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Introduction to the Roofline Model

A short version of SC Tutorial Slides generated by Samuel Williams, LBNL (swwilliams@lbl.gov)

Please join SC25 tutorial for Roofline model for more details and practices

https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253

 

https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253


We spend millions of dollars porting 

applications to CPUs and GPUs…

How do we know if we are getting our 

money’s worth?



Getting our money’s worth?

Benchmark

G
FL

O
P/

s

▪ Imagine profiling a mix of GPU-

accelerated benchmarks …

▪ Performance (GFLOP/s) alone 

may not be particularly insightful

Peak GFLOP/s

▪ Really a question of getting good 

performance on application 
benchmarks
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Are we getting good performance?

Benchmark

▪ We could compare performance to 

a CPU…

G
FL

O
P/

s

o Speedup may seem random

o Aren’t GPUs always 10x faster than a CPU?

o If not, what does that tell us about 

architecture, algorithm or implementation?

➢ ‘Speedup’ provides no insights into 

architecture, algorithm, or 

implementation.

➢ ‘Speedup’ provides no guidance to CS, 

AM, applications, procurement, or 

vendors.
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Are we getting good performance?

o We may be able to show correlation 

between events, but…

➢ …providing actionable guidance to 

CS, AM, applications, or procurement 

can prove elusive.

▪ Instead of speedup, we could take a CS 

approach and look at performance 
counters…
o Record microarchitectural events on CPUs/GPUs

o Use architecture-specific terminology

o May be broken

.

.

.

FRONTEND_RETIRED.LATENCY_GE_8_PS
FRONTEND_RETIRED.LATENCY_GE_16_PS
FRONTEND_RETIRED.LATENCY_GE_32_PS

RS_EVENTS.EMPTY_END
FRONTEND_RETIRED.L2_MISS_PS

FRONTEND_RETIRED.L1I_MISS_PS
FRONTEND_RETIRED.STLB_MISS_PS
FRONTEND_RETIRED.ITLB_MISS_PS

ITLB_MISSES.WALK_COMPLETED
BR_MISP_RETIRED.ALL_BRANCHES_PS

IDQ.MS_SWITCHES
FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS
BR_MISP_RETIRED.ALL_BRANCHES_PS

MACHINE_CLEARS.COUNT
MEM_LOAD_RETIRED.L1_HIT_PS

MEM_LOAD_RETIRED.FB_HIT_PS
MEM_LOAD_UOPS_RETIRED.L1_HIT_PS
MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS

MEM_INST_RETIRED.STLB_MISS_LOADS_PS
MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS

MEM_LOAD_RETIRED.L2_HIT_PSMEM_LOAD_UOPS_RETIRED.L2_HIT_PS
MEM_LOAD_RETIRED.L3_HIT_PS
MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS

MEM_LOAD_UOPS_RETIRED.L3_HIT_PS
MEM_LOAD_RETIRED.L3_MISS_PS

MEM_LOAD_UOPS_RETIRED.LLC_MISS_PS
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS
MEM_LOAD_UOPS_RETIRED.L3_MISS_PS

MEM_INST_RETIRED.ALL_STORES_PS
MEM_UOPS_RETIRED.ALL_STORES_PS

ARITH.DIVIDER_ACTIVE
ARITH.DIVIDER_UOPS
ARITH.FPU_DIV_ACTIVE

INST_RETIRED.PREC_DIST
IDQ.MS_UOPS

INST_RETIRED.PREC_DIST
.
.
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Are we getting good performance?

o Modern architectures are incredibly complex

o Simulators may perfectly reproduce 

performance

o Lots of information interpretable only by 

computer architects

o worse, might incur 106x slowdowns

➢ Provide no insights into quality or 

limits of algorithm or implementation.

➢ Provide no guidance to CS, AM, 

application developers.

▪ We could take the computer architect’s 

approach and build a simulator to 
understand performance nuances…
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What’s missing…

▪ Each community speaks their own 
language and develops specialized 
tools/methodologies

➢ Roofline is just such a model

▪ Need common mental model of 
application execution on target system

▪ Sacrifice accuracy to gain…

o Architecture independence / extensibility

o Readily understandable by broad community

o Intuition, insights, and guidance to CS, AM, 

apps, procurement, and vendors

https://crd.lbl.gov/roofline
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Data Movement or Compute?

▪ Assume HW/SW can perfectly overlap 
communication and computation

▪ Which takes longer?
o Data Movement
o Computation

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s

Time = max

#Bytes / Peak GB/s
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Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/s

Time
#FP ops

#Bytes / #FP ops / Peak GB/s

= max

▪ Assume HW/SW can perfectly overlap 
communication and computation

▪ Which takes longer?

o Data Movement

o Computation

▪ Is performance limited by compute or 

data movement?
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Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s

#FP ops
Time

(#FP ops / #Bytes) * Peak GB/s

= min

▪ Assume HW/SW can perfectly overlap 
communication and computation
▪Which takes longer?

o Data Movement
o Computation

▪ Is performance limited by compute or 
data movement?

12



Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = measure of data locality

Data Movement or Compute?

▪ Assume HW/SW can perfectly overlap 
communication and computation

▪ Which takes longer?
o Data Movement
o Computation

▪ Is performance limited by compute or 
data movement?
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Arithmetic Intensity

▪ Measure of data locality (data reuse)
▪ Ratio of Total Flops performed to Total Bytes moved
▪ For the DRAM Roofline…

o Total Bytes to/from DRAM 
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)
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(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

Peak GFLOP/s

▪ Plot bound on Log-log scale as a 
function of AI (data locality)

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)
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(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

unattainable performance

(greater than peak GFLOP/s)Peak GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

▪ Plot bound on Log-log scale as a 
function of AI (data locality)

▪ Roofline tessellates the locality-

performance plane into five regions…
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(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

unattainable performance

(greater than peak GFLOP/s)Peak GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

▪ Plot bound on Log-log scale as a 
function of AI (data locality)

▪ Roofline tessellates the locality-

performance plane into five regions…

▪ Measure application (AI,GF/s) and plot 

in the 2D locality-performance plane.
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Roofline Examples



Roofline Example #1

▪ Typical machine balance is 5-10 
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve

#pragma omp parallel for
for(i=0;i<N;i++){
  Z[i] = X[i] + alpha*Y[i];
}

▪ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

5.0

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

0.083
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Roofline Example #2

▪ Conversely, 7-point constant coefficient 
stencil…

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s
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Roofline Example #2

▪ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte

(measured at the L1)

21



Roofline Example #2

▪ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s
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Roofline Example #2

▪ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

➢ 7 / (8+8) = 0.44 FLOPs per byte (DRAM) 

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s
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Roofline Example #2

▪ Conversely, 7-point constant coefficient 
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

➢ 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

At
ta

in
ab

le
 F

LO
P/

s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
  new[k][j][i] = -6.0*old[k  ][j  ][i  ] 
    + old[k  ][j  ][i-1]
  + old[k  ][j  ][i+1]
  + old[k  ][j-1][i  ]
  + old[k  ][j+1][i  ]
      + old[k-1][j  ][i  ]
  + old[k+1][j  ][i  ];
}}}

== memory bound, but 5x the FLOP rate as TRIAD
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Roofline Example #3

• Roofline makes it obvious what the 
bound on FLOP rate is, but let’s ask 
the reverse… Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s
AIDRAM

=average GB/s

▪ This is just a slope (y/x)

▪ Thus we can define an isocurve 
of constant bandwidth

▪ Given a low FLOP rate and AI, 
what DRAM bandwidth are we 

attaining?
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Are we getting good performance?

▪ Think back to our mix of 
benchmarks…

FL
O

P/
s

Benchmark
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Are we getting good performance?

▪ We can sort benchmarks by 
arithmetic intensity…

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)
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Are we getting good performance?

▪ We can sort benchmarks by 
arithmetic intensity…

▪ … and compare performance 
relative to machine capabilities

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)
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50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are 
making good use of 
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)
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50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are 
making good use of 
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

➢ benchmarks can have low performance 

(GFLOP/s), but make good use 

(%STREAM) of a machine
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50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are 
making good use of 
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

➢ benchmarks can have low performance 

(GFLOP/s), but make good use 

(%STREAM) of a machine

➢ benchmarks can have high performance 

(GFLOP/s), but still make poor use of a 

machine (%peak)
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Recap: Roofline is made of two components

▪ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak
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Recap: Roofline is made of two components

▪ Machine Model
o Lines defined by peak GB/s and GF/s 

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

▪ Application Characteristics
o Dots defined by application GFLOP’s and 

GB’s (Application Instrumentation)
o Unique to each application
o Unique to each architecture

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

33



Recap: Optimization Strategy

1. Get to the Roofline

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak
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Recap: Optimization Strategy

1. Get to the Roofline

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

2. Increase Arithmetic Intensity 
when bandwidth-limited

o Reducing data movement increases AI

o Increasing AI increases performance 

when bandwidth-bound
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How can performance ever be 

below the Roofline?



How can performance be below the Roofline?

Lack of Parallelism…
o Idle Cores/SMs

o Insufficient ILP/TLP

o Divergence and 

Predication

Integer-heavy Codes…
o Non-FP inst. impede 

FLOPs

o No FP instructions

Not enough of 

Vector/Tensor instr.
o No FMA

o Mixed Precision

o No Tensor Core OPs

… Additional Ceilings

C. Yang, T. Kurth, S. Williams, 
"Hierarchical Roofline analysis for 

GPUs: Accelerating performance 

optimization for the NERSC-9 
Perlmutter system", CCPE, 2019.

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

…The Hierarchical 

Roofline Model

T. Koskela, Z. Matveev, C. Yang, A. 
Adedoyin, R. Belenov, P. Thierry, Z. 

Zhao, R. Gayatri, H. Shan, L. Oliker, J. 

Deslippe, R. Green, S. Williams, "A Novel 
Multi-Level Integrated Roofline Model 

Approach for Performance 

Characterization", ISC, 2018.
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… Roofline Scaling 

Trajectories

K. Ibrahim, S. Williams, L. Oliker, 
"Performance Analysis of GPU 

Programming Models using the Roofline 

Scaling Trajectories", BEST PAPER, 
Bench, 2019.
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Thoeretical Peak: 489.6 warp GIPS

… The Instruction 

Roofline Model

N. Ding, S. Williams, "An Instruction 
Roofline Model for GPUs", BEST 

PAPER, PMBS, 2019.

DRAM’s not the 

bottleneck…
o Cache bandwidth and 

cache locality

o PCIe bandwidth

Simple DRAM model can be insufficient for a variety of reasons…
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Below the Roofline?
Memory Hierarchy and Cache Bottlenecks



Memory Hierarchy

▪ CPUs/GPUs have multiple levels of 
memory/cache
o Registers
o L1, L2, L3 cache
o HBM (KNL/GPU device memory)
o DDR (main memory)
o NVRAM (non-volatile memory)

CPU Cores

L1 D$

DDR

L2 D$

L3 D$
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Memory Hierarchy

▪CPUs/GPUs have different bandwidths 
for each level CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Bandwidth

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s
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Memory Hierarchy

▪CPUs/GPUs have different bandwidths 
for each level
o different machine balances for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s
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Memory Hierarchy

▪CPUs/GPUs have different bandwidths 
for each level
o different machine balances for each level

▪ Applications have locality in each level
o different data movements for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

L3 GB

DRAM GB
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Memory Hierarchy

▪CPUs/GPUs have different bandwidths 
for each level
o different machine balances for each level

▪ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs 
L3 GB

GFLOPs 
DRAM GB
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Memory Hierarchy (Discrete GPU)

GPU SMs

GPU L1 D$

DDR

GPU L2 D$

GPU HBM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
HBM GB/s

GFLOP/s
PCIe GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs 
HBM GB

GFLOPs 
PCIe GB

▪ CPUs/GPUs have different 
bandwidths for each level

o different machine balances for each level

▪ Applications have locality in each level

o different data movements for each level

o different arithmetic intensity for each level

▪ Same concept applies to GPUs and 
disaggregated memory

o DDR is accessed via PCIe, CXL, or NoC
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Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another 
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s
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Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another 
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s
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Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another 
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s
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Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.

48



Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.
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Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.
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Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
➢performance is ultimately the minimum 

of these bounds L2 Bound
L2 AI*BW

is less than
DRAM AI*BW
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Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.
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Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each 

level of memory
o Arithmetic Intensity (dot) for each level of 

memory
➢performance is ultimately the minimum 

of these bounds

▪ If L2 bound, we see DRAM dot 

well below DRAM ceiling
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Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.
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Cache Hit Rates

▪Widely separated Arithmetic 
Intensities indicate high reuse in 
the (L2) cache
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Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

High Reuse

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.
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Cache Hit Rates

▪Widely separated Arithmetic 
Intensities indicate high reuse in 
the (L2) cache

▪ Similar Arithmetic Intensities 
indicate effectively no (L2) cache 
reuse (== streaming)
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Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

no reuse
(streaming)

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H. 
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline 
Model Approach for Performance Characterization", ISC, 2018.

54



Below the Roofline?
Fused Operations and Accelerators



Fused Operations and Accelerators

▪ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)
▪ Death of Moore’s Law is incentivizing operator fusion (e.g. FMA) and compute 

accelerators (matrix multipliers)

➢ Define a set of “ceilings” based on instruction type
 (all tensor, all FMA, or all FADD)

▪ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions 

that perform multiple operations (fuse common instruction sequences)…

o FMA (Fused Multiply Add):  z=a*x+y …z,x,y are vectors or scalars

o 4FMA (Quad FMA):   z=A*x+z …A is a FP32 matrix; x,z are 

vectors

o WMMA (Tensor Core):  Z=AB+C …A,B are FP16 matrices; Z,C are FP32
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Floating-Point and Mixed Precision Ceilings

▪ Consider NVIDIA Volta GPU
▪ We may define 3 performance 

ceilings…
o 15 TFLOPS for FP32 FMA
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Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

o 7.5 TFLOPs for FP32 Add

FP16 WMMA

o ~100 TFLOPs for FP16 Tensor

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for 
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter 
System", Cray User Group (CUG), May 2019.
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Floating-Point and Mixed Precision Ceilings

At
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in
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le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

FP16 WMMA

▪ DL performance can often be well 
below nominal Tensor Core peak

▪ When calculating (AI,GFLOP/s), 
count the total FLOPs from all types 

of instructions

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for 
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter 
System", Cray User Group (CUG), May 2019.
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Floating-Point and Mixed Precision Ceilings

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

▪ DL applications are a mix Tensor, 
FP16, and FP32 instructions

▪ Thus, there is a ceiling on 

performance defined by the mix of 

instructions

Instruction Mix Ceiling▪ DL performance can often be well 
below nominal Tensor Core peak

▪ When calculating (AI,GFLOP/s), 
count the total FLOPs from all types 

of instructions

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for 
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter 
System", Cray User Group (CUG), May 2019.
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Below the Roofline?
Lack of Parallelism



Roofline and Parallelism

▪We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

GFLOP/sPeak

GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM * GB/sDRAM
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Roofline and Parallelism

▪We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

▪ But all CPUs and GPUs are highly parallel architectures
▪GFLOP/s and GB/s are a function of how much parallelism we utilize…

GFLOP/sPeak(P)
GFLOP/s(P) = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x” )

AIDRAM(P) * GB/sDRAM(P)

AIDRAM is a function of parallelism because cache contention can 
generate superfluous LLC capacity misses (==DRAM data movement)
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Roofline and Parallelism

▪How do we visualize parallelism in 
the Roofline?
o Naively, GFLOP/s(P) and GB/s(P) are 

proportional to parallelism P

o SMs are capable of pulling more than their 
fair share of HBM

o DVFS implies not true for GFLOP/s
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Arithmetic Intensity (FLOP:Byte)

GFLOP/s (80 SMs)
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Roofline and Parallelism

▪How do we visualize parallelism in 
the Roofline?
o Naively, GFLOP/s(P) and GB/s(P) are 

proportional to parallelism P

o SMs are capable of pulling more than their 
fair share of HBM

o DVFS implies not true for GFLOP/s

➢one must benchmark GFLOP/s 
and GB/s at each concurrency

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s (80 SMs)
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Roofline and Parallelism

▪Consider CUDA kernel optimized 
for Fermi (16 SMs) running on 
Volta (80 SMs)
o Performance looks very poor
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GFLOP/s (80 SMs)
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Roofline and Parallelism

▪Consider CUDA kernel optimized 
for Fermi (16 SMs) running on 
Volta (80 SMs)
o Performance looks very poor

o Kernels using only 16 SMs underutilize the 
V100 architecture.

o Roofline highlights the fact that 
performance is constrained by a lack of 
software parallelism At

ta
in
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le

 G
FL
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s

Arithmetic Intensity (FLOP:Byte)

20 active SMs
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Roofline Scaling Trajectories

▪ Traditional Scalability:
o Plot performance vs. concurrency (#cores or #SMs)
o Observation without much insight
o Why does performance decrease?
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804020105
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Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline 
to understand the interplay 
between concurrency, data locality, 
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline
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40 SMs

20 SMs

10 SMs

5 SMs
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Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline 
to understand the interplay 
between concurrency, data locality, 
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline
o Perfect scaling is a vertical line Pe
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Arithmetic Intensity (FLOP:Byte)

80 SMs
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20 SMs
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Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline 
to understand the interplay 
between concurrency, data locality, 
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline
o Perfect scaling is a vertical line
o Turnover in AI indicates cache capacity 

exhaustion (extra L2 misses drives down AI)
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Recap



Recap

▪ Loop Arithmetic Intensity (for each level of memory)
o Total FLOPs / Total Data Movement (for that level of memory)

o Measure of a loop’s temporal locality

o Includes all cache effects

▪ Roofline bounds performance as a function of Arithmetic Intensity
o Horizontal Lines = Compute Ceilings

o Diagonal Lines = Bandwidth Ceilings

o Bandwidth ceilings are always parallel on log-log scale

o Collectively, define an upper limit on performance (speed-of-light)

▪ Plotting loops on the (Hierarchical) Roofline
o Each loop has one dot per level of memory

o x-coordinate = arithmetic intensity at that level

o y-coordinate = performance (e.g. GFLOP/s)

o Proximity to associated ceiling is indicative of a performance bound

o Proximity of dots to each other is indicative of streaming behavior (low cache hit rate)
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What is Roofline used for?

▪ Predict performance on future machines / architectures
o Set realistic performance expectations

o Drive for HW/SW Co-Design

▪ Identify performance bottlenecks & motivate software optimizations

▪ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities

o Track progress towards optimality

o Motivate need for algorithmic changes

▪ Understand performance differences between Architectures, 
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?

o Why do some compilers outperform others?
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Hands-on example on Aurora

 



extremecomputingtraining.anl.gov

Vendor tools for Roofline analysis

• Intel 
• Intel Advisor

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

• NVIDIA 
• NVIDIA Nsight Compute

• https://developer.nvidia.com/nsight-compute
• https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page

• AMD
• AMD ROCm Compute Profiler (Omniperf,  previously)

• https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html

• We won’t try every tool. They have different instructions for the same concept. (I know it is 
annoying, but that is what we have. )

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html


Intel Advisor for roofline analysis



Overhead

Step 1: Survey (-collect survey)
- Provide #Seconds
- Root access not needed
- User mode sampling, non-intrusive. 

1x

Step 2: FLOPS (-collect tripcounts –flops)
- Provide #FLOP, #Bytes, AVX-512 Mask 
- Root access not needed
- Precise, instrumentation based, count number of instructions

3-5x

77

Getting Roofline data in Intel® Advisor: 
     two-pass approach

Roofline :

 Axis X:  AI = #FLOP / #Bytes

 Axis Y:  FLOP/S = #FLOP (mask aware) / #Seconds 



Original, Cache-Aware (CARM) 
    and Memory-Level Roofline

Original Roofline
• AI based on external memory :

   DDR (GPU GTI)

• Ceilings for DDR and compute

• AI dependent of problem size
Unique features: DDR bound focus and simplicity

CARM (cache-aware roofline)

▪ Single AI based on aggregated traffic: 

    CPU core (GPU EUs) <-> memory sub-system

▪ Ceilings for compute, cache/memory levels

▪ AI independent of problem size

Unique features: algorithmic focus and simplicity

Memory Level Roofline - MLR (see also “Hierarchical Roofline” by LBL)

▪ AI for all memory sub-system levels, combines (1), CARM, (2)Original and (3) Lx-only perspectives

▪ Harder to interpret for multiple kernels at a time

Unique features: unambiguous bottleneck detection



How to interpret MLR on CPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

Find the minimum of all memory subsystems

Shortest distance == main bottleneck

(Shortest distance == max saturation (utilization) observed)
(Shortest distance == max effective bandwidth/throughput observed)

Actual performance

G
FL

O
PS



How to interpret MLR on GPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

SLM GB/s

L2 GB/s

HBM GB/s

Find the minimum of all memory subsystems

Shortest distance == main bottleneck

(Shortest distance == max saturation (utilization) observed)
(Shortest distance == max effective bandwidth/throughput observed)

Actual performance



How to generate (profile*) Roofline 
for your application



1st method. Not compatible with MPI applications :    

$ advisor -collect roofline --project-dir 

./your_project -- <your-executable-with-

parameters> 

 

How to generate CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline -- <your-executable-with-parameters> 

 

2nd  method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project -- 

<your-executable-with-parameters> 

$ advisor -collect tripcounts --flop --project-dir 

./your_project -- <your-executable-with-parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html



1st method. Not compatible with MPI applications :    

$ advisor -collect roofline –enable-cache-

simulation --project-dir ./your_project -- 

<your-executable-with-parameters> 

 

How to generate MLR+CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline –enable-cache-simulation -- <your-executable-with-parameters> 

 

2nd  method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project -- 

<your-executable-with-parameters> 

$ advisor -collect tripcounts –flop –enable-cache-simulation 

--project-dir ./your_project -- <your-executable-with-

parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html



1st method. Not compatible with MPI applications :    

$ advisor -collect roofline --profile-gpu -

-project-dir ./your_project -- <your-

executable-with-parameters> 

How to generate GPU (MLR & CARM) Roofline profile?

As simple as: $ advisor -collect roofline –-profile-gpu -- <your-executable-with-parameters> 

 

2nd  method (compatible with MPI, more flexible):

$ advisor -collect survey --profile-gpu --project-dir 

./your_project -- <your-executable-with-parameters> 

$ advisor -collect tripcounts –flop --profile-gpu --project-

dir ./your_project -- <your-executable-with-parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --gpu --project-dir ./your_project > roofline.html



GPU Roofline: Extended HTML GUI
See HTML report in project-dir/e000|rank.*/report folder by default

source advisor_install_dir/advisor-vars.sh

advisor
 --report all
 --project-dir ./your_project 
 --report-output ./roofline.html



Extended HTML GUI
For any system with web browsers
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Roofline on Multi-GPU systems
Add --target-gpu option in command line

advisor
 --collect roofline
 --profile-gpu
 --project-dir ./your_project 
 --target-gpu 0:77:0.0
 --  <your-executable-with-
parameters> 



ISO3DFD Code
: A 16th order Finite-Difference Stencil for the 3D Isotropic Wave Equation



• A Finite Difference stencil kernel for solving the 3D acoustic isotropic wave equation
• A proxy for propagating a seismic wave
• 16th order in space, with symmetric coefficients
• 2nd order in time scheme without boundary conditions.

• Problem Statement
• Partial Differential Equation (PDE) for wave propagation

   , where p is pressure, v is velocity, and t is time.
• For a 16th order finite difference stencil, we use the adjacent 8 values in each direction of the x, y, and z 

axis 
• The expanded equation looks like this, where the array C holds the coefficients for the changes in x, y 

and z. 
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https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

ISO3dfd code

https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
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https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
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▪ Variables
– n1 n2 n3 : Grid dimensions for the 

stencil
– Iterations : No. of timesteps.
– n1, n2, and n3 has the addition of 

2*kHalfLength to represent the entire 
block including the halo region. 

Code walk through
…

 try {

    // Parse command line arguments and increase them by HALO

    n1 = std::stoi(argv[1]) + (2 * kHalfLength);

    n2 = std::stoi(argv[2]) + (2 * kHalfLength);

    n3 = std::stoi(argv[3]) + (2 * kHalfLength);

    num_iterations = std::stoi(argv[4]);

  } catch (...) {

    Usage(argv[0]);

    return 1;

  }

…

 // Compute the total size of grid

  size_t nsize = n1 * n2 * n3;

…

  // Apply the DX, DY and DZ to coefficients

  coeff[0] = (3.0f * coeff[0]) / (dxyz * dxyz);

  for (auto i = 1; i <= kHalfLength; i++) {

    coeff[i] = coeff[i] / (dxyz * dxyz);

  }

• Dark blue: grid
• Gray: halo of the 

grid
• Pink: points needed 

for calculation



• In this hands-on, we use four ISO3DFD variants. 

• These variants add progressive/incremental levels of optimization as follow:

o 1_CPU_only.cpp: an initial CPU version

o 2_GPU_basic.cpp: basic GPU offloading using SYCL

o 3_GPU_linear.cpp: reduced index calculation 

o 4_GPU_private_memory_I.cpp: addition of private array for coefficients
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ISO3dFD code versions

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization


$ qsub -I -l select=1 -l walltime=02:00:00 -l filesystems=home:flare  -A ATPESC2025 -q ATPESC

$ cd /flare/ATPESC2025/usr/$USER

$ git clone https://github.com/oneapi-src/oneAPI-samples.git
$ cd oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/
or
$ cp -r /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/oneAPI-
samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/ .
$ cd guided_iso3dfd_GPUOptimization

$ mkdir build
$ cd build

$ module load cmake
$ cmake ..
$ make

Build the code
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https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
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https://github.com/oneapi-src/oneAPI-samples.git
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…

for (auto iz = kHalfLength; iz < n3_end; iz++) {

    for (auto iy = kHalfLength; iy < n2_end; iy++) {

      // Calculate start pointers for the row over X dimension

      float* ptr_next = ptr_next_base + iz * dimn1n2 + iy * n1;

      float* ptr_prev = ptr_prev_base + iz * dimn1n2 + iy * n1;

      float* ptr_vel = ptr_vel_base + iz * dimn1n2 + iy * n1;

      // Iterate over X

      for (auto ix = kHalfLength; ix < n1_end; ix++) {

        // Calculate values for each cell

        float value = ptr_prev[ix] * coeff[0];

        for (int i = 1; i <= kHalfLength; i++) {

          value +=

              coeff[i] *

               (ptr_prev[ix + i] + ptr_prev[ix - i] +

                ptr_prev[ix + i * n1] + ptr_prev[ix - i * n1] +

                ptr_prev[ix + i * dimn1n2] + ptr_prev[ix - i * dimn1n2]);

        }

        ptr_next[ix] = 2.0f * ptr_prev[ix] - ptr_next[ix] + value * ptr_vel[ix];

      }

    }

}

…

1_CPU_only.cpp

Computing values for each cell

Iterate over x

Iterate over y and z



$ src/1_CPU_only 512 512 512 10
Running on CPU serial version

--------------------------------------

time     : 11.309 secs

throughput  : 118.682 Mpts/s

flops     : 7.23962 GFlops

bytes     : 1.42419 GBytes/s

--------------------------------------

Run 1_CPU_only
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// Send a SYCL kernel(lambda) to the device for parallel execution

      // Each kernel runs single cell

      h.parallel_for(kernel_range, [=](id<3> idx) {

        // Start of device code

        // Add offsets to indices to exclude HALO

        int i = idx[0] + kHalfLength;

        int j = idx[1] + kHalfLength;

        int k = idx[2] + kHalfLength;

        // Calculate values for each cell

        float value = prev_acc[i][j][k] * coeff_acc[0];

#pragma unroll(8)

        for (int x = 1; x <= kHalfLength; x++) {

          value +=

              coeff_acc[x] * (prev_acc[i][j][k + x] + prev_acc[i][j][k - x] +

                              prev_acc[i][j + x][k] + prev_acc[i][j - x][k] +

                              prev_acc[i + x][j][k] + prev_acc[i - x][j][k]);

        }

        next_acc[i][j][k] = 2.0f * prev_acc[i][j][k] - next_acc[i][j][k] +

                            value * vel_acc[i][j][k];

        // End of device code

      });
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2_GPU_basic: offloading the CPU code to GPU using SYCL

Computing values for each cell

SYCL kernel to the device 
for parallel execution 

over x, y, and z



$ export ZE_AFFINITY_MASK=0.0
$ src/2_GPU_basic 512 512 512 100
Running GPU basic offload version

Running on Intel(R) Data Center GPU Max 1550

The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

--------------------------------------

time     : 7.25 secs

throughput  : 1851.28 Mpts/s

flops     : 112.928 GFlops

bytes     : 22.2153 GBytes/s

--------------------------------------

$ advisor -collect roofline --profile-gpu --project-dir ADV_02_512 --  ./src/2_GPU_basic 512 512 512 100

or 

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_02_512 .

# Download advisor-report.html from /ADV_02_512/e000/report

Run 2_GPU_basic
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Compared 113.09 sec on CPU for 100 steps 
- 15.6X speed-up on GPU from on a CPU core
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Orient yourself in GPU+CPU Roofline!

• Quiz: What are GFLOPS of CPU 
and GPU? 

• Quiz: What is a cumulative 
application bottleneck (Bounded 
by)? 

• Quiz: Do you see iso3dfd kernel?

▪ Now, let’s switch to the main page 
(“GPU Roofline Regions”)



GPU MLR Roofline

Note some difference,  “HBM” by default

1. Enable Memory Metrics and Point info

2. Look into GPU Details tab and find 
INDIVIDUAL ROOFLINE chart with small 
Guidance, Hints and BoundBy
• Quiz: what is a main bottleneck (“Bound By”) 

for the iso3dfd kernel?
• Quiz: what are FP AI and INT AI?
• Quiz: what are Instruction Mix Details?

3. Go back to Main Roofline Chart and 
double-click on the circle to get the same 
guidance on the large chart

Kernel (loop) locality is proportional to the width 
of the “bound by” line (ratio of DRAM to Lx bytes)

Cache locality extent
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2_GPU_basic



// Send a SYCL kernel(lambda) to the device for parallel execution

      // Each kernel runs single cell

      h.parallel_for(kernel_range, [=](id<3> nidx) {

        // Start of device code

        // Add offsets to indices to exclude HALO

        int n2n3 = n2 * n3;

        int i = nidx[0] + kHalfLength;

        int j = nidx[1] + kHalfLength;

        int k = nidx[2] + kHalfLength;

        // Calculate linear index for each cell

        int idx = i * n2n3 + j * n3 + k;

        // Calculate values for each cell

        float value = prev_acc[idx] * coeff_acc[0];

#pragma unroll(8)

        for (int x = 1; x <= kHalfLength; x++) {

          value +=

              coeff_acc[x] * (prev_acc[idx + x]        + prev_acc[idx - x] +

                              prev_acc[idx + x * n3]   + prev_acc[idx - x * n3] +

                              prev_acc[idx + x * n2n3] + prev_acc[idx - x * n2n3]);

        }

        next_acc[idx] = 2.0f * prev_acc[idx] - next_acc[idx] +

                            value * vel_acc[idx];

        // End of device code

      });
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3_GPU_linear: using linearized index to reduce index calculation

Computing values for each cell

SYCL kernel to the device 
for parallel execution 

over x, y, and z

Linearized index



$ export ZE_AFFINITY_MASK=0.0
$ src/3_GPU_linear 512 512 512 100
 Running linear indexed GPU version

 Running on Intel(R) Data Center GPU Max 1550

 The Device Max Work Group Size is : 1024

 The Device Max EUCount is : 448

--------------------------------------

time         : 0.866 secs

throughput   : 15498.6 Mpts/s

flops        : 945.414 GFlops

bytes        : 185.983 GBytes/s

--------------------------------------

$ advisor -collect roofline --profile-gpu --project-dir ADV_03_512 --  ./src/3_GPU_linear 512 512 512 100

or 

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_03_512 .

# Download advisor-report.html from /ADV_03_512/e000/report

Run 3_GPU_linear
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Compared 7.25 sec from 2_GPU_basic
- 8.4X speed-up



Check 3_GPU_linear

1
0
2

▪ Please open the html for 3_GPU_linear

• Quiz: GFLOPS? Did it change?

(hint: look at Summary , and then go back to GPU Roofline Regions)

• Quiz: what is a main bottleneck for the kernel?

• Quiz: Any changes in INTOP?
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3_GPU_linear
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Comparison from 2_GPU_basic to 3_GPU_linear in FLOAT roofline chart

ANY OPTIMIZATION OPPORTUNITIES FOR 3_GPU_LINEAR?

Possible to increase AI by re-using data multiple times?



// Iterate over first dimension excluding HALO

 for (; i < end_i; i++) {

   // Calculate values for each cell

   float value = front[0] * coeff[0];

   #pragma unroll(kHalfLength)

   for (int x = 1; x <= kHalfLength; x++) {

 value += coeff[x] *

  (prev_acc[idx + x]        + prev_acc[idx - x] +

  prev_acc[idx + x * n3] + prev_acc[idx - x * n3] +

  front[x] + back[x - 1] );

   }

   next_acc[idx] = 2.0f * front[0] - next_acc[idx] +

                                  value * vel_acc[idx];

   // Increase linear index, jump to the next cell in first dimension

   idx += n2n3;

   // Shift values in front and back arrays

   for (auto x = kHalfLength - 1; x > 0; x--) {

   back[x] = back[x - 1];

   }

   back[0] = front[0];

   for (auto x = 0; x < kHalfLength; x++) {

 front[x] = front[x + 1];

   }

   front[kHalfLength] = prev_acc[idx + kHalfLength * n2n3];

 }

 // End of device code

});

// Send a SYCL kernel(lambda) to the device for parallel execution

// Each kernel runs single row over first dimension

h.parallel_for(kernel_range, [=](id<2> nidx) {

   // Start of device code

   // Add offsets to indices to exclude HALO

   // Start and end index used in loop

   int n2n3 = n2 * n3;

   int i = kHalfLength;

   int j = nidx[0] + kHalfLength;

   int k = nidx[1] + kHalfLength;

   int end_i = n1 - kHalfLength;

   // Calculate global linear index for each cell

   int idx = i * n2n3 + j * n3 + k;

   // Create arrays to store data used multiple times

   // Local copy of coeff buffer/continous values over 1st dim which

   // are used to calculate stencil front and back arrays are used to

   // ensure the values over 1st dimension are read once, shifted in`

   // these array and re-used multiple times before being discarded

   // This is an optimization technique to enable data-reuse and

   // improve overall FLOPS to BYTES read ratio

   float coeff[kHalfLength + 1];

   float front[kHalfLength + 1];

   float back[kHalfLength];

   // Fill local arrays, front[0] contains current cell value

   for (int x = 0; x <= kHalfLength; x++) {

      coeff[x] = coeff_acc[x];

      front[x] = prev_acc[idx + n2n3 * x];

   }

   for (int x = 1; x <= kHalfLength; x++) {

      back[x-1] = prev_acc[idx - n2n3 * x];

   }
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4_GPU_private_memory_I: adding private array for coefficients

Computing values 
for each cell

SYCL kernel to the device 
for parallel execution 

over y and z

Local array and 
reuse multiple times



$ export ZE_AFFINITY_MASK=0.0
$ src/4_GPU_private_memory_I 512 512 512 100

Running GPU private memory version with iterations over first dimension

Running on Intel(R) Data Center GPU Max 1550

The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

--------------------------------------

time     : 0.637 secs

throughput  : 21070.3 Mpts/s

flops     : 1285.29 GFlops

bytes     : 252.843 GBytes/s

--------------------------------------

$ advisor -collect roofline --profile-gpu --project-dir ADV_04_512 --  ./src/4_GPU_private_memory_I 512 512 512 100

or 

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_04_512 .

# Download advisor-report.html from /ADV_04_512/e000/report

Run 4_GPU_private_memory_I
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Compared 0.866 sec from 3_GPU_linear
- 1.35X speed-up
Compared 7.25 sec from 2_GPU_basic
- 11.4X speed-up



Check 4_gpu_private_memory_I

1
0
7

▪ Please open the html for 4_GPU_Private_memory_I

• Quiz: GFLOPS? Did it change?

(hint: look at Summary , and then go back to GPU Roofline Regions)

• Quiz: what is a main bottleneck for the kernel?
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4_GPU_private_memory_I
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Comparison from 3_GPU_linear to 4_GPU_private_memory_I

AI for L3 increases by re-using data; as a result, GFLOPS improves from 1,137 to 1,816: 1.6X 
speed-up 



Recap



Selected versions Target 
platform GFLOPs Kernel time 

(s)
Speed up from 

1_CPU_only
Speed-up from 
2_GPU_basic

1_CPU_only* 1 core from 
CPU 7.24 113.09 1 x -

2_GPU_basic
1 stack from 

GPU

112.9 7.25 15.7 x 1 x

3_GPU_linear 945.4 0.866 131 x 8.4 x

4_GPU_private_memory_I 1285.3 0.637 179 x 11.4 x

111

Grid size: 512x512x512

Number of iteration: 100

Employed Compute Platform

• CPU: Intel Xeon CPU Max

• GPU: Intel Data Center GPU Max

* 1_CPU_only ran 10 iterations instead of 100 iterations since its performance is too low; therefore, the kernel time is projected for 100 iterations. 

Performance results



Thank you!
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