Roofline Performance Model

JaeHyuk Kwack
Argonne National Laboratory

Argonne Leadership

Computing Facility extremecomputingtraining.anl.gov

http://extremecomputingtraining.anl.gov/

N
\\ Introduction to the roofline model

\
\1 Hands-on example on Aurora

ATPESC2025

Introduction to the Roofline Model

A short version of SC Tutorial Slides generated by Samuel Williams, LBNL (swwilliams®@lbl.gov)
Please join SC25 tutorial for Roofline model for more details and practices
https://sc25.conference-program.com/presentation/?id=tutllSssess=5e55253

https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253

We spend millions of dollars porting
applications to CPUs and GPUs...

How do we know if we are getting our
money’s worth?

ATPESC2025

Getting our money’s worth?

= Really a question of getting good
performance on application
benchmarks

= |magine profiling a mix of GPU-
accelerated benchmarks ...

= Performance (GFLOP/s) alone
may not be particularly insightful

ATPESC2025 >

GFLOP/s

Peak GFLOP/s

Benchmark

Are we getting good performance?

= We could compare performance to A
a CPU...

o Speedup may seem random

o Aren't GPUs always 10x faster than a CPU?

o If not, what does that tell us about
architecture, algorithm or implementation?

GFLOP/s

> ‘Speedup’ provides no insights into
architecture, algorithm, or
implementation.

> ‘Speedup’ provides no guidance to CS,
AM, applications, procurement, or
vendors.

Benchmark

ATPESC2025 °

Are we getting good performance?

I.:RONTEND_RETIRED .LATENCY_GE_S8_PS
FRONTEND_RETIRED.LATENCY_GE_16_PS
FRONTEND_RETIRED.LATENCY_GE_32_PS
* |nstead of speedup, we could take a CS Fewew werino. 12 s es
FRONTEND_RETIRED.L1I_MISS_PS
approa ch and look at pe rformance RONTEND RETTRED. 21 0 Mise he
ITLB_MISSES.WALK_COMPLETED
BR_MISP_RETIRED .ALL_BRANCHES_PS

counters...

FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS

Record microarchitectural events on CPUs/GPUs BR_MISP_RETIRED .ALL_BRANCHES_PS

. . . MACHINE_CLEARS. COUNT
Use architecture-specific terminology MEM_LOAD_RETIRED. L1 HIT_PS
MEM:LOAD:UOPS_R ETI RED . LE_HIT_PS

M ay be b rO ken MEM_LOAD_UOPS_RETIRED .HIT_LFB_PS

MEM_INST_RETIRED.STLB_MISS_LOADS_PS

We may be able to show correlation MEM_UOPS_RETIRED. STLB_MISS_LOADS_PS

MEM_LOAD_RETIRED.L2_HIT_PSMEM_LOAD_UOPS_RETIRED.L2_HIT_PS

between eventS, but . MEM_LOAD_RETIRED.L3_HIT_PS

MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS
> ...providing actionable guidance to EM LOAD RETTRED. L3 WISePs

MEM_LOAD_UOPS_RETIRED.LLC_MISS_PS

CS, AM, applications, or procurement MEM_LOAD_UOPS_MISC_RETIRED. LLC_MISS_PS

: MEM_LOAD_UOPS_RETIRED .L3_MISS_PS

can prove elusive. MEM_TINST_RETIRED.ALL_STORES_PS
MEM_UOPS_RETIRED.ALL_STORES_PS
ARITH.DIVIDER_ACTIVE
ARITH.DIVIDER_UOPS
ARITH.FPU_DIV_ACTIVE
INST_RETIRED.PREC_DIST
IDQ.MS_UOPS
INST_RETIRED.PREC_DIST

O O O O

ATPESC2025 !

Are we getting good performance?

Front End Instructi
E‘ZJ#:T'SS L1 Instruction Cache

MOP Cache 32KiB 8-Way ["instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(16 B window)

(BPU)
MOP MOP MOP MOP MOP MOP

= We could take the computer architect’s e

Mop MoP MOP MOP MoP

a12A2/gtr9

5Way Decode

[] []
approach and build a simulator to
p p SEq;;SCEF |Ccmp|ex|| Simple || Simple H Simple ” simple |
coder ||Decoder ||Decoder ||Decoder || Decoder
0Ps noP woP woP nopP

(MS ROM) De Stack
) Engine
understand performance nuances...

cam q
lep| Allocation Queue (IDQ) (128, 2x64 pOPs)

o Modern architectures are incredibly complex] =
o Simulators may perfectly reproduce

2, pOP pOP pOP pOP pOP poOP Branch Order Buffer
| Register Alias Table (RAT) ‘ *g’lo (BOB) (48-entry)
I e
p : r a nC E Rename / Allocate / Retirement i
ReCrder Buffer (224 entries) { greslidioms | {Z eeeee Ll ‘dwmsl

o Lots of information interpretable only by

2i||e
] Scheduler
H . I
H 3 ot Intege'}lpggsé:‘zllsﬁezter il Unified Reservation Station (RS) Ve‘:tor(q?’:::g‘lzteegr':)ter ll3
computer architects

[Porto | [Porl] [Forts | [Port6 | [Portz | [Port3| [Port#] [Port7]

|_1_1 . ht - 1 06 I d 1OP wop por wop wop
O Worse, Ig Incur X S OW OWnS [INT AW][INT AU] [NTAL] [CNTAWL | [AGU AGU =
£ [INT Vect ALU| “[INT Vect ALU][INT Vect ALU[: i w ¥
> P n]] h u I u S12bit/cycle 8 = Q / To L3
i[FPFMA [FprmA FP FMA | 0 o n
rovide no insights into quality or e 23
AES Bit Scan Nzl %

Wect String

limits of algorithm or implementation. 3%
Execution Engine Store Buffer & Forwarding

» Provide no guidance to CS, AM, i
application developers. 2 oo cacne]

(72 entries) | & 32KiB 8-Way
B

ATPES@Z@ZE 8 Memory Subsystem

32A2/gat79

Bieyle

Line Fill Buffers (LFB)
(10 entries)

What's missing...

= Each community speaks their own e, E—
. e || COMPUTATIONAL RESEARCH \YENERGY
language and develops specialized e
tools/methodologies

= Need common mental model of
application execution on target system

= Sacrifice accuracy to gain...
o Architecture independence / extensibility
o Readily understandable by broad community

o Intuition, insights, and guidance to CS, AM,
apps, procurement, and vendors

» Roofline is just such a model

https://crd.lbl.gov/roofline

ATPESC2025 2

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

= Assume HW/SW can perfectly overlap
communication and computation

= Which takes longer?

o Data Movement
o Computation

(" #FP ops / Peak GFLOP/s

Time = max -<

_#Bytes / Peak GB/s

ATPESC2025 10

Compute

GFLOP/s

Ffe rfect ECacheis

I

$§ DRAMGB/s

DRAM

= Assume HW/SW can perfectly overlap
communication and computation

= Which takes longer?

o Data Movement
o Computation

* |s performance limited by compute or
data movement?

"1/ Peak GFLOP/s

Time
#FP ops - max <

_#Bytes / #FP ops / Peak GB/s

ATPESC2025 1

. Compute

GFLOP/s

Ffe rfect ECacheis

I

$§ DRAMGB/s

DRAM

= Assume HW/SW can perfectly overlap
communication and computation

=" Which takes longer?

o Data Movement
o Computation

= |s performance limited by compute or
data movement?

" Peak GFLOP/s

#FP ops .
Time = min <

_(#FP ops/ #Bytes) * Peak GB/s

ATPESC2025 12

Compute

GFLOP/s

Ffe rfect ECacheis

I

$§ DRAMGB/s

DRAM

= Assume HW/SW can perfectly overlap
communication and computation

= Which takes longer?

o Data Movement
o Computation

= |s performance limited by compute or
data movement?

Peak GFLOP/s
GFLOP/s = min

Al * Peak GB/s

Arithmetic Intensity (Al) = measure of data locality

ATPESC2025 13

Compute

GFLOP/s

Ffe rfect ECacheis

I

$§ DRAMGB/s

DRAM

Arithmetic Intensity

= Measure of data locality (data reuse)

= Ratio of Total Flops performed to Total Bytes moved

= Forthe DRAM Roofline...

Total Bytes to/from DRAM
Includes all cache and prefetcher effects

©)

O

Can be very different from total loads/stores (bytes requested)

O

Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

ATPESC2025 14

(DRAM) Roofline Model

Peak GFLOP/s

GFLOP/s = min
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

=" Plot bound on Log-log scale as a
function of Al (data locality)

ATPESC2025 15

Attainable FLOP/s

Peak GFLOP/s

>

Arithmetic Intensity (FLOP:Byte)

Transition @ Al ==
Peak GFLOP/s / Peak GB/s ==
‘Machine Balance’

(DRAM) Roofline Model

Peak GFLOP/s
GFLOP/s = min

Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

= Plot bound on Log-log scale as a
function of Al (data locality)

* Roofline tessellates the locality-

performance plane into five regions...

ATPESC2025 16

Attainable FLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

(DRAM) Roofline Model

Peak GFLOP/s A
GFLOP/s = min
Peak GFLOP/s
Al * Peak GB/s

Al (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

Attainable FLOP/s

= Plot bound on Log-log scale as a
function of Al (data locality)

* Roofline tessellates the locality-

performance plane into five regions... Arithmetic Intensity (FLOP:Byte)

= Measure application (Al,GF/s) and plot
In the 2D locality-performance plane.

ATPESC2025 17

Roofline Examples

ATPESC2025

Roofline Example #1

= Typical machine balance is 5-10

A
FLOPs per byte...
o 40-80FLOPs per double to exploit compute capability
Peak GFLOP/s
o Artifact of technology and money
|
o Unlikely to improve Q\U_’ I
@) |
- I
L |
Q9 I
e 1
© I
= Consider STREAM Triad... g | DRAM GB/s
#pragma omp parallel for :
for(i=0;1<N;i++){ :
z[i] = x[1] + alpha*Y[i]; :
3
1
0.083 5.0 >
o 2 FLOPs per iteration Arithmetic Intensity (FLOP:Byte)

0 Transfer 24 bytes per iteration (read X]i], Y[i], write Z][i])
o Al=0.083 FLOPs per byte == Memory bound

ATPESC2025 19

Roofline Example #2

= Conversely, 7-point constant coefficient
stencil...

#pragma omp parallel for
for(k=1;k<dim+1; k++){
for(j=1;j<dim+1; j++){
for(i=1;i<dim+1;i++){
newlk] [j1[i] = -6.0%old[k 1[j 1[i]
+ old[k 1[j 1[i-1]

old[k 1[j 1[i+1]
oldlk J[j-11[i 1]
old[k J[j+1][1 1]
old[k-1][j 1[i]
old[k+1][j 1[i 1;

ATPESC2025 20

Compute

GFLOP/s

P:e rfect ECacheis

DRAM GB/s

DRAM

Roofline Example #2

= Conversely, 7-point constant coefficient | § §
. ! Compute ! GFLOP/s
stencil... i : |
o 7FLOPs Pertect'Caches
o 8 memory references (7 reads, 1 store) per point ' ' ' DRAM GB/s
o Al=7/(8*8)=0.11 FLOPs per byte DRAM

(measured at the L1)

#pragma omp parallel for
for(k=1;k<dim+1; k++) {
for(j=1;j<dim+1; j++){

B =T T20 L i++)
newlk] [j1[i = -6§0*old[k

old[k 1[J

old[k][j
old[k 1[j-1]1[1
old[k J[j+1][i
old[k-1][3 1I[1
+ old[k+1][] 1I[i

ATPESC2025 2

Roofline Example #2

= Conversely, 7-point constant coefficient i i i
. ! Compute ! GFLOP/s
stencil... : - :
o 7FLOPs F?erfect Cacheis
o 8 memory references (7 reads, 1 store) per point e e e e DRAM GB/s
o ldeally, cache will filter all but 1 read and 1 write per point DRAM

#pragma omp parallel for
for(k=1;k<dim+1; k++){
for(J 1,J<d1m+1 J++){

103 101 1]
103 1[i-1]
103 1[1+1]
103-11[0]
1[3+1][1

1
T UrTupLnN L1 Ly JLt .
1

old[k+1][j 1[i

ATPESC2025 22

Roofline Example #2

= Conversely, 7-point constant coefficient § § §
. ! Compute ! GFLOP/s
stencil... : | :
o 7FLOPs P:erfect iCacheis
o 8 memory references (7 reads, 1 store) per point 6 ' e ' 6 ' 6 DRAM GB/s
o ldeally, cache will filter all but 1 read and 1 write per point DRAM
» 7/(8+8)=0.44 FLOPs per byte (DRAM)

#pragma omp parallel for
for(k=1;k<dim+1; k++){
for(j=1;j<dim+1; j++){
for(i=1;i<dim+1l;i++){
new[k][j1[i] = -6.0%old[k J[j I[i]
+ old[k 1[3 1[i-1]

old[k 1[j 1[i+1]
oldlk J[j-11[i 1]
old[k J[j+1][1 1]
old[k-1][j 1[i]
old[k+1][3 1[1 1;

ATPESC2025 23

Roofline Example ;

= Conversely, 7-point constant coefficient

H2

1 write per point

stencil...

o 7FLOPs

o 8 memoryreferences (7 reads, 1 store) per point
o ldeally, cache will filter all but 1 read and

» 7/(8+8)=0.44 FLOPs per byte (DRAM)

== memory bound, but 5x the FLOP rate as TRIAD

#pragma omp parallel for
for(k=1;k<dim+1; k++){
for(j=1;j<dim+1; j++){
for(i=1;i<dim+1;i++){
new[k] [j]1[1] = -6.0%old[k]J[7 1[i
+ old[k 1[3 1[4

oldlk 1[j 1[i
old[k 1[j-1]1[1
old[k J[j+1][i
old[k-1][3 1I[1
old[k+1]1[7 1[1

ATPESC2025

]
-1]
+1]

]

]
]
] .

24

A
Peak GFLOP/s

n
fan
@)
0 GFLOP/s< Al * DRAM GB/s
2 :
© |
C |
.§ :
b : ! 7-point

I : Stencil

! |

|
| I)
0.083 0.44

Arithmetic Intensity (FLOP:Byte)

Roofline Example #3

 Roofline makes it obvious what the
bound on FLOP rate is, but let’s ask
the reverse... .

= Given a low FLOP rate and Al
what DRAM bandwidth are we
attaining?

Attainable FLOP/s

GFLOP/s

Al DRAM

average GB/s =

Arithmetic Intensity (FLOP:Byte)

= This is just a slope (y/x)

= Thus we can define an isocurve
of constant bandwidth

ATPESC2025 29

Are we getting good performance?

= Think back to our mix of
benchmarks... t

FLOP/s

Benchmark

ATPESC2025 20

Are we getting good performance?

= \We can sort benchmarks by
arithmetic intensity... t

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 27

Are we getting good performance?

= We can sort benchmarks by
arithmetic intensity...

= ...and compare performance Peak GFLOP/s
relative to machine capabilities

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 28

Are we getting good performance?

= Benchmarks near the roofline are
making good use of
computational resources

Peak GFLOP/s

™ 50% of Peak

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 29

Are we getting good performance?

= Benchmarks near the roofline are
making good use of
computational resources

» benchmarks can have low performance

(GFLOP/s), but make good use
(% STREAM) of a machine

ATPESC2025 30

Attainable FLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

™ 50% of Peak

Are we getting good performance?

= Benchmarks near the roofline are
making good use of
computational resources

» benchmarks can have low performance
(GFLOP/s), but make good use
(% STREAM) of a machine

» benchmarks can have high performance

(GFLOP/s), but still make poor use of a
machine (%peak)

ATPESC2025 31

Attainable FLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

. 50% of Peak

Recap: Roofline is made of two components

= Machine Model

o Lines defined by peak GB/s and GF/s
(Benchmarking)

Peak GFLOP/s

o Unique to each architecture

o Common to all apps on that architecture 50% of Peak

Attainable FLOP/s

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 32

Recap: Roofline is made of two components

= Machine Model

o Lines defined by peak GB/s and GF/s
(Benchmarking)

o Unique to each architecture
o Common to all apps on that architecture

= Application Characteristics

o Dots defined by application GFLOP’s and
GB’s (Application Instrumentation)

o Unique to each application
o Unique to each architecture

ATPESC2025 33

Attainable FLOP/s

>

Arithmetic Intensity (FLOP:Byte)

Recap: Optimization Strategy

1. Gettothe Roofline

A
Peak GFLOP/s
cn 7/
o
o 50% of Peak
—
L
9
o]
@©
c
IS
<
- >
Arithmetic Intensity (FLOP:Byte)

ATPESC2025 34

Recap: Optimization Strategy

1. Gettothe Roofline

2. Increase Arithmetic Intensity
when bandwidth-limited

o Reducing data movement increases Al

o Increasing Al increases performance
when bandwidth-bound

ATPESC2025 39

Attainable FLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

How can performance ever be
below the Roofline?

ATPESC2025

ATPESC2025

How can performance be below the Roofline?

Simple DRAM model can be insufficient for a variety of reasons...

DRAM’s not the

bottleneck...

o Cache bandwidth and
cache locality
o PCle bandwidth

... The Hierarchical
Roofline Model

T. Koskela, Z. Matveev, C. Yang, A. C. Yang, T. Kurth,

Not enough of

Vector/Tensor instr.
o No FMA

o Mixed Precision

o No Tensor Core OPs

... Additional Ceilings

S. Williams,

Adedoyin, R. Belenov, P. Thierry, Z. "Hierarchical Roofline analysis for
Zhao, R. Gayatri, H. Shan, L. Oliker, J. GPUs: Accelerating performance
Deslippe, R. Green, S. Williams, "A Novel optimization for the NERSC-9
Multi-Level Integrated Roofline Model Perimutter system", CCPE, 2019.
Approach for Performance
Charagterization", ISC, 2018.
O
;;2 Q@\ / y LA
o = = .
=< I JARYA VL A
[
o LLL
Arithmetic Intensity (FLOP:Byte) S
37

Integer-heavy Codes...

o Non-FP inst. impede
FLOPs
o No FP instructions

... The Instruction
Roofline Model

N. Ding, S. Williams,
Roofline Model for GPUs",
PAPER, PMBS, 2019.

"An Instruction
BEST

Performance (wa

10” 10' 107
Instruction Intensity (Warp Instructions per Transaction)

Lack of Parallelism...

o ldle Cores/SMs

o Insufficient ILP/TLP

o Divergence and
Predication

... Roofline Scaling

Trajectories
K. Ibrahim, S. Wiliams, L. Oliker,
"Performance Analysis of GPU

Programming Models using the Roofline
Scaling Trajectories”, BEST PAPER,
Bench, 2019.

GFlo
10.0

J
|
J

1.0

i

T T T T T T T T

0.01 0.05 0.50 5.00
Arithmetic Intensity (Flops/Byte)

0.1

T
50.00

Below the Roofline?

Memory Hierarchy and Cache Bottlenecks

ATPESC2025

Memory Hierarchy

= CPUs/GPUs have multiple levels of
memory/cache

Registers

L1, L2, L3 cache

HBM (KNL/GPU device memory)

DDR (main memory)

O O O O O

NVRAM (non-volatile memory)

ATPESC2025 39

L1

D$

L2

D$

L3

DDR

Memory Hierarchy

= CPUs/GPUs have different bandwidths Bandwidth

for each level m

L1D$

L2 GB/s

L2 D$

L3 GB/s

L3D$

DRAM GB/s

DDR

ATPESC2025 40

Memory Hierarchy

= CPUs/GPUs have different bandwidths M
for each level

GFLOP/s
o different machine balances for each level L1GB/s ?

L1D$

GFLOP/s
L2 GB/s

L2 D$

GFLOP/s
L3 GB/s

L3D$
GFLOP/s f
DRAM GB/s

DDR

ATPESC2025 41

Memory Hierarchy

» CPUs/GPUs have different bandwidths ™" oo e Hovement
for each level GFLOP,Sm e
o different machine balances for each level L1 GBS
L1D$
GFLOP/s 1
) . L. L2 GB/s] -2 GB
= Applications have locality in each level L2 D$
o different data movements for each level GLgLé’BF;’S | L3GB
L3 D$
GFLOP/s 1
DRAM GB/s v DRAMGB
DDR

ATPESC2025 42

Memory Hierarchy

u CPUS/G PUS have dlfferent bandW|dthS Machine Balance Arithmetic Intensity
for each level - m one
o different machine balances for each level L1GB/s L1GB
L1D$
GFLOP/s 1 GFLOPs
)) .. L2 GB/s ! L2GB
= Applications have locality in each level L2 D$
o different data movements for each level GFLOP/s 1 _GFLOPs
L3 GB/s v L3 GB
o different arithmetic intensity for each level L3D$
GFLOP/s 1 GFLOPs
DRAM GB/s v DRAM GB
DDR

ATPESC2025 43

Memory Hierarchy (Discrete GPU)

- CPUS/GPUS have dlfferent Machine Balance Arithmetic Intensity
bandwidths for each level GFLOP,SW FLOPe
. . L1 GB/s L1GB
o different machine balances for each level GPU L1 D$
GFLOP/s 1 GFLOPs
L2 GB/s v L2 GB
= Applications have locality in each level GPU L2 D$
GFLOP/s 1 GFLOPs
o different data movements for each level HBM GB/s ' "HBMGB_
o different arithmetic intensity for each level GPU HEM
GFLOP/s 1 GFLOPs
PCle GB/s L 4 PCle GB
: DDR
= Same concept applies to GPUs and

disaggregated memory
o DDRis accessed via PCle, CXL, or NoC

ATPESC2025 a4

Cache Bottlenecks

" For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
GFLOP/s = min
Alpram * DRAM GB/s

Al, (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

ATPESC2025 4°

Cache Bottlenecks

" For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
GFLOP/s = min
Alpram * DRAM GB/s

Al,* L2 GB/s

Al, (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

ATPESC2025 40

Cache Bottlenecks

" For each additional level of the memory hierarchy, we can add another
term to our model...

Peak GFLOP/s
GFLOP/s = min

Alpram * DRAM GB/s

Al ,*L2 GB/s

Al_,*L1GB/s

Al, (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

ATPESC2025 47

Cache Bottlenecks

=" Plot equation in a single figure...
o “Hierarchical Roofline” Model

48

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Cache Bottlenecks

=" Plot equation in a single figure...

o “Hierarchical Roofline” Model 1
o Bandwidth ceiling (diagonal line) for each Poak GELOP/s
level of memory
s
-
G
=
Z

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 49

Cache Bottlenecks

=" Plot equation in a single figure...

o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

o Arithmetic Intensity (dot) for each level of
memory

ATPESC2025 50

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Cache Bottlenecks

=" Plot equation in a single figure...

o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

o Arithmetic Intensity (dot) for each level of
memory

» performance is ultimately the minimum
of these bounds

ATPESC2025 5

Attainable GFLOP/s

Peak GFLOP/s

L2 Bound
L2 AI*BW
is less than

DRAMAI*B

Arithmetic Intensity (FLOP:Byte)

Cache Bottlenecks

=" Plot equation in a single figure...

o “Hierarchical Roofline” Model

o Bandwidth ceiling (diagonal line) for each
level of memory

o Arithmetic Intensity (dot) for each level of
memory

» performance is ultimately the minimum
of these bounds

= |f L2 bound, we see DRAM dot
well below DRAM ceiling

ATPESC2025 52

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Cache Hit Rates

= Widely separated Arithmetic

Intensities indicate high reuse in i

the (L2) CaChe Peak GFLOP/s
G
g

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 53

Cache Hit Rates

» Widely separated Arithmetic
Intensities indicate high reuse in
the (L2) cache

= Similar Arithmetic Intensities
iIndicate effectively no (L2) cache
reuse (== streaming)

ATPESC2025 54

Attainable GFLOP/s

Peak GFLOP/s

Arithmetic Intensity (FLOP:Byte)

Below the Roofline?

Fused Operations and Accelerators

ATPESC2025

Fused Operations and Accelerators

= Vectors have their limits (finite DLP, register file energy scales with VL, etc...)

= Death of Moore’s Law is incentivizing operator fusion (e.g. FMA) and compute
accelerators (matrix multipliers)

= Modern CPUs and GPUs are increasingly reliant on special (fused) instructions
that perform multiple operations (fuse common instruction sequences)...

o FMA (Fused Multiply Add): Z=a*x+y ...Z,X,y are vectors or scalars

o 4FMA (Quad FMA): z=A*x+z ...A is a FP32 matrix; x,z are
vectors

o WMMA (Tensor Core): /=AB+C ...A B are FP16 matrices; Z,C are FP32

» Define a set of “ceilings” based on instruction type
(all tensor, all FMA, or all FADD)

ATPESC2025 >0

Floating-Point and Mixed Precision Ceilings

= Consider NVIDIA Volta GPU

. A
= \We may define 3 performance
ceilings... A
o 15 TFLOPS for FP32 FMA o
@)
o 7.5 TFLOPs for FP32 Add B
o ~100 TFLOPs for FP16 Tensor E o n
Z
FP32 Add
Arithmetic Intensity (FLOP:Byte)

SR = 2D 5 <) A\ [=
ATPESC2025 57

Floating-Point and Mixed Precision Ceilings

= When calculating (Al,GFLOP/s),
count the total FLOPs from all types

—>

of instructions) FP16 WMMA
= DL performance can often be well S
below nominal Tensor Core peak <
= FP32 FMA
X
FP32 Add

Arithmetic Intensity (FLOP:Byte)

AGEEVEE R) AN [=
ATPESC2025 -

A

= N e Lo

Floating-Point and Mixed Precision Ceilings

= When calculating (Al,GFLOP/s),
count the total FLOPs from all types
of instructions

—>

= DL performance can often be well
below nominal Tensor Core peak

Attainable FLOP/s

= DL applications are a mix Tensor,
FP16, and FP32 instructions

. ThUS, there iS d Ceilin on Arithmetic Intensity (FLOP:Byte)
performance defined by the mix of
Instructions

AGEEVEE R) AN [=
ATPESC2025 s

A

= N e Lo

Below the Roofline?

Lack of Parallelism

ATPESC2025

Roofline and Parallelism

=" \We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

GFLOP/sp. i
GFLOP/s = min

*
Alpram * GB/spram

Al, (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

ATPESC2025 o

Roofline and Parallelism

=" \We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

= But all CPUs and GPUs are highly parallel architectures
= GFLOP/s and GB/s are a function of how much parallelism we utilize...

GFLOP/sp(P)
GFLOP/s(P) = min
Alppam(P) * GB/spram(P)

Al, (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

Alypan IS @ function of parallelism because cache contention can
generate superfluous LLC capacity misses (==DRAM data movement)

ATPESC2025 o2

Roofline and Parallelism

* How do we visualize parallelism in
the Roofline?

o Naively, GFLOP/s(P) and GB/s(P) are
proportional to parallelism P

o SMs are capable of pulling more than their
fair share of HBM

o DVFS implies not true for GFLOP/s

ATPESC2025 03

Attainable GFLOP/s

GFLOP/s (80 SMs)

Arithmetic Intensity (FLOP:Byte)

Roofline and Parallelism

* How do we visualize parallelism in
the Roofline?

o Naively, GFLOP/s(P) and GB/s(P) are
proportional to parallelism P

o SMs are capable of pulling more than their
fair share of HBM

o DVFS implies not true for GFLOP/s

»one must benchmark GFLOP/s
and GB/s at each concurrency

ATPESC2025 o4

Attainable GFLOP/s

GFLOP/s (80 SMs)

40 active SMs

Arithmetic Intensity (FLOP:Byte)

Roofline and Parallelism

= Consider CUDA kernel optimized
for Fermi (16 SMs) running on
Volta (80 SMs)

o Performance looks very poor

ATPESC2025 0o

Attainable GFLOP/s

GFLOP/s (80 SMs)

Arithmetic Intensity (FLOP:Byte)

Roofline and Parallelism

= Consider CUDA kernel optimized
for Fermi (16 SMs) running on
Volta (80 SMs)

o Performance looks very poor

o Kernels using only 16 SMs underutilize the
V100 architecture.

o Roofline highlights the fact that
performance is constrained by a lack of
software parallelism

ATPESC2025 o0

Attainable GFLOP/s

20 active SMs

Arithmetic Intensity (FLOP:Byte)

Roofline Scaling Trajectories

= Traditional Scalability:

o Plot performance vs. concurrency (#cores or #SMs)
o Observation without much insight
o Why does performance decrease? &
z
g ¢o~‘~
of _.7 T== (o)
o o
:
E /,,O’
£ o7
5 10 20 40 80

#SMs Enabled

ATPESC2025 o7

Roofline Scaling Trajectories

» Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

»Roofline Scaling Trajectories

o Measure (Al,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline

Performance (GFLOP/s)

Arithmetic Intensity (FLOP:Byte)

ATPESC2025 o8

Roofline Scaling Trajectories

» Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

»Roofline Scaling Trajectories

o Measure (Al,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline

Performance (GFLOP/s)

o Perfect scaling is a vertical line

<

0---0--0--0

Ag

%
P
s

;

ATPESC2025 o9

Arithmetic Intensity (FLOP:Byte)

Roofline Scaling Trajectories

» Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

»Roofline Scaling Trajectories
o Measure (Al,GFLOP/s) for each concurrency

40 SMs

s
ﬁ ¢1OSMS

65 SMs

o Plot as a trendline on Roofline

Performance (GFLOP/s)

o Perfect scaling is a vertical line
o Turnover in Al indicates cache capacity

exhaustion (extra L2 misses drives down Al)
Arithmetic Intensity (FLOP:Byte)

ATPESC2025 70

ATPESC2025

Recap

* Roofline bounds performance as a function of Arithmetic Intensity
Horizontal Lines = Compute Ceilings

Diagonal Lines = Bandwidth Ceilings

Bandwidth ceilings are always parallel on log-log scale

Collectively, define an upper limit on performance (speed-of-light)

= Loop Arithmetic Intensity (for each level of memory)
o Total FLOPs / Total Data Movement (for that level of memory)
o Measure of a loop’s temporal locality
o Includes all cache effects

* Plotting loops on the (Hierarchical) Roofline

Each loop has one dot per level of memory

x-coordinate = arithmetic intensity at that level

y-coordinate = performance (e.g. GFLOP/s)

Proximity to associated ceiling is indicative of a performance bound

o Proximity of dots to each other is indicative of streaming behavior (low cache hit rate)

ATPESC2025 72

What is Roofline used for?

» Understand performance differences between Architectures,

Programming Models, implementations, etc...
o Why do some Architectures/Implementations move more data than others?
o Why do some compilers outperform others?

* Predict performance on future machines / architectures

o Setrealistic performance expectations
o Drive for HW/SW Co-Design

» |dentify performance bottlenecks & motivate software optimizations

= Determine when we’re done optimizing code

o Assess performance relative to machine capabilities
o Track progress towards optimality
o Motivate need for algorithmic changes

ATPESC2025 73

Hands-on example on Aurora

Vendor tools for Roofline analysis

Intel
* |ntel Advisor
« https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

NVIDIA
« NVIDIA Nsight Compute
» https://developer.nvidia.com/nsight-compute
» https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page

- AMD

« AMD ROCm Compute Profiler (Omniperf, previously)
* https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html

We won't try ever%/_tool. They have different instructions for the same concept. (I know it is
annoying, but that is what we have. ®

ATPESC2@25 extremecomputingtraining.anl.gov ~ Argonne -y

lllllllllllllllll

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html

Intel Advisor for roofline analysis

ATPESC2025

Getting R

oofline data in Intel® Advisor:
two-pass approach

Roofline :
Axis X: Al = #HFLOP / ##Bytes
Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Overhead

Step 1: Survey (-collect survey)

- Provide #Seconds

- Root access not needed

- User mode sampling, non-intrusive.

1x

Step 2: FLOPS (-collect tripcounts —flops)

- Provide #FLOP, #Bytes, AVX-512 Mask
- Root access not needed
- Precise, instrumentation based, count number of instructions

3-5X

ATPESC2025

Original, Cache-Aware (CARM)
and Memory-Level Roofline

CARM (cache-aware roofline) Original Roofline

= Single Al based on aggregated traffic: e Al based on external memory :

CPU core (GPU EUs) <-> memory sub-system DDR (GPU GTI)

= Ceilings for compute, cache/memory levels e Ceilings for DDR and compute

= Al independent of problem size « Al dependent of problem size

Unique features: algorithmic focus and simplicity Unique features: DDR bound focus and simplicity

Memory Level Roofline - MLLR (see also “Hierarchical Roofline” by LBL)

= Al for all memory sub-system levels, combines (1), CARM, (2)Original and (3) Lx-only perspectives

= Harder to interpret for multiple kernels at a time

Unique features: unambiguous bottleneck detection

ATPESC2025

How to interpret MLR on CPU ? e
IsCSES

CARM

registers

é e -
5 i
L1 GB/s i
/ i Find the minimum of all memory subsystems
L2 GB/s :
X e GB/s
A g o Shortest distance == main bottleneck
ot |
A y Qi i'""(:: (Shortest distance == max saturation (utilization) observed)
i P i EI (Shortest distance == max effective bandwidth/throughput observed)
| |
P s) oy :---‘I\ Actual performance

Arithmetic intensity (Flop/Byte)

ATPESC2025

How to interpret MLR on GPU ?

SLM GB/s
Find the minimum of all memory subsystems
Q : :
1 e Shortest distance == main bottleneck
i i (Shortest distance == max saturation (utilization) observed)
i i (Shortest distance == max effective bandwidth/throughput observed)
SRy RPN R g — -

F=="
I
1
I
I
>
)
—t
C
L
©
D
-
*
@)
-
3
)
-
o
D

e

Arithmetic intensity (Flop/Byte)

ATPESC2025

How to generate (profile*) Roofline
for your application

ATPESC2025

How to generate CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline -- <your-executable-with-parameters>

More details / How-To

7 .

S source advisor-vars.sh

1st method. Not compatible with MPI applications: 2nd method (compatible with MPI, more flexible):
$ advisor -collect roofline --project-dir $ advisor -collect survey --project-dir ./your project --
./your project -- <your-executable-with- <your-executable-with-parameters>
parameters>

$ advisor -collect tripcounts --flop --project-dir
./your project -- <your-executable-with-parameters>

\ /

(optional) copy data to your UI desktop system
$ advisor-gui ./your project

$ advisor -report roofline --project-dir ./your project > roofline.html

ATPESC2025

How to generate MLR+CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline —enable-cache-simulation --<your-executable-with-parameters>

More details / How-To

S source advisor-vars.sh

1st method. Not compatible with MPI applications: 2nd method (compatible with MPI, more flexible):

$ advisor -collect roofline —-enable-cache- $ advisor -collect survey --project-dir ./your project --
simulation --project-dir ./your project -- <your-executable-with-parameters>
<your-executable-with-parameters> . _]]
$ advisor -collect tripcounts —-flop —enable-cache-simulation
—--project-dir ./your project -- <your-executable-with-

\\\ parameters> K//

(optional) copy data to your UI desktop system

$ advisor-gui ./your project

$ advisor -report roofline --project-dir ./your project > roofline.html

ATPESC2025

How to generate GPU (MLR & CARM) Roofline profile?

As simple as: $ advisor -collect roofline —-profile-gpu -- <your-executable-with-parameters>

More details / How-To

7 .

S source advisor-vars.sh

1st method. Not compatible with MPI applications: 2nd method (compatible with MPI, more flexible):
$ advisor -collect roofline --profile-gpu - $ advisor -collect survey --profile-gpu --project-dir
-project-dir ./your project -- <your-— ./your project -- <your-executable-with-parameters>

executable-with-parameters> .]] .
$ advisor -collect tripcounts —-flop --profile-gpu --project-
dir ./your project -- <your-executable-with-parameters>

(optional) copy data to your UI desktop system

$ advisor-gui ./your project

$ advisor -report roofline --gpu --project-dir ./your project > roofline.html

ATPESC2025

GPU Roofline: Extended HTML GUI

See HTML reportin project-dir/e000|rank.*/report folder by default

B intel ADVISOR [l rewsectve oeumoonoe msits = surena - EHIEEIRIEINERY - Soue v

source advisor_install dir/advisor-vars.sh

advisor
--report all
--project-dir ./your_project
--report-output ./roofline.html 8

ATPESC2025

86

Extended HTML GUI

For any system with web

n intel ADV ‘SCR E Perspective: GPU Roofline Insights ~

Program Metrics

| 33.63s

Program Elapsed Time
& cru

| 1 34 Compute (GINTOPS)

GINTOP 2¢

| 76.0%

FPU Utilization

OP/S and Bandwidth
& Py

ROOFLINE

1000

$d0149

100

g

0.01

This application is bounded by the Compute (GFLOPS)

Top Hotspots
& cru
Compute Task Elapsed Time
dgemm_kernel 48 8 18.40s
dgemm_incopy_48 2508
dgemm_beta 0.49s
dgemm_oncopy_8 0265
binary_test <0.01s

n intel AD\/|SOR Perspective: GPU Roofline Insights ~

GPU Roofline

EmEm - GPU Roofline Regions. -

roject: SC21_Advisor_rimp2_w25

browsers

Application: imp2-CPP-V50-MKL-OMP-OFFLOAD
" : P SC21_Advisor_rimp2_w25 73.2%
Summary - [CECRERICIACER] - Source View Application: rimp2-CPP-V46-MKL-OFFLOAD-OPT FPU Utiization

x (@ Y FLOAT; L3; SLM; GTI (Memory) ~ 7 Guidance ~ n intel ADVISOR E Perspective: Offioad Modeling ~

400

T
Sd0149

100 +

40

104
74
|
at
; _ap
R n?
Y el
2%
04 - e
e
o
T T
. 0.04
Self Elapsed Time: 1.021 s
GPU
Compute Task

» dgemm_oncopy_8

» dgemm_kernel_48_8

RIMP2_Energy_Whole_Combinedompoffloading:32

ATPESC20zs

T
0.07

01

Top Metrics

| 1.0x

Speed-up for Accelerated Code

Program Metrics

Time on Baseline GPU

Time on Target

Estimated Time on GPU
Data Transfer Tax
Kernel Launch Tax

Top Offloaded

Kernel

dgemm_beta

dgemm_beta

dgemm beta
dgemm_beta

dgemm_beta

22.67s
23.72s

- Accelerated Regions - Source View

23.70s Speed-up for Accelerated Code

0s Number of Offloads

0.02s Target Platform

Execution Time

Baseline 0.2ms
Target <0.1ms

= Baseline 0.2ms
Target <0.1ms

Baseline 0.3ms
Target 0.2ms

— Baseline 0.3ms
Target 0.4ms

== Baseline 0.4ms
Target 0.5ms

Baseline Platform

Speed-Up Bounded By Data Transfer
-
37.243% Launch Tax,
Compute
—
20.767x Launch Tax,
Compute
1.148x DRAM BW
0.634x DRAM BW
0.709x DRAM BW

88.4% 1.943

EU Threading Occupancy EU IPC Rate

ADI Nataite ADI Cavienn

@ Danammandatiane

SC21_Advisor_rimp2_w25
rimp2-CPP-V46-MKL-OFFLOAD-OPT

142

Number of Offloads

Offload Bounded By

m Compute
W L3 Cache BW
LLC BW
Memory BW
1.0x SLM BW

142 GTIBW
Gen9 GTde Atomics

Intel (R) Iris Pro Graphics P580 Latencies

oB

0B

0B

0B

0B

Data Transfer
Launch Tax

[]

Trip Count
Non-Modeled

Top Non-Offloaded

ADI Accamih,

No Data Available

81%
0%
0%

19%
0%
0%
0%
0%

<1%
<1%

Roofline on Multi-GPU systems

Add --target-gpu option in command line

advisor
--collect roofline
--profile-gpu

--project-dir ./your_project
--target-gpu 0:77:0.0

-- <your-executable-with-
parameters>

ATPESC2025

ISO3DFD Code

: A 16th order Finite-Difference Stencil for the 3D Isotropic Wave Equation

ATPESC2025

89

1ISO3dfd code

* A Finite Difference stencil kernel for solving the 3D acoustic isotropic wave equation

* A proxy for propagating a seismic wave
* 16™ order in space, with symmetric coefficients
« 2" order in time scheme without boundary conditions.

* Problem Statement
* Partial Differential Equation PDE;forwave propagation
dzp B (dzp d p 2)
dt2 dx? = dy? dz2

, where p is pressure, vis velocity, and ¢ is time.
» For a 16" order finite difference stencil, we use the adjacent 8 values in each direction of thex, y, and z

axis
* The expanded equation looks like this, where the array C holds the coefficients for the changes inx, y
and z. pitE = Cl0IpY ik + CIU(PFajn + PPvjn + PPk + DMk + D + DFig1) + -
+ C[8](pln+8,j,k +plsjk tPlj+ex t Dij—sk T Plik+s + piT,lj,k—S)

https://www.intel.com/content/www/us/en/developer/articles/technical/iso 3dfd-code-walkthrough. html

ATPESC2025

https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

Code walk through

= Variables

— n1n2n3:Grid dimensions for the
try {

Ster}CIl // Parse command line arguments and increase them by HALO
— Iterations : No. of timesteps. nl = std::stoi(argv[1]) + (2 * kHalfLength);
ey n2 = std::stoi(argv([2 + (2 * kHalfLength
- n1’ n2’ and n3 has the addition of n3 = std: :stoigargvb}; + 22 * kHalfLength;
2*kHalfLength to represent the entire num_iterations = std::stoi(argv(4]);
block including the halo region boaten Lo)
. Usage(argv([0]);

return 1;

}

// Compute the total size of grid
size t nsize = nl * n2 * n3;

// Apply the DX, DY and DZ to coefficients

) coeff[0] = (3.0f * coeff[0]) / (dxyz * dxyz);
d Dark blue: gl’ld for (auto i = 1; 1 <= kHalfLength; i++) {
coeff[i] = coeff[i] / (dxyz * dxyz):;

* Gray: halo of the
grid

* Pink: points needed
for calculation

}

ATPESC2025 90

ISO3dFD code versions

* Inthis hands-on, we use four ISO3DFD variants.

* These variants add progressive/incremental levels of optimization as follow:
o 1_CPU_only.cpp: aninitial CPU version
o 2_GPU_basic.cpp: basic GPU offloading using SYCL
o 3_GPU_linear.cpp: reduced index calculation

o 4 _GPU_private_memory_l.cpp: addition of private array for coefficients

https.://github.com/oneapi-src/oneAPIl-samples/tree/master/DirectProgramming/C%2B %2BSYCL/StructuredGrids/guided_iso3dfd GPUQptimization

ATPESC2025

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization

Build the code

S gsub -I -l select=1 -l walltime=02:00:00 -I filesystems=home:flare -A ATPESC2025 -q ATPESC
S cd /flare/ATPESC2025/usr/SUSER

$ git clone https://github.com/oneapi-src/oneAPl-samples.git

S cd oneAPl-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/
or

S cp -r /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/oneAPI-
samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/ .

S cd guided_iso3dfd_GPUOptimization

S mkdir build
S cd build

S module load cmake
S cmake ..
S make

ATPESC2025 0

https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git

1_CPU_only.cpp

for (auto iz = kHalfLength; iz < n3 end; iz++) {
for (auto iy = kHalflength; iy < n2 end; iy++) {
// Calculate start pointers for the row over X dimension
float* ptr next = ptr next base + iz * dimnln2 + iy * nl;

float* ptr prev = ptr prev base + iz * dimnln2 + iy * nl; sy
float* ptr vel = ptr vel base + iz * dimnln2 + iy * nl; ()
q
// Iterate over X 9..
for (auto ix = kHalflength; ix < nl end; ix++) { (1)
// Calculate values for each cell —_ (@]
float value = ptr prev[ix] * coeff[0]; . —+ <
for (int i = 1; i <= kHalfLength; i++) { Computing values for each cell @ @
value += Q <
coeff[i] * FD" ®
(ptr prev[ix + 1i] + ptr prev[ix - i] + o =
ptr prev[ix + i * nl] + ptr prev[ix - i1 * nl] + < o
ptr prev[ix + i * dimnln2] + ptr prev([ix - i * dimnln2]); o N
} -
ptr next[ix] = 2.0f * ptr prev[ix] - ptr next[ix] + value * ptr vel[ix]; X

}

ATPESC2025 3

Run 1_CPU only

$ src/1_CPU_only 512 512 512 10

Running on CPU serial version

time : 11.309 secs
throughput : 118.682 Mpts/s
flops : 7.23962 GFlops
bytes : 1.42419 GBytes/s

ATPESC2025 o

2 _GPU_basic: offloading the CPU code to GPU using SYCL

// Send a SYCL kernel (lambda) to the device for parallel execution
// Each kernel runs single cell
h.parallel for(kernel range, [=] (id<3> idx) {

// Start of device code

// Add offsets to indices to exclude HALO

int 1 = idx[0] + kHalfLength;
int j = idx[1l] + kHalflength;
int k = idx[2] + kHalfLength;

// Calculate values for each cell
float value = prev _accl[i] [J][k] * coeff acc[0];

#pragma unroll (8) Computing values for each cell
for (int x = 1; x <= kHalflLength; x++) {
value +=
coeff acc[x] * (prev _acc[i][j][k + x] + prev accl[i] [J][k - x] +

prev_acc[i] [J + x][k] + prev acc[i][j - x][k] +
prev_accl[i + x][J][k] + prev acc[i - x][]][k]);

}

next acc[i][j][k] = 2.0f * prev acc[i] [J][k] - next acc[i] [J][k] +

value * vel acc[i][F]1[k];
// End of device code
F);

SYCL kernel to the device
for parallel execution
overx, Yy, and z

ATPESC2025 9

Run 2 GPU basic

S export ZE_AFFINITY_MASK=0.0
S src/2_GPU_basic 512512 512 100

Running GPU basic offload version

Running on Intel (R) Data Center GPU Max 1550
The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

time : 7.25 secs
throughput : 1851.28 Mpts/s
flops : 112.928 GFlops
bytes : 22.2153 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_02_512 -- ./src/2_GPU_basic 512512 512 100
or
S cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_02_512.

Download advisor-report.html from /ADV_02_512/e000/report

ATPESC2025 o

Orient yourself in GPU+CPU Roofline!

 Quiz. What are GFLOPS of CPU
and GPU?

* Quiz: What is a cumulative
application bottleneck (Bounded
by)?

* Quiz Do you see iso3dfd kernel?

= Now, let’s switch to the main page
(“GPU Roofline Regions”)

ATPESC2025

build 615865

GPU Roofline Insigh

Bl intel ADVISOR BB
Program Metrics

11.20s

Program Elapsed Time

1.82s
GPU Time

& cPU
GFLops: 441.29

GFLOP: 803.33

ainTops: 7,025.13

FP Al (HBM): 3.59 GINTOP: 12,788.76

XVE Threading Occupancy: 94.5%

‘OP/S and Bandwidth

INT Al (HBM): 57.15

EUTWERT - GPU Roofline Regions « fSource View

5.20s

Data Transfer Time

HBM Bandwidth: 122.93 GB/s

HBM Traffic: 223.79 GB

& GPU
ROOFLINE [ZEOT INT
100e+6 | @ Int32 Vector Add Peak: 9.78e+5 GINTOPS
g
g —
100645 —
10000
INTOP/Byte (Arithmetic Intensity)
T T T
10 100 1000
This is ded by L3 823.92 29% of 2834.45 GB/sec v
Top Hotspots
& Gru
Kernel Elapsed Time GFLOPS GINTOPS Global/Local Active/Stalled/dle, % ...
iso3dfd(sycl:: V1:queu... 1.82s 441.286 7025.133 512x512x512/512x ... 86.9/12.5/0.6

Platform Information

Performance Characteristics

Collection Information

Project: ADV_02_512
Application: 2_GPU_basic

9.38s
CPU Time
aFLops: <0.01 GiNToPs: <0.01
GFLOP: <0.01 FP Al: <0.01 GINTOP: 0.06 INT Al: 0.04
Thread Count: 1
ROOFLINE Froat [
2 O
0142
30O
001 8 q}
0.001
0.0001
1.00e-5
INTOP/Byte (Arithmetic I€2nsity)
T T T T
0.01 0.04 0.07 0.1
cPU
Function Call S... Self Elapsed Ti... Self GFLOPS Self GINTOPS ...
lloopin__intel ... 0.35s 0.03797684769...
[loop in initialize 0.20s 0.18437092747...
[loop in initialize. .. 0s
[loop in iso3dfd ... Os
[loop in initialize... Os

GPU MLR Roofline

build 615865
= . . . 3 N . Project: ADV_02_512
n |nte| AD\/'SOR Perspective: GPU Roofline Insights ~ Summary GPU Roofline Regions Source View Application: 2 GPU_basic

Note some difference, “HBM” by default GPU Roofline ~ X
Y FLOAT: CARM; L3; SLM; HBM ~ * Guidance v e

1. Enable Memory Metrics and Point info - 3 e — .
3 . S Yecior MAD Pea 22861 GFLOPS S 0e N T P

Self Elapsed Time: 1.820 s

Self Memory Traffic: 2754.324 GB

2 Effective Bandwidth: 1513.008 GB/st
. CARM Self Arithmetic Intensity: 0.29

2. Lookinto GPU Details tab and find @
INDIVIDUAL ROOFLINE chart with small 10000 | B e A e e
Guidance, Hints and BoundBy 7000 -

* Quiz: what is a main bottleneck (“Bound By”) a0 | 258
for the iso3dfd kernel?

 Quiz: what are FP Al and INT Al?

?
DP Vector Add Peak: 5503.24 GFLOPS

Copy To Clipboard

i v Memory Metrics @

* Quiz: what are Instruction Mix Details? Impacts @
1000 — L3 - — 63%
3. Go backto Main Roofline Chart and oy Cﬁgﬂ— 22%
double-click on the circle to get the same o T 0ssncs
guidance on the large chart > ngﬂ. 720 aace

4

Cache locality extent

Kernel (loop) locality is proportional to the width
of the “bound by” line (ratio of DRAM to Lx bytes)

FLOP/Byte (Arithmetic Intensity)
T

T T T T T
0.4 0.7 1 4 7 10
Self Elapsed Time: 5.461 s

ATPESC2025

99
2 GPU basic

SUMMARY
Elapsed Time ALl
1.820s GFLOPS
Global Local
512 x 512 x 512 b12x2x1

ROOFLINE GUIDANCE

«<¥ This kernel is bounded by L3 Bandwidth.

@
=z
6' ford
0
7]

2.4e+4 —

7025.06

7,025.133

441.286

Int32 Vector Add Peak

CARM L3 HBEM
2754.324 GB 1499.886 GB 223.786 GB

SLM
0GB

INTOP/Byte (Arithmetic Intensity)

OP/S AND BANDWIDTH

Compute (GINTOPS):
Compute (GFLOPS):
L3 Bandwidth:

CARM Bandwidth:
SLM Bandwidth:
HBM Bandwidth:

v v Vv Vv v v

MEMORY METRICS

Impacts

7025.13
441.29
823.92

0% of 978000.00 GIN'
1% of 22800.00 GFLC
29% of 2834.45 GB/s¢

1513.01
0
122.93

L3
|

CARM
SLM

HBM
]

Shares

L3
|
CARM

SLM

HBM
|

6% of 23000.00 GB/s¢
0% of 23000.00 GB/s¢
10% of 1199.46 GB/se

63%
14%
0%

22%

1499.886GB
2754.324GB
0GB

223.786GB

INSTRUCTION MIX

584.69

375
250
125

0 T

~

All values are in giga instructions

Compute

B SP W INT32 ™ [NTG4
B CONTROL FLOW ®m SYNC

INSTRUCTION MIX DETAILS

» Compute

Memory

STORE ™ LOAD ™ MOVE

» Memory

» Other

PERFORMANCE CHARACTERISTICS

’ Active:

m Stalled:
= Idle:

XVE Threading Occupancy:
SIMD Width:

Other

584.69 70%

18.04 2%

233.20 28%

86.9%
12.5%
0.6%

94.5%
32

ATPESC2025

3_GPU_linear: using linearized index to reduce index calculation

// Send a SYCL kernel (lambda)
// Each kernel runs single cell
h.parallel for(kernel range, [=] (1d<3> nidx)
// Start of device code
// Add offsets to indices to exclude HALO

int n2n3 = n2 * n3;

int 1 = nidx[0] + kHalflength;
int 7 = nidx[1l] + kHalflength;
int k = nidx[2] + kHalflength;

// Calculate linear index for each cell
int idx i * n2n3 + j * n3 + k;

// Calculate values for each cell
float value prev_acc[idx] * coeff acc[0];
unroll (8)
for (int x = 1; x <= kHalflLength; x++) {
value +=
coeff acc[x]

#pragma

* (prev_acclidx + x]

}

next acc[idx]

2.0f * prev acc[idx]
value * vel acclidx];
// End of device code

});

prev_accl[idx + x * n3]
prev_accl[idx + x * n2n3]

- next acc[idx]

to the device for parallel execution

{

Linearized index

Computing values for each cell

+ prev_acclidx - x] +
+ prev_acc[idx - x * n3] +
+ prev_accl[idx - x * n2n3]);

I

SYCL kernel to the device
for parallel execution
overx, Yy, and z

ATPESC2025

100

Run 3 GPU linear

S export ZE_AFFINITY_MASK=0.0
S src/3_GPU_linear 512512 512 100

Running linear indexed GPU version

Running on Intel (R) Data Center GPU Max 1550
The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

time : 0.866 secs
throughput : 15498.6 Mpts/s
flops : 945.414 GFlops
bytes : 185.983 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_03_512 -- ./src/3_GPU_linear 512512 512 100
or
S cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV _results/ADV_03 512.

Download advisor-report.html from /ADV_03_512/e000/report

ATPESC2025 o

Check 3 GPU linear

= Please open the html for 3_GPU_linear

* Quiz: GFLOPS? Did it change?
(hint: look at Summary, and then go back to GPU Roofline Regions)

e Quiz: what is a main bottleneck for the kernel?
* Quiz: Any changes in INTOP?

ATPESC2025

103
3 GPU linear

SUMMARY A
Elapsed Time GINTOPS 2,516.945
0.683s GFLOPS 1,137.126
Global Local
b12 x 512 x 512 512x2x1

ROOFLINE GUIDANCE A

«<¥ This kernel is bounded by L3 Bandwidth.

Int32 Vector Add Peak

SdOLINID
~

(11.3x)
3152.32 -
L3 HBM SLM
1548.064 GB 222.807 GB 0GB

INTOP/Byte (Arithmetic Intensity)

OP/S AND BANDWIDTH

» Compute (GINTOPS):
» Compute (GFLOPS):
» L3 Bandwidth:

2516.95 0% of 965000.00 GIN
1137.13 4% of 22800.00 GFLC
2266.14 79% of 2838.19 GB/s

» CARM Bandwidth:
» SLM Bandwidth: 0
» HBM Bandwidth: 326.16

MEMORY METRICS

Impacts

L3
|
CARM

SLM

HBM
I

Shares

L3
]
CARM

SLM

HBM
|

3899.52 16% of 23000.00 GB/:

0% of 23000.00 GB/s
27% of 1181.52 GB/s¢

64%
14%
0%

22%

1548.064GB
2663.875GB
0GB

222.807GB

INSTRUCTION MIX

~

All values are in giga instructions

119.54
75
25
Compute Memory Other
B SP W |NT32 B INT64 STORE ® LOAD ® MOVE
B CONTROLFLOW = SYNC
INSTRUCTION MIX DETAILS A
» Compute 119.54 55%
» Memory 18.04 8%
» Other 80.11 37%
PERFORMANCE CHARACTERISTICS A
Active: 64.0%
m Stalled: 34.4%
= dle: 1.5%
XVE Threading Occupancy: 84.7%
SIMD Width: 32

ATPESC2025

104
Comparison from 2_GPU_basic to 3_GPU linear in FLOAT roofline chart

® (0]
m m
5 ? o ?
ﬁ L SP Vector MAD Peak: 2.28e+4 GFLOPS 3 | SP Vector MAD Peak: 2.28e+4 GFLOPS
? ?
,,,,,,,,,,,,,,,, D Peak: 1.14e+4 GFLOPS,_ o~ - DP Vectot MAD Peak: 1.14e+4 GFLOPS,

10000 - -~ Cad ctor Add Peak: 1.10e+4 GFLOPS 10000 — © ctor Add Peak: 1.10e+4 GFLOPS

7000 - 7000

?
DP Vector Add Peak: 5503.24 GFLOPS

2
DP Vector Add Peak: 5503.24 GFLOPS

4000 | 4000 -

1000 - 1000 -
700 700
) o \
400 Qh" . 400
CARM L3 HBM
,J 2754.324 GB | | 1499.886 GB ‘
o
&>
FLOP/Byte (Arithmetic Intensity) FLOP/Byte (Arithmetic Intensity)
T T T T T T T T T T T T
0.4 0.7 1 4 7 10 0.4 0.7 1 4 7 10
Self Elapsed Time: 1.820 s Self Elapsed Time: 0.683 s

ANY OPTIMIZATION OPPORTUNITIES FOR 3_GPU_LINEAR?

Possible to increase Al by re-using data multiple times?

ATPESC2025

4 _GPU_private_memory_l: adding private array for coefficients

// Send a SYCL kernel (lambda) to the device for parallel execution // Iterate over first dimension excluding HALO

// Each kernel runs single row over first dimension for (; i < end 1i; i++) {
h.parallel for(kernel range, [=] (id<2> nidx) ({ // Calculate_values For ceach ealil
// Start of device code float value = front[0] * coeff[0];

// Add offsets to indices to exclude HALO
// Start and end index used in loop

int n2n3 = n2 * n3;

int i = kHalfLength;

#pragma unroll (kHalfLength)
for (int x = 1; x <= kHalflLength; x++) {
value += coeff[x] *

int j = nidx[0] + kHalfLength; (prev_acc[idx + x] + prev accl[idx - x] +
int k = nidx[1l] + kHalflength; prev_acc[idx + x * n3] + prev acc[idx - x * n3] +
int end i = nl - kHalfLength; front [x] + back[x - 1]);

}
// Calculate global linear index for each cell next acclidx] = 2.0f * front[0] - next acc[idx] +

int idx =i * n2n3 + j * n3 + k; value * vel acc[idx];
// Create arrays to store data used multiple times
// Local copy of coeff buffer/continous values over lst dim which
// are used to calculate stencil front and back arrays are used to
// ensure the values over 1lst dimension are read once, shifted in’
// these array and re-used multiple times before being discarded

// Increase linear index, jump to the next cell in first dimension
idx += n2n3;

// Shift values in front and back arrays

// This is an optimization technique to enable data-reuse and for (auto x = kHalflength - 1; x > 0; x--) {
// improve overall FLOPS to BYTES read ratio back[x] = back[x - 1];
float ff[kHalfL th + 11; :
O2E CoBr [l JtLeng) Local array and) Computing values
float front[kHalflLength + 1]; back[0] = front[0];

float back[kHalfLength]; reuse multiple times for each cell

// Fill local arrays, front[0] contains current cell value fox faute = = 07 = < KiRlElengihy o) o

for (int x = 0; x <= kHalflLength; x++) { front [x] = front[x + 1];
coeff[x] = coeff accl[x]; }
front [x] = prev _accl[idx + n2n3 * x]; front [kHalfLength] = prev acc[idx + kHalflLength * n2n3];

}
for (int x = 1; x <= kHalflLength; x++) {
back[x-1] = prev acc[idx - n2n3 * x];

}

// End of device code

b SYCL kernel to the device
for parallel execution
overy and z

}

ATPESCZUzZ5 1

Run 4_GPU_private_memory |

S export ZE_AFFINITY_MASK=0.0

S src/4_GPU_private_memory_ 1512512 512 100

Running GPU private memory version with iterations over first dimension
Running on Intel (R) Data Center GPU Max 1550

The Device Max Work Group Size is : 1024
The Device Max EUCount is : 448

time : 0.637 secs
throughput : 21070.3 Mpts/s
flops : 1285.29 GFlops
bytes : 252.843 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_04_512 -- ./src/4_GPU_private_memory_| 512512 512 100
or
S cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_04_512.

Download advisor-report.html from /ADV_04_512/e000/report

ATPESC2025 o

Check 4 gpu private memory |

= Please open the html for 4_GPU_Private_memory_|
* Quiz: GFLOPS? Did it change?

(hint: look at Summary, and then go back to GPU Roofline Regions)
* Quiz: what is a main bottleneck for the kernel?

ATPESC2025

108

4 GPU_private_memory |

SUMMARY

Elapsed Time
0.443s

Global

512 x 512

ROOFLINE GUIDANCE

GINTOPS

GFLOPS

Local

512x 2

¥ This kernel is bounded by L3 Bandwidth.

3203.44 —

1816.18 —
L

Sd0749

~

920.446

1,816.197

SP Vector MAD Peak

CARM L3 HBM
1900.022 GB 692.461 GB 232.534 GB

SLM
0GB

FLOP/Byte (Arithmetic Intensity)

OP/S AND BANDWIDTH

» Compute (GINTOPS):
» Compute (GFLOPS):
» L3 Bandwidth:

» SLM Bandwidth:

» CARM Bandwidth:

» HBM Bandwidth:

MEMORY METRICS

Impacts

,_
|co

SLM
CARM

I
53]
‘g

Shares

r—
‘w

CARM

I
53]
Ig

920.45
1816.20
1563.77

~N

0% of 500000.00 GIN
7% of 22800.00 GFLC
55% of 2835.72 GB/s

0

4290.77

525.13

0% of 23000.00 GB/s
18% of 23000.00 GB/!
44% of 1180.92 GB/s¢

47%
0%
16%

38%

692.461GB
0GB
1900.022GB

232.534GB

INSTRUCTION MIX

~

All values are in giga instructions

50

37.5

25

12.5
0 —
Compute Memory

.

Other

B SP W INT32 ™ INT64 STORE ® LOAD ® OTHER ™ MOVE

B CONTROL FLOW ®m SYNC

INSTRUCTION MIX DETAILS

» Other

» Compute

» Memory

PERFORMANCE CHARACTERISTICS

Active:
m Stalled:
» Idle:

XVE Threading Occupancy:
SIMD Width:

27.75

51.73

10.08

31%

58%

1%

41.4%
39.8%
18.7%

T77.7%
32

ATPESC2025

109

Comparison from 3_GPU_linear to 4_GPU_private_memory_|

©
m
o ?
3 * SP Vector MAD Peak: 2.28e+4 GFLOPS
2
ol e PP VeclprMA D Peak: 1.14e+4 GFLOPS |
10000 - R S clor Add Peak: 1.10e+4 GFLOPS
)
o
7000 2 2
Pl S A o< S RSO~ g DR Vector Add Peak: 5503.24 GFLOPS |
&
4000 -{ 2
a
1000’ O=—0
CARM L3 HBM
2663.875 GB 1548.064 GB 222 807 GB
700 4 W&
o> :
% o‘é\c’e‘)
400 -| g
AN
i
o
&>
FLOP/Byte (Arithmetic Intensity)
T T T T T T
0.4 0.7 1 4 7 10

Self Elapsed Time: 0.683 s

(2]
m
-
(=]
0
w
10000 |
7000 - L
,%ge*h
0
4000 | L g
=
1000 -
700 —
400 -

?
SP Vector MAD Peak: 2.28e+4 GFLOPS

L3
692.461 GB

?
D Peak 1.14e+4 GFLOPS,

?
DP Vector Add Peak: 5503.41 GFLOPS

FLOP/Byte (Arithmetic Intensity)

Self Elapsed Time: 0.443 s

04

0.7

Al for L3 increases by re-using data; as a result, GFLOPS improves from 1,137 to 1,816: 1.6X

speed-up

ATPESC2025

ATPESC2025

111

Performance results

Grid size: 512x512x512
Number of iteration: 100
Employed Compute Platform
« CPU: Intel Xeon CPU Max
« GPU: Intel Data Center GPU Max

Target Kernel time Speed up from Speed-up from

1 core from

1_CPU_only* CPU 7.2 113.09 1x -
2_GPU_basic 112.9 7.25 15.7 x 1x
3_GPU_linear | stackirom 945.4 0.866 131 x 8.4 x
GPU
4_GPU_private_memory_| 1285.3 0.637 179 x 11.4 x

*1_CPU_onlyran 10 iterations instead of 100 iterations since its performance is too low; therefore, the kerneltime is projected for 100 iterations.

ATPESC2025

Thank you!

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources
during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative
works, and to display publicly.

[ENT O
Argonne Leadership .S. DEPARTMENT OF

Computing Facility extremecomputingtraining.anl.gov

http://extremecomputingtraining.anl.gov/

	Slide 1: Roofline Performance Model
	Slide 2
	Slide 3: Introduction to the Roofline Model
	Slide 4
	Slide 5: Getting our money’s worth?
	Slide 6: Are we getting good performance?
	Slide 7: Are we getting good performance?
	Slide 8: Are we getting good performance?
	Slide 9: What’s missing…
	Slide 10: Data Movement or Compute?
	Slide 11: Data Movement or Compute?
	Slide 12: Data Movement or Compute?
	Slide 13: Data Movement or Compute?
	Slide 14: Arithmetic Intensity
	Slide 15: (DRAM) Roofline Model
	Slide 16: (DRAM) Roofline Model
	Slide 17: (DRAM) Roofline Model
	Slide 18
	Slide 19: Roofline Example #1
	Slide 20: Roofline Example #2
	Slide 21: Roofline Example #2
	Slide 22: Roofline Example #2
	Slide 23: Roofline Example #2
	Slide 24: Roofline Example #2
	Slide 25: Roofline Example #3
	Slide 26: Are we getting good performance?
	Slide 27: Are we getting good performance?
	Slide 28: Are we getting good performance?
	Slide 29: Are we getting good performance?
	Slide 30: Are we getting good performance?
	Slide 31: Are we getting good performance?
	Slide 32: Recap: Roofline is made of two components
	Slide 33: Recap: Roofline is made of two components
	Slide 34: Recap: Optimization Strategy
	Slide 35: Recap: Optimization Strategy
	Slide 36
	Slide 37: How can performance be below the Roofline?
	Slide 38: Below the Roofline? Memory Hierarchy and Cache Bottlenecks
	Slide 39: Memory Hierarchy
	Slide 40: Memory Hierarchy
	Slide 41: Memory Hierarchy
	Slide 42: Memory Hierarchy
	Slide 43: Memory Hierarchy
	Slide 44: Memory Hierarchy (Discrete GPU)
	Slide 45: Cache Bottlenecks
	Slide 46: Cache Bottlenecks
	Slide 47: Cache Bottlenecks
	Slide 48: Cache Bottlenecks
	Slide 49: Cache Bottlenecks
	Slide 50: Cache Bottlenecks
	Slide 51: Cache Bottlenecks
	Slide 52: Cache Bottlenecks
	Slide 53: Cache Hit Rates
	Slide 54: Cache Hit Rates
	Slide 55: Below the Roofline? Fused Operations and Accelerators
	Slide 56: Fused Operations and Accelerators
	Slide 57: Floating-Point and Mixed Precision Ceilings
	Slide 58: Floating-Point and Mixed Precision Ceilings
	Slide 59: Floating-Point and Mixed Precision Ceilings
	Slide 60: Below the Roofline? Lack of Parallelism
	Slide 61: Roofline and Parallelism
	Slide 62: Roofline and Parallelism
	Slide 63: Roofline and Parallelism
	Slide 64: Roofline and Parallelism
	Slide 65: Roofline and Parallelism
	Slide 66: Roofline and Parallelism
	Slide 67: Roofline Scaling Trajectories
	Slide 68: Roofline Scaling Trajectories
	Slide 69: Roofline Scaling Trajectories
	Slide 70: Roofline Scaling Trajectories
	Slide 71: Recap
	Slide 72: Recap
	Slide 73: What is Roofline used for?
	Slide 74: Hands-on example on Aurora
	Slide 75: Vendor tools for Roofline analysis
	Slide 76: Intel Advisor for roofline analysis
	Slide 77: Getting Roofline data in Intel® Advisor: two-pass approach
	Slide 78: Original, Cache-Aware (CARM) and Memory-Level Roofline
	Slide 79: How to interpret MLR on CPU ?
	Slide 80: How to interpret MLR on GPU ?
	Slide 81: How to generate (profile*) Roofline for your application
	Slide 82: How to generate CARM CPU Roofline profile?
	Slide 83: How to generate MLR+CARM CPU Roofline profile?
	Slide 84: How to generate GPU (MLR & CARM) Roofline profile?
	Slide 85: GPU Roofline: Extended HTML GUI
	Slide 86: Extended HTML GUI
	Slide 87: Roofline on Multi-GPU systems
	Slide 88: ISO3DFD Code : A 16th order Finite-Difference Stencil for the 3D Isotropic Wave Equation
	Slide 89
	Slide 90: Code walk through
	Slide 91: ISO3dFD code versions
	Slide 92: Build the code
	Slide 93
	Slide 94: Run 1_CPU_only
	Slide 95
	Slide 96: Run 2_GPU_basic
	Slide 97: Orient yourself in GPU+CPU Roofline!
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Run 3_GPU_linear
	Slide 102: Check 3_GPU_linear
	Slide 103
	Slide 104
	Slide 105
	Slide 106: Run 4_GPU_private_memory_I
	Slide 107: Check 4_gpu_private_memory_I
	Slide 108
	Slide 109
	Slide 110: Recap
	Slide 111
	Slide 112: Thank you!
	Slide 113: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resea

