be

wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior Here are all the ingredients
for building a test !!

Let us work through an example …

• You want a large prime number for
encryption

• As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

11

How to Think About Building Tests

You start by
thinking about

what is the
correct

behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

You also think
about what
would be

wrong
behavior

Next you think about
how you are going to
be able to tell whether
the code is exhibiting

correct behavior

• You write a “main” that reads in a number, calls the functions and prints true or false
• You can automate it by including a series of known primes and non-primes and their

corresponding true or false values
• This is your “unit test” for the function

Here are all the ingredients
for building a test !!

Let us work through an example …

• You want a large prime number for
encryption

• As a part of the development, you first
write a function that checks if a given
number is prime

Correct behavior: input 13 returns true,
input 15 returns false
Incorrect behavior: input 15 returns true

12

How to Think About Building Tests

Next you write a
function to get to
a large prime for

encryption

Then you wish to
confirm that it is a

large enough prime
So, you write another unit test that counts

the number of digits in the prime

13

How to Think About Building Tests

Finally, you want
to verify that it

meets your
encryption needs

You integrate your new
function with your

encryption software

So, you write another unit test that counts
the number of digits in the prime

The encryption software is likely to have a
way to verify that the cipher can only be

translated with the right key

Next you write a
function to get to
a large prime for

encryption

Then you wish to
confirm that it is a

large enough prime

14

How to Think About Building Tests

Finally, you want
to verify that it

meets your
encryption needs

You integrate your new
function with your

encryption software

So, you write another unit test that counts
the number of digits in the prime

• Now you have a more complex test that involves several correctly working
components

• This is your “integration test”

The encryption software is likely to have a
way to verify that the cipher can only be

translated with the right key

Next you write a
function to get to
a large prime for

encryption

Then you wish to
confirm that it is a

large enough prime

15

Types of Tests

Well known tests for enterprise software

• Unit tests – verify a single function, extremely quick to run
• Integration tests – verify functions working together
• System tests – verify functionality of the entire software
• Acceptance tests – verify that the client needs are met
• Regression tests – verify that there is no degradation in code capabilities

16

Types of Tests

Additional types of tests needed for research software
• Composite unit tests – are tests for specific functionalities and/or

capabilities
• Granular tests – are integration tests at various granularities verifying

correct behavior of interoperating functional units
• Restart tests – verify that a run can restart transparently from a

checkpointed state
• Performance tests – apply to high-performance computing codes, verify

that there is no performance loss

17

Classes of Tests

• Clear box testing – when you know the internals and can modify the
code you are testing
– Likely to be the code you and your collaborators are developing
– You can insert assertions
– You can insert code snippets that make testing easier

• Opaque box testing – when you do not know the internals of the code
being tested, and cannot modify the code
– Third party software or legacy code
– The only means of verification available is reasoning about output to be obtained

from supplied input

18

Test Driven Development

Consider
new code

Implement/
modify
code

Write/
modify
tests

Test and
modify
code

• Documented specifications and
requirements of the code

• Ensures that thought is given to
what it means for the program to be
correct, rather than just what the
program should do

• More efficient development cycle

• Much less debugging

• Requires:
– Care in writing tests
– Frequent running of tests
– Wide adoption by development team

We will do TDD for the mesh/particle example from the design module using LLM at the end
Sample prompts at -- https://tinyurl.com/yfxtf89t

https://tinyurl.com/yfxtf89t

19

What is Continuous Integration (CI)

https://docs.gitlab.com/ee/ci/introduction/

https://docs.gitlab.com/ee/ci/introduction/

20

CI Components
• Testing

– Focused, critical functionality (infrastructure), fast, independent, orthogonal, complete, …
– Existing test suites often require re-design/refactoring for CI

• Integration
– Changes across key branches merged & tested to ensure the “whole” still works

• Integration can take place at multiple levels
– Individual project
– Spack
– E4S

– Develop, develop, develop, merge, merge, merge, test, test, test…NO!
– Develop, test, merge, develop, test, merge, develop, test, merge…YES!

• Continuous
– Changes tested every commit and/or pull-request (like auto-correct)

• CI generally implies a lot of automation

21

Test Driven Development vs. Automated Testing vs. CI

• Test Driven Development: A development methodology where functional test are written before
the code
– Works well with CI as tests are written and committed and are automatically run (failing)
– Code that implements the functionality being tested retriggers the tests automatically

• Automated Testing: Software that automatically performs tests on a regular basis and reliably
detects and reports anomalous behaviors/outcomes.
– Examples: Auto-test, CTest/CDash, nightly testing, etc.
– May live “next to” your development workflow
– Potential issues: change attribution, timeliness of results, multiple branches of development

• Continuous Integration (CI): automated testing performed at high frequency and fine granularity
– Aimed at preventing code changes from breaking key branches of development (e.g. main)
– Lives “within” your development workflow
– Potential issues: extreme automation, test granularity, coverage, 3rd-party services/resources

22

Examples…

Automated Nightly Testing Dashboard
Lives “next to” your development work

CI Testing
Lives embedded in your development work

23

What is CI Good For
• The purpose of CI is to identify problems early

– Prevent code that would “break the build” or adversely impact other developers being introduced
– Need to provide sufficient confidence, but run quickly – balance varies by project

• CI should complement (not replace) more extensive automated testing
– Use scheduled testing for more and more detailed tests, more configurations and platforms,

performance testing, etc.

• CI for TDD is a natural fit
– Writing tests before the code works well with CI

• Many options for where to execute CI tests
– Free services are a good (easy) place to start
– But may not be sufficient in the long run (especially large HPC/scientific codes)

• Start simple to get automation working, then build out what you need
– Focus initially on key software configurations and aspects of the code to be tested
– Make sure your testing expands to cover new code, use TDD

24

Building a Test-suite

• For some tests assertions will suffice
• For others you will need to compare the output against baselines

• Building a comparison utility is extremely useful
• Also useful to develop diagnostics – indirect ways of verifying behavior

• Conservation of physical quantities
• No non-physical values

Elements of test development

25

Building a Test-suite

• From a known analytical solution
• Manufacture a solution
• Visualize and inspect output and anoint as

baseline
• Run a test case up to point A and drop a

checkpoint. Run another test case up to a later
point B.
• Use point A to restart and B as the anointed

baseline

• For some tests assertions will suffice
• For others you will need to compare the output against baselines

• Building a comparison utility is extremely useful
• Also useful to develop diagnostics – indirect ways of verifying behavior

• Conservation of physical quantities
• No non-physical values

Elements of test development

Building baselines for comparison

26

Building a Test-suite

• From a known analytical solution
• Manufacture a solution
• Visualize and inspect output and anoint as

baseline
• Run a test case up to point A and drop a

checkpoint. Run another test case up to a later
point B.
• Use point A to restart and B as the anointed

baseline

• For some tests assertions will suffice
• For others you will need to compare the output against baselines

• Building a comparison utility is extremely useful
• Also useful to develop diagnostics – indirect ways of verifying behavior

• Conservation of physical quantities
• No non-physical values

Elements of test development

Building baselines for comparison

Apply scaffolding
for selection of

tests …
explained next

27

Components needed
• Mesh
• Hydrodynamics solver
• Equation of state
• Parallelization

Example – Shock Hydrodynamics with Adaptive Mesh Refinement

Strategy for development
Think of an application with

analytical solution

28

Components needed
• Mesh
• Hydrodynamics solver
• Equation of state
• Parallelization

Example – Shock Hydrodynamics with Adaptive Mesh Refinement

Strategy for development
Think of an application with

analytical solution

• Sedov blast wave
• High pressure at the

center
• Shock moves out in a

circle
• Analytical solution for

how far the shock has
travelled

29

Step 1 – Equation of State

• Initialize density and internal energy with known values
• Compute pressure and temperature using EOS
• Next use density and computed pressure as input and compute internal

energy and temperature using EOS
• Compare computed values against initialized values

30

Step 1 – Equation of State

• Initialize density and internal energy with known values
• Compute pressure and temperature using EOS
• Next use density and computed pressure as input and compute internal

energy and temperature using EOS
• Compare computed values against initialized values

We have a unit test

31

Step 2 – Mesh

• Start with uniform grid
• Domain decomposition for

parallelization
– Halo fill operation

• Initialize the interior (red) with a known
function

• Apply halo fill
• Compute values for the halo using the

known function
• Compare against filled values

rank 2

rank 1

halo cells

32

Step 2 – Mesh

• Start with uniform grid
• Domain decomposition for

parallelization
– Halo fill operation

• Initialize the interior (red) with a known
function

• Apply halo fill
• Compute values for the halo using the

known function
• Compare against filled values

rank 2

rank 1

halo cells

We have another unit test

33

Step 3 – Hydrodynamics

• Apply initial conditions to the mesh
– zeroes everywhere except at the center

• Write code for the analytical expression of the distance traveled by the shock
• Do time integration
• At time T compare evolved solution against analytical solution

If both mesh and EOS unit test pass, then any failure is in Hydrodynamics
This is a composite unit test

This is also the idea behind scaffolding

34

• The same halo fill unit test for mesh also works for AMR
• Additional functionalities to test are:

– Fine-coarse boundary resolution
– Regridding

• Steps in testing
– Run Sedov with UG
– Run Sedov with AMR, but no dynamic refinement

• If failed fault is in flux correction
– Run Sedov with AMR and dynamic refinement

• If failed fault is in regridding

Step 4: AMR

35

• The same halo fill unit test for mesh also works for AMR
• Additional functionalities to test are:

– Fine-coarse boundary resolution
– Regridding

• Steps in testing
– Run Sedov with UG
– Run Sedov with AMR, but no dynamic refinement

• If failed fault is in flux correction
– Run Sedov with AMR and dynamic refinement

• If failed fault is in regridding

Step 4: AMR

We have continued to build
scaffolding and are using

granular testing to pinpoint the
cause of error

36

• The same halo fill unit test for mesh also works for AMR
• Additional functionalities to test are:

– Fine-coarse boundary resolution
– Regridding

• Steps in testing
– Run Sedov with UG
– Run Sedov with AMR, but no dynamic refinement

• If failed fault is in flux correction
– Run Sedov with AMR and dynamic refinement

• If failed fault is in regridding

Step 4: AMR

We have continued to build
scaffolding and are using

granular testing to pinpoint the
cause of error

All of these are examples of
clear box testing

37

There may not be existing tests

• Isolate a small area of the code
• Dump a useful state snapshot
• Build a test driver

– Start with only the files in the area
– Link in dependencies

– Copy if any customizations needed

• Read in the state snapshot
• Restart from the saved state
• Verify correctness

– Always inject errors to verify that the test is working

state

driver

Mixed Clear/Opaque Box Testing For a Legacy Code

38

How to build your test suite?

• A mix of different granularities works well
– Unit tests for isolating component or sub-component level faults
– Integration tests with simple to complex configuration and system level
– Restart tests

• Rules of thumb
– Simple
– Enable quick pin-pointing

Useful resources https://bssw.io/items?topic=testing

https://bssw.io/items?topic=testing

39

• Expose parts of the code that aren’t being tested
– gcov - standard utility with the GNU compiler

collection suite (we will use it in the next few slides)
– Compile/link with –coverage & turn off optimization
– Counts the number of times each statement is

executed
– Necessary for testing, but not sufficient

• gcov also works for C and Fortran
– Other tools exist for other languages
– JCov for Java
– Coverage.py for python
– Devel::Cover for perl
– profile for MATLAB

Code coverage tools
How do we determine what tests are needed?

• Lcov
– a graphical front-end for gcov
– available at

https://github.com/linux-test-
project/lcov

– Codecov.io in CI module

• Hosted servers (e.g., coveralls,
codecov)

• graphical visualization of results
• push results to server through

continuous integration server

https://github.com/linux-test-project/lcov
https://github.com/linux-test-project/lcov

40

Good Rules of Thumb

• Test your tests!
– Make sure tests fail when they’re supposed to!

• Add “regression tests”
– Ensure that bugs aren’t creeping in

• Test regularly
– Critical when teams are adding code regularly
– To identify and document where changes to the underlying platform change code

behavior/results

• Automate regular testing
– Inculcate the discipline of monitoring the outcome of regular testing

• Exercise third-party dependencies

• Physics/math-based strategies
– Conserved quantities, symmetries, synthetic operators
– Eliminate complete dependence on bitwise reproducibility

41

Summary

• A testing strategy is essential for producing reliable trustworthy
software
– Invest the time needed to thoroughly test your software at all levels
– Use automation whenever possible

• Different challenges are associated with exploratory, legacy, and
composable codes
– Adapt your strategy to fit your situation.
– Eventually you will want to be able to verify all components in a code release.

• Don’t get distracted by all the technologies out there – focus on
exercising your code.
– Scaffolding projects can help with mechanics.

42

Resources

• Oberkampf, W., & Roy, C. (2010). Verification and Validation in Scientific
Computing. Cambridge: Cambridge University Press.
doi:10.1017/CBO9780511760396

• Michael Feathers. 2004. Working Effectively with Legacy Code. Prentice Hall
PTR, USA. ISBN: 9780131177055

• A Dubey, K Weide, D Lee, J Bachan, C Daley, S Olofin… - Ongoing Verification
of a Multiphysics Community Code. Software: Practice and Experience, 2015
https://doi.org/10.1002/spe.2220

https://doi.org/10.1017/CBO9780511760396
https://isbndb.com/book/9780131177055
https://doi.org/10.1002/spe.2220

	Software Testing and Verification
	License, Citation and Acknowledgements
	What is Testing
	What is Testing
	What is Testing
	What is Testing
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	How to Think About Building Tests
	Types of Tests
	Types of Tests
	Classes of Tests
	Test Driven Development
	What is Continuous Integration (CI)
	CI Components
	Test Driven Development vs. Automated Testing vs. CI
	Examples…
	What is CI Good For
	Building a Test-suite
	Building a Test-suite
	Building a Test-suite
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Example – Shock Hydrodynamics with Adaptive Mesh Refinement
	Step 1 – Equation of State
	Step 1 – Equation of State
	Step 2 – Mesh
	Step 2 – Mesh
	Step 3 – Hydrodynamics
	Step 4: AMR
	Step 4: AMR
	Step 4: AMR
	Slide Number 37
	How to build your test suite?
	How do we determine what tests are needed?
	Good Rules of Thumb
	Summary
	Resources

