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Vasan et al. 2024 IEEE International Parallel and 
Distributed Processing Symposium Workshops

Substitute inaccurate or expensive components of simulation with 
ML models 
e.g. closure or surrogate modeling

Control simulations with ML 
e.g. select numerical scheme or input parameters, e.g. AI-in-the-loop

Avoid IO bottlenecks and disk storage issues

Active learning 
e.g. continuous improvement of ML model training as simulation progresses



Balin et al., arXiv:2306.12900, 2023.

Increasingly common for research groups to use simulated datasets for model training

Sometimes groups tackle this in two stages run separately by human researchers, e.g. Offline Training

However, more groups are now using workflow patterns where simulation and training (and/or inference) are 
coupled to the simulation during runtime, e.g. Online Training

Today, we’ll focus on Online Training or Online Inference workloads where AI/ML are coupled with 
Simulations in an automated fashion

NekRS-ML



Steering workflow

Digital twin workflowInverse problem workflow

Brewer, Wes et al. "AI-coupled HPC workflow applications, middleware and performance." arXiv:2406.14315 (2024)

Sequential workflow



Task Launching
How to launch 
processes running 
different applications? 
How are they coupled?

Do your applications 
need to be launched 
with MPI?

Data Sharing
How to share data 
between 
components?

Process placement

Are the Simulation and 
AI components run by 
the same processes? 
or different ones?

Do Simulation and AI 
share nodes or are 
they placed on 
different nodes?

Elasticity

Do you need to extend 
your workflow over 
many PBS/Slurm jobs?  
How to automate this?

Multi-machine

Do you need different 
resources for different 
components of the 
workflow?

• E.g. Simulations on 
Aurora and LLM 
inference on 
Sambanova

How to couple cross 
machine workflows?



• Traditional ModSim (and stand-
alone AI) applications often lie 
along the Process Launching – 
Communication axis in their 
functionality and needs
• e.g. CFD, Cosmology, MD

• With the introduction of AI/ML to 
the picture, a third dimension, Data 
Management, becomes important

• Data often needs to be available 
for longer and in larger quantities 
to feed online training and 
inference
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There exist many patterns with specific nuances, but we will consider two broad cases 
for this talk

Tight Coupling: a kernel in the simulation has been replaced by an AI-surrogate.  
Inference results from the surrogate couple tightly to traditional parts of the 
simulation code; periodic retraining may also occur

External Coupling: AI components interact with the outputs or results of simulations.  
Can be used to create a surrogate for the simulation/system (e.g. digital twin) or for 
steering purposes (e.g. AI-in-the-loop or hyperparameter searches)



• Tight coupling
• Python and ML frameworks embedding into simulation code

• PythonFOAM, TensorFlowFOAM and HONEE (by Romit Maulik, Saumil Patel, Bethany Lusch at ALCF)
• Linking to LibTorch or ONNX Runtime libraries for ML inferencing from C, C++ and Fortran

• Aurora will support LibTorch and Intel’s OpenVINO inference library

• External coupling
• Parsl

• Workflow tool for distributed, parallel task execution
• SmartSim / SmartRedis

• Workflow manager and client libraries for in-situ workflows by sharing data across a database
• ADIOS2

• Same I/O API to transport data across different media (file, wide-area-network, in-memory staging, 
etc.), favoring asynchronous streaming 

• Dragon
• Run-time library for managing dynamic processes, memory, and data at scale through high-

performance communication

https://github.com/argonne-lcf/PythonFOAM
https://github.com/argonne-lcf/PythonFOAM
https://github.com/argonne-lcf/TensorFlowFoam
https://gitlab.com/phypid/honee
https://parsl.readthedocs.io/en/stable/index.html
https://parsl.readthedocs.io/en/stable/index.html
https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartRedis
https://adios2.readthedocs.io/en/v2.9.1/
https://adios2.readthedocs.io/en/v2.9.1/
https://github.com/DragonHPC/dragon
https://github.com/DragonHPC/dragon


• Tight coupling requires integration of ML 
code within simulation code, however 
most common languages for traditional 
simulation codes are C/C++ and 
FORTRAN and not python

• libTorch is one example of a package that 
bridges this gap for Torch and C++

• libTorch has most of the functionality of 
Torch’s python API, pytorch

• libTorch is included in the Auora 
frameworks module, details on compiling 
and linking with libTorch libraries are in 
the Aurora documentation

#include <torch/torch.h>
#include <torch/script.h>

int main(int argc, const char* argv[]) {
  torch::jit::script::Module model;

  model = torch::jit::load(argv[1]);
  std::cout << "Loaded the model\n";

  model.to(torch::Device(torch::kXPU));
  std::cout << "Model offloaded to GPU\n\n";

  auto options = torch::TensorOptions()
           .dtype(torch::kFloat32)
           .device(torch::kXPU);
  torch::Tensor input_tensor = torch::rand({1,3,224,224}, options);
  assert(input_tensor.dtype() == torch::kFloat32);
  assert(input_tensor.device().type() == torch::kXPU);
  std::cout << "Created the input tensor on GPU\n";

  torch::Tensor output = model.forward({input_tensor}).toTensor();
  std::cout << "Performed inference\n\n";

  std::cout << "Slice of predicted tensor is : \n";
  std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/10) << '\n';

  return 0;
}

https://docs.alcf.anl.gov/aurora/data-science/inference/libtorch/


• mpiexec can be used to launch application on specific nodes with the --hosts or                         --
hostlist options, however, can’t refill hardware with new tasks once applications complete

mpiexec -n 24 —ppn 12 --hosts $HOST_NAME1 $HOST_NAME2  ./hello_affinity &

• Workflow tools (parsl, dragon, dask, balsam, etc.) can be used to pin applications to specific 
hardware but also refill hardware when tasks complete and manage task dependencies

Parsl HTEX Interchange



• Simple installation with pip
• Workflow contained within memory
• Can orchestrate work from login node and submit jobs 

to PBS/Slurm or can orchestrate within jobs
• Configuration (assignment of tasks to hardware) set by 

user, separate from workflow logic and application 
definitions

• Apps define how to run tasks
• Python apps call python functions
• Bash apps call external application

• Apps return futures: a proxy for a result that might not 
yet be available

• Apps run concurrently, respecting dependencies
• Community of 70+ developers, several at UChicago & 

ANL, part of Globus Labs
*demo materials link

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/07_workflows_coupling_simulation_and_AI/task_launching/1_parsl_tasks.py


• Composable distributed run-time for managing processes, memory, 
and data at scale through high-performance communication 
objects

• Open source project developed by HPE
• Key features:

• Multi-node extension to Python multiprocessing 
     (mp.Process, mp.Pool, …)
• C API included, Fortran API in development
• Managed memory through sharded dictionary objects
• Parallel process launching, including PMI enabled for MPI 

applications with fine-grained control of CPU/GPU affinity
• PMIX support in development (for use on Aurora)
• High-speed RDMA transport agents for off-node communication 

on Slingshot and Infiniband networks (TCP for other networks)
• Interfaces for higher-level workflow tools, e.g. SmartSim & Parsl

*demo materials link

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/07_workflows_coupling_simulation_and_AI/task_launching/2_dragon_tasks.py


Science Problem: identify high value molecules
(i.e. molecules with high ionization energy) among a
search space of billions of candidates

                 

                       

Simulation Results produced over time

Workflow Pattern: AI/ML Components steer Simulations

* Demo materials link 

Challenge: The simulation is too computationally 
expensive to run for every candidate molecule

Approach: Create an active learning loop that 
couples simulation with machine learning to 
simulate only high value candidates

Tools:
• Parsl is used for task launching and integration
• Use RDkit and scikit-learn to train a k-nearest 

neighbor (knn) model
• Simulations done with MD package xTB

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/07_workflows_coupling_simulation_and_AI/ml_in_the_loop/parsl


Childs et al., “A terminology for in situ visualization and analysis systems”, Intl. 
Journal of High Performance Computing Applications, 2020
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CPU
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Time Division: Same Compute Resource

Execution Management

• Time division (tight coupling)
• Components run on same compute resources (may even 

use same processes)
• Staggered in time, execution of one component halts the 

other
• May allow for direct memory access and no data 

copy/transfer
• Idle time of individual components may be significant

• Space division (external coupling)
• Components run on separate compute resources
• Concurrent in time, both components run simultaneously
• Minimal idle time of components for fast data copy/transfer
• Usually requires indirect memory access with data 

copy/transfer



• Tools for sharing data between Simulation and AI/ML components:
• Parallel Filesystem (e.g. Lustre, on Aurora >650 GB/s bandwidth)
• DAOS (object datastore, bandwidth >25 TB/s on Aurora)

• Dragon Dictionary
• Redis
• ADIOS2
• Node local I/O, i.e. read and write directly to DRAM (e.g. /tmp)

• Typically, the least performant of these approaches will be the 
parallel filesystem, and the most performant the node local I/O

• Node local I/O for both reads and writes may be particularly useful 
for “co-located” patterns where AI/ML and Simulation processes 
share the same nodes (but split on-node GPU/CPU resources)

• Intermediate solutions for non co-located (clustered) workflows may 
use data staging layers in memory like Redis or Dragon Dictionaries

• ADIOS2 is a tool for data streaming between nodes, but does not 
provide a persistent data staging layer

and DAOS!

Dragon Dictionary Architecture 

https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://docs.alcf.anl.gov/aurora/data-management/daos/daos-overview/
https://dragonhpc.github.io/dragon/doc/_build/html/start.html#data
https://dragonhpc.github.io/dragon/doc/_build/html/start.html#data
https://redis.io/
https://redis.io/
https://adios2.readthedocs.io/en/v2.10.2/index.html
https://adios2.readthedocs.io/en/v2.10.2/index.html


• This demo is another AI-in-the-loop case, this time using Dragon Dictionaries as a 
data layer between components

• It trains a model to predict the value of sin(x)
• Dragon Dictionaries take in data from client processes in the form of key-value pairs
• Data are sharded across nodes through channels by Memory Pool managers that sit 

on each node
• Dragon Dictionary Managers dynamically load balance key-value pairs across 

managers
• Transfers are done with RDMA (slingshot networks) or TCP (non-slingshot networks)

Load balance of equal-size 
key-value pairs on Aurora

Aggregate Bandwith of 
Data Reads of Increasing 
Message Size (128 nodes, 
HPE internal system) 

R.Balin, C.Simpson PASC25

*demo link

https://github.com/argonne-lcf/ATPESC_MachineLearning/tree/master/07_workflows_coupling_simulation_and_AI/ml_in_the_loop/dragon_ddict
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nekRS-ML, R. Balin

Many reasons to couple AI/ML to Simulations
Utilize fast AI surrogates, Efficiently steer simulation ensembles, Avoid I/O 
Bottlenecks, Active Learning

Two broad types of coupling: tight coupling and external 
coupling

Tight coupling often needs a package to embed ML code in 
simulation code (e.g. PythonFOAM, libTorch, OpenVINO)

External coupling often needs a workflow tool like Parsl, Dragon 
or SmartSim

Distributing processes across time and compute resources 
involves trade-offs and may be different for each workload

AI/ML-Simulation coupled workloads involve a balance of 
process launching, communication, and data management that 
is different from how these application run in a stand-alone way
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Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory 
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC) 
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources 

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive, 
royalty-free license in this video, with the rights to reproduce, to prepare derivative 

works, and to display publicly.
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