
extremecomputingtraining.anl.gov

Workflow Management Tools to
Couple Simulation and Al

http://extremecomputingtraining.anl.gov/

Vasan et al. 2024 IEEE International Parallel and
Distributed Processing Symposium Workshops

Substitute inaccurate or expensive components of simulation with
ML models
e.g. closure or surrogate modeling

Control simulations with ML
e.g. select numerical scheme or input parameters, e.g. AI-in-the-loop

Avoid IO bottlenecks and disk storage issues

Active learning
e.g. continuous improvement of ML model training as simulation progresses

Balin et al., arXiv:2306.12900, 2023.

Increasingly common for research groups to use simulated datasets for model training

Sometimes groups tackle this in two stages run separately by human researchers, e.g. Offline Training

However, more groups are now using workflow patterns where simulation and training (and/or inference) are
coupled to the simulation during runtime, e.g. Online Training

Today, we’ll focus on Online Training or Online Inference workloads where AI/ML are coupled with
Simulations in an automated fashion

NekRS-ML

Steering workflow

Digital twin workflowInverse problem workflow

Brewer, Wes et al. "AI-coupled HPC workflow applications, middleware and performance." arXiv:2406.14315 (2024)

Sequential workflow

Task Launching
How to launch
processes running
different applications?
How are they coupled?

Do your applications
need to be launched
with MPI?

Data Sharing
How to share data
between
components?

Process placement

Are the Simulation and
AI components run by
the same processes?
or different ones?

Do Simulation and AI
share nodes or are
they placed on
different nodes?

Elasticity

Do you need to extend
your workflow over
many PBS/Slurm jobs?
How to automate this?

Multi-machine

Do you need different
resources for different
components of the
workflow?

• E.g. Simulations on
Aurora and LLM
inference on
Sambanova

How to couple cross
machine workflows?

• Traditional ModSim (and stand-
alone AI) applications often lie
along the Process Launching –
Communication axis in their
functionality and needs
• e.g. CFD, Cosmology, MD

• With the introduction of AI/ML to
the picture, a third dimension, Data
Management, becomes important

• Data often needs to be available
for longer and in larger quantities
to feed online training and
inference

Parsl
Dask

Balsam

OpenMP TCP
RDMA

Redis
DAOS

Filesystem
DataSpaces

ADIOS2

Dragon

MPI

HPC Workload Tools & Needs
Process
Launching

Data
Management

Inter-node
Communication

There exist many patterns with specific nuances, but we will consider two broad cases
for this talk

Tight Coupling: a kernel in the simulation has been replaced by an AI-surrogate.
Inference results from the surrogate couple tightly to traditional parts of the
simulation code; periodic retraining may also occur

External Coupling: AI components interact with the outputs or results of simulations.
Can be used to create a surrogate for the simulation/system (e.g. digital twin) or for
steering purposes (e.g. AI-in-the-loop or hyperparameter searches)

• Tight coupling
• Python and ML frameworks embedding into simulation code

• PythonFOAM, TensorFlowFOAM and HONEE (by Romit Maulik, Saumil Patel, Bethany Lusch at ALCF)
• Linking to LibTorch or ONNX Runtime libraries for ML inferencing from C, C++ and Fortran

• Aurora will support LibTorch and Intel’s OpenVINO inference library

• External coupling
• Parsl

• Workflow tool for distributed, parallel task execution
• SmartSim / SmartRedis

• Workflow manager and client libraries for in-situ workflows by sharing data across a database
• ADIOS2

• Same I/O API to transport data across different media (file, wide-area-network, in-memory staging,
etc.), favoring asynchronous streaming

• Dragon
• Run-time library for managing dynamic processes, memory, and data at scale through high-

performance communication

https://github.com/argonne-lcf/PythonFOAM
https://github.com/argonne-lcf/PythonFOAM
https://github.com/argonne-lcf/TensorFlowFoam
https://gitlab.com/phypid/honee
https://parsl.readthedocs.io/en/stable/index.html
https://parsl.readthedocs.io/en/stable/index.html
https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartRedis
https://adios2.readthedocs.io/en/v2.9.1/
https://adios2.readthedocs.io/en/v2.9.1/
https://github.com/DragonHPC/dragon
https://github.com/DragonHPC/dragon

• Tight coupling requires integration of ML
code within simulation code, however
most common languages for traditional
simulation codes are C/C++ and
FORTRAN and not python

• libTorch is one example of a package that
bridges this gap for Torch and C++

• libTorch has most of the functionality of
Torch’s python API, pytorch

• libTorch is included in the Auora
frameworks module, details on compiling
and linking with libTorch libraries are in
the Aurora documentation

#include <torch/torch.h>
#include <torch/script.h>

int main(int argc, const char* argv[]) {
 torch::jit::script::Module model;

 model = torch::jit::load(argv[1]);
 std::cout << "Loaded the model\n";

 model.to(torch::Device(torch::kXPU));
 std::cout << "Model offloaded to GPU\n\n";

 auto options = torch::TensorOptions()
 .dtype(torch::kFloat32)
 .device(torch::kXPU);
 torch::Tensor input_tensor = torch::rand({1,3,224,224}, options);
 assert(input_tensor.dtype() == torch::kFloat32);
 assert(input_tensor.device().type() == torch::kXPU);
 std::cout << "Created the input tensor on GPU\n";

 torch::Tensor output = model.forward({input_tensor}).toTensor();
 std::cout << "Performed inference\n\n";

 std::cout << "Slice of predicted tensor is : \n";
 std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/10) << '\n';

 return 0;
}

https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/

• mpiexec can be used to launch application on specific nodes with the --hosts or --
hostlist options, however, can’t refill hardware with new tasks once applications complete

mpiexec -n 24 —ppn 12 --hosts $HOST_NAME1 $HOST_NAME2 ./hello_affinity &

• Workflow tools (parsl, dragon, dask, balsam, etc.) can be used to pin applications to specific
hardware but also refill hardware when tasks complete and manage task dependencies

Parsl HTEX Interchange

• Simple installation with pip
• Workflow contained within memory
• Can orchestrate work from login node and submit jobs

to PBS/Slurm or can orchestrate within jobs
• Configuration (assignment of tasks to hardware) set by

user, separate from workflow logic and application
definitions

• Apps define how to run tasks
• Python apps call python functions
• Bash apps call external application

• Apps return futures: a proxy for a result that might not
yet be available

• Apps run concurrently, respecting dependencies
• Community of 70+ developers, several at UChicago &

ANL, part of Globus Labs
*demo materials link

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/07_workflows_coupling_simulation_and_AI/task_launching/1_parsl_tasks.py

• Composable distributed run-time for managing processes, memory,
and data at scale through high-performance communication
objects

• Open source project developed by HPE
• Key features:

• Multi-node extension to Python multiprocessing
 (mp.Process, mp.Pool, …)
• C API included, Fortran API in development
• Managed memory through sharded dictionary objects
• Parallel process launching, including PMI enabled for MPI

applications with fine-grained control of CPU/GPU affinity
• PMIX support in development (for use on Aurora)
• High-speed RDMA transport agents for off-node communication

on Slingshot and Infiniband networks (TCP for other networks)
• Interfaces for higher-level workflow tools, e.g. SmartSim & Parsl

*demo materials link

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/07_workflows_coupling_simulation_and_AI/task_launching/2_dragon_tasks.py

Science Problem: identify high value molecules
(i.e. molecules with high ionization energy) among a
search space of billions of candidates

Simulation Results produced over time

Workflow Pattern: AI/ML Components steer Simulations

* Demo materials link

Challenge: The simulation is too computationally
expensive to run for every candidate molecule

Approach: Create an active learning loop that
couples simulation with machine learning to
simulate only high value candidates

Tools:
• Parsl is used for task launching and integration
• Use RDkit and scikit-learn to train a k-nearest

neighbor (knn) model
• Simulations done with MD package xTB

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/07_workflows_coupling_simulation_and_AI/ml_in_the_loop/parsl

Childs et al., “A terminology for in situ visualization and analysis systems”, Intl.
Journal of High Performance Computing Applications, 2020

GPU GPU GPUGPU

CPU

Simulation rank

Database

ML component

Data transfer

Space Division: Same Node

GPU

CPU

GPU

Time Division: Same Compute Resource

Execution Management

• Time division (tight coupling)
• Components run on same compute resources (may even

use same processes)
• Staggered in time, execution of one component halts the

other
• May allow for direct memory access and no data

copy/transfer
• Idle time of individual components may be significant

• Space division (external coupling)
• Components run on separate compute resources
• Concurrent in time, both components run simultaneously
• Minimal idle time of components for fast data copy/transfer
• Usually requires indirect memory access with data

copy/transfer

• Tools for sharing data between Simulation and AI/ML components:
• Parallel Filesystem (e.g. Lustre, on Aurora >650 GB/s bandwidth)
• DAOS (object datastore, bandwidth >25 TB/s on Aurora)

• Dragon Dictionary
• Redis
• ADIOS2
• Node local I/O, i.e. read and write directly to DRAM (e.g. /tmp)

• Typically, the least performant of these approaches will be the
parallel filesystem, and the most performant the node local I/O

• Node local I/O for both reads and writes may be particularly useful
for “co-located” patterns where AI/ML and Simulation processes
share the same nodes (but split on-node GPU/CPU resources)

• Intermediate solutions for non co-located (clustered) workflows may
use data staging layers in memory like Redis or Dragon Dictionaries

• ADIOS2 is a tool for data streaming between nodes, but does not
provide a persistent data staging layer

and DAOS!

Dragon Dictionary Architecture

https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://dragonhpc.github.io/dragon/doc/_build/html/start.html#data
https://dragonhpc.github.io/dragon/doc/_build/html/start.html#data
https://redis.io/
https://redis.io/
https://adios2.readthedocs.io/en/v2.10.2/index.html
https://adios2.readthedocs.io/en/v2.10.2/index.html

• This demo is another AI-in-the-loop case, this time using Dragon Dictionaries as a
data layer between components

• It trains a model to predict the value of sin(x)
• Dragon Dictionaries take in data from client processes in the form of key-value pairs
• Data are sharded across nodes through channels by Memory Pool managers that sit

on each node
• Dragon Dictionary Managers dynamically load balance key-value pairs across

managers
• Transfers are done with RDMA (slingshot networks) or TCP (non-slingshot networks)

Load balance of equal-size
key-value pairs on Aurora

Aggregate Bandwith of
Data Reads of Increasing
Message Size (128 nodes,
HPE internal system)

R.Balin, C.Simpson PASC25

*demo link

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/07_workflows_coupling_simulation_and_AI/ml_in_the_loop/dragon_ddict

Parsl
Dask

Balsam

OpenMP TCP
RDMA

Redis
DAOS

Filesystem
DataSpaces

ADIOS2

Dragon

MPI

HPC Workload Tools & Needs

Process
Launching

Data
Management

Inter-node
Communication

nekRS-ML, R. Balin

Many reasons to couple AI/ML to Simulations
Utilize fast AI surrogates, Efficiently steer simulation ensembles, Avoid I/O
Bottlenecks, Active Learning

Two broad types of coupling: tight coupling and external
coupling

Tight coupling often needs a package to embed ML code in
simulation code (e.g. PythonFOAM, libTorch, OpenVINO)

External coupling often needs a workflow tool like Parsl, Dragon
or SmartSim

Distributing processes across time and compute resources
involves trade-offs and may be different for each workload

AI/ML-Simulation coupled workloads involve a balance of
process launching, communication, and data management that
is different from how these application run in a stand-alone way

extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: Workflow Management Tools to Couple Simulation and Al
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear

