
extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

Roofline Performance Model

JaeHyuk Kwack

Argonne National Laboratory

http://extremecomputingtraining.anl.gov/

Outline

Introduction to the roofline model

Hands-on example on Aurora

Introduction to the Roofline Model

A short version of SC Tutorial Slides generated by Samuel Williams, LBNL (swwilliams@lbl.gov)

Please join SC25 tutorial for Roofline model for more details and practices

https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253

https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253
https://sc25.conference-program.com/presentation/?id=tut115&sess=sess253

We spend millions of dollars porting

applications to CPUs and GPUs…

How do we know if we are getting our

money’s worth?

Getting our money’s worth?

Benchmark

G
FL

O
P/

s

▪ Imagine profiling a mix of GPU-

accelerated benchmarks …

▪ Performance (GFLOP/s) alone

may not be particularly insightful

Peak GFLOP/s

▪ Really a question of getting good

performance on application
benchmarks

5

Are we getting good performance?

Benchmark

▪ We could compare performance to

a CPU…

G
FL

O
P/

s

o Speedup may seem random

o Aren’t GPUs always 10x faster than a CPU?

o If not, what does that tell us about

architecture, algorithm or implementation?

➢ ‘Speedup’ provides no insights into

architecture, algorithm, or

implementation.

➢ ‘Speedup’ provides no guidance to CS,

AM, applications, procurement, or

vendors.

6

Are we getting good performance?

o We may be able to show correlation

between events, but…

➢ …providing actionable guidance to

CS, AM, applications, or procurement

can prove elusive.

▪ Instead of speedup, we could take a CS

approach and look at performance
counters…
o Record microarchitectural events on CPUs/GPUs

o Use architecture-specific terminology

o May be broken

.

.

.

FRONTEND_RETIRED.LATENCY_GE_8_PS
FRONTEND_RETIRED.LATENCY_GE_16_PS
FRONTEND_RETIRED.LATENCY_GE_32_PS

RS_EVENTS.EMPTY_END
FRONTEND_RETIRED.L2_MISS_PS

FRONTEND_RETIRED.L1I_MISS_PS
FRONTEND_RETIRED.STLB_MISS_PS
FRONTEND_RETIRED.ITLB_MISS_PS

ITLB_MISSES.WALK_COMPLETED
BR_MISP_RETIRED.ALL_BRANCHES_PS

IDQ.MS_SWITCHES
FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS
BR_MISP_RETIRED.ALL_BRANCHES_PS

MACHINE_CLEARS.COUNT
MEM_LOAD_RETIRED.L1_HIT_PS

MEM_LOAD_RETIRED.FB_HIT_PS
MEM_LOAD_UOPS_RETIRED.L1_HIT_PS
MEM_LOAD_UOPS_RETIRED.HIT_LFB_PS

MEM_INST_RETIRED.STLB_MISS_LOADS_PS
MEM_UOPS_RETIRED.STLB_MISS_LOADS_PS

MEM_LOAD_RETIRED.L2_HIT_PSMEM_LOAD_UOPS_RETIRED.L2_HIT_PS
MEM_LOAD_RETIRED.L3_HIT_PS
MEM_LOAD_UOPS_RETIRED.LLC_HIT_PS

MEM_LOAD_UOPS_RETIRED.L3_HIT_PS
MEM_LOAD_RETIRED.L3_MISS_PS

MEM_LOAD_UOPS_RETIRED.LLC_MISS_PS
MEM_LOAD_UOPS_MISC_RETIRED.LLC_MISS_PS
MEM_LOAD_UOPS_RETIRED.L3_MISS_PS

MEM_INST_RETIRED.ALL_STORES_PS
MEM_UOPS_RETIRED.ALL_STORES_PS

ARITH.DIVIDER_ACTIVE
ARITH.DIVIDER_UOPS
ARITH.FPU_DIV_ACTIVE

INST_RETIRED.PREC_DIST
IDQ.MS_UOPS

INST_RETIRED.PREC_DIST
.
.

.7

Are we getting good performance?

o Modern architectures are incredibly complex

o Simulators may perfectly reproduce

performance

o Lots of information interpretable only by

computer architects

o worse, might incur 106x slowdowns

➢ Provide no insights into quality or

limits of algorithm or implementation.

➢ Provide no guidance to CS, AM,

application developers.

▪ We could take the computer architect’s

approach and build a simulator to
understand performance nuances…

8

What’s missing…

▪ Each community speaks their own
language and develops specialized
tools/methodologies

➢ Roofline is just such a model

▪ Need common mental model of
application execution on target system

▪ Sacrifice accuracy to gain…

o Architecture independence / extensibility

o Readily understandable by broad community

o Intuition, insights, and guidance to CS, AM,

apps, procurement, and vendors

https://crd.lbl.gov/roofline

9

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

Data Movement or Compute?

▪ Assume HW/SW can perfectly overlap
communication and computation

▪ Which takes longer?
o Data Movement
o Computation

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

#FP ops / Peak GFLOP/s

Time = max

#Bytes / Peak GB/s

10

Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

1 / Peak GFLOP/s

Time
#FP ops

#Bytes / #FP ops / Peak GB/s

= max

▪ Assume HW/SW can perfectly overlap
communication and computation

▪ Which takes longer?

o Data Movement

o Computation

▪ Is performance limited by compute or

data movement?

11

Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s

#FP ops
Time

(#FP ops / #Bytes) * Peak GB/s

= min

▪ Assume HW/SW can perfectly overlap
communication and computation
▪Which takes longer?

o Data Movement
o Computation

▪ Is performance limited by compute or
data movement?

12

Data Movement or Compute?

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

Arithmetic Intensity (AI) = measure of data locality

Data Movement or Compute?

▪ Assume HW/SW can perfectly overlap
communication and computation

▪ Which takes longer?
o Data Movement
o Computation

▪ Is performance limited by compute or
data movement?

13

Arithmetic Intensity

▪ Measure of data locality (data reuse)
▪ Ratio of Total Flops performed to Total Bytes moved
▪ For the DRAM Roofline…

o Total Bytes to/from DRAM
o Includes all cache and prefetcher effects
o Can be very different from total loads/stores (bytes requested)
o Equal to ratio of sustained GFLOP/s to sustained GB/s (time cancels)

14

(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==

‘Machine Balance’

Peak GFLOP/s

▪ Plot bound on Log-log scale as a
function of AI (data locality)

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

15

(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

unattainable performance

(greater than peak GFLOP/s)Peak GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

▪ Plot bound on Log-log scale as a
function of AI (data locality)

▪ Roofline tessellates the locality-

performance plane into five regions…

16

(DRAM) Roofline Model

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

unattainable performance

(greater than peak GFLOP/s)Peak GFLOP/s

Peak GFLOP/s

GFLOP/s = min

AI * Peak GB/s

AI (Arithmetic Intensity) = FLOPs / Bytes (moved to/from DRAM)

▪ Plot bound on Log-log scale as a
function of AI (data locality)

▪ Roofline tessellates the locality-

performance plane into five regions…

▪ Measure application (AI,GF/s) and plot

in the 2D locality-performance plane.

17

Roofline Examples

Roofline Example #1

▪ Typical machine balance is 5-10
FLOPs per byte…
o 40-80 FLOPs per double to exploit compute capability

o Artifact of technology and money

o Unlikely to improve

#pragma omp parallel for
for(i=0;i<N;i++){
 Z[i] = X[i] + alpha*Y[i];
}

▪ Consider STREAM Triad…

o 2 FLOPs per iteration

o Transfer 24 bytes per iteration (read X[i], Y[i], write Z[i])

o AI = 0.083 FLOPs per byte == Memory bound

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

5.0

TRIAD

GFLOP/s ≤ AI * DRAM GB/s

0.083

19

Roofline Example #2

▪ Conversely, 7-point constant coefficient
stencil…

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

20

Roofline Example #2

▪ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

o AI = 7 / (8*8) = 0.11 FLOPs per byte

(measured at the L1)

21

Roofline Example #2

▪ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

22

Roofline Example #2

▪ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

➢ 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

DRAM
DRAM GB/s

Perfect Caches

Compute GFLOP/s

23

Roofline Example #2

▪ Conversely, 7-point constant coefficient
stencil…
o 7 FLOPs

o 8 memory references (7 reads, 1 store) per point

o Ideally, cache will filter all but 1 read and 1 write per point

➢ 7 / (8+8) = 0.44 FLOPs per byte (DRAM)

At
ta

in
ab

le
 F

LO
P/

s

TRIAD

Arithmetic Intensity (FLOP:Byte)
0.083

7-point
Stencil

GFLOP/s ≤ AI * DRAM GB/s

0.44

Peak GFLOP/s

#pragma omp parallel for
for(k=1;k<dim+1;k++){
for(j=1;j<dim+1;j++){
for(i=1;i<dim+1;i++){
 new[k][j][i] = -6.0*old[k][j][i]
 + old[k][j][i-1]
 + old[k][j][i+1]
 + old[k][j-1][i]
 + old[k][j+1][i]
 + old[k-1][j][i]
 + old[k+1][j][i];
}}}

== memory bound, but 5x the FLOP rate as TRIAD

24

Roofline Example #3

• Roofline makes it obvious what the
bound on FLOP rate is, but let’s ask
the reverse… Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s
AIDRAM

=average GB/s

▪ This is just a slope (y/x)

▪ Thus we can define an isocurve
of constant bandwidth

▪ Given a low FLOP rate and AI,
what DRAM bandwidth are we

attaining?

25

Are we getting good performance?

▪ Think back to our mix of
benchmarks…

FL
O

P/
s

Benchmark

26

Are we getting good performance?

▪ We can sort benchmarks by
arithmetic intensity…

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

27

Are we getting good performance?

▪ We can sort benchmarks by
arithmetic intensity…

▪ … and compare performance
relative to machine capabilities

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

28

50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are
making good use of
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

29

50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are
making good use of
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

➢ benchmarks can have low performance

(GFLOP/s), but make good use

(%STREAM) of a machine

30

50% of Peak

Are we getting good performance?

▪ Benchmarks near the roofline are
making good use of
computational resources Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

➢ benchmarks can have low performance

(GFLOP/s), but make good use

(%STREAM) of a machine

➢ benchmarks can have high performance

(GFLOP/s), but still make poor use of a

machine (%peak)

31

Recap: Roofline is made of two components

▪ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

32

Recap: Roofline is made of two components

▪ Machine Model
o Lines defined by peak GB/s and GF/s

(Benchmarking)
o Unique to each architecture
o Common to all apps on that architecture

▪ Application Characteristics
o Dots defined by application GFLOP’s and

GB’s (Application Instrumentation)
o Unique to each application
o Unique to each architecture

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

33

Recap: Optimization Strategy

1. Get to the Roofline

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

34

Recap: Optimization Strategy

1. Get to the Roofline

Peak GFLOP/s

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

50% of Peak

2. Increase Arithmetic Intensity
when bandwidth-limited

o Reducing data movement increases AI

o Increasing AI increases performance

when bandwidth-bound

35

How can performance ever be

below the Roofline?

How can performance be below the Roofline?

Lack of Parallelism…
o Idle Cores/SMs

o Insufficient ILP/TLP

o Divergence and

Predication

Integer-heavy Codes…
o Non-FP inst. impede

FLOPs

o No FP instructions

Not enough of

Vector/Tensor instr.
o No FMA

o Mixed Precision

o No Tensor Core OPs

… Additional Ceilings

C. Yang, T. Kurth, S. Williams,
"Hierarchical Roofline analysis for

GPUs: Accelerating performance

optimization for the NERSC-9
Perlmutter system", CCPE, 2019.

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

…The Hierarchical

Roofline Model

T. Koskela, Z. Matveev, C. Yang, A.
Adedoyin, R. Belenov, P. Thierry, Z.

Zhao, R. Gayatri, H. Shan, L. Oliker, J.

Deslippe, R. Green, S. Williams, "A Novel
Multi-Level Integrated Roofline Model

Approach for Performance

Characterization", ISC, 2018.

0.01 0.05 0.50 5.00 50.00

0
.1

1
.0

1
0
.0

1
0
0

.0
1

0
0
0
.0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p

/s

VFMA (1229)

ADD (c32) (77)

 ADD (c1) (9.2)
DRAM

 (c
32) (

128)

DRAM
 (c

1) (
14.3

)

●

●

●

●

●
●●

roofline_summary_sp_lbl

● Class A

Class B

Class C

c1

c2

c4

c8

c16
c32c64

… Roofline Scaling

Trajectories

K. Ibrahim, S. Williams, L. Oliker,
"Performance Analysis of GPU

Programming Models using the Roofline

Scaling Trajectories", BEST PAPER,
Bench, 2019.

10
-2

10
-1

10
0

10
1

10
2

Instruction Intensity (Warp Instructions per Transaction)

10
0

10
1

10
2

10
3

P
er

fo
rm

an
ce

 (
w

ar
p
 G

IP
S

)

H
BM

 2
5.9

 G
TX

N/s

L2 9
3.6

 G
TXN

/s

L1 4
37.5

 G
TX

N
/s

Thoeretical Peak: 489.6 warp GIPS

… The Instruction

Roofline Model

N. Ding, S. Williams, "An Instruction
Roofline Model for GPUs", BEST

PAPER, PMBS, 2019.

DRAM’s not the

bottleneck…
o Cache bandwidth and

cache locality

o PCIe bandwidth

Simple DRAM model can be insufficient for a variety of reasons…

37

Below the Roofline?
Memory Hierarchy and Cache Bottlenecks

Memory Hierarchy

▪ CPUs/GPUs have multiple levels of
memory/cache
o Registers
o L1, L2, L3 cache
o HBM (KNL/GPU device memory)
o DDR (main memory)
o NVRAM (non-volatile memory)

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

39

Memory Hierarchy

▪CPUs/GPUs have different bandwidths
for each level CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Bandwidth

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

40

Memory Hierarchy

▪CPUs/GPUs have different bandwidths
for each level
o different machine balances for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

41

Memory Hierarchy

▪CPUs/GPUs have different bandwidths
for each level
o different machine balances for each level

▪ Applications have locality in each level
o different data movements for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Data Movement

L1 GB

L2 GB

L3 GB

DRAM GB

42

Memory Hierarchy

▪CPUs/GPUs have different bandwidths
for each level
o different machine balances for each level

▪ Applications have locality in each level
o different data movements for each level
o different arithmetic intensity for each level

CPU Cores

L1 D$

DDR

L2 D$

L3 D$

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
L3 GB/s

GFLOP/s
DRAM GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
L3 GB

GFLOPs
DRAM GB

43

Memory Hierarchy (Discrete GPU)

GPU SMs

GPU L1 D$

DDR

GPU L2 D$

GPU HBM

Machine Balance

GFLOP/s
L1 GB/s

GFLOP/s
L2 GB/s

GFLOP/s
HBM GB/s

GFLOP/s
PCIe GB/s

Arithmetic Intensity

GFLOPs
L1 GB

GFLOPs
L2 GB

GFLOPs
HBM GB

GFLOPs
PCIe GB

▪ CPUs/GPUs have different
bandwidths for each level

o different machine balances for each level

▪ Applications have locality in each level

o different data movements for each level

o different arithmetic intensity for each level

▪ Same concept applies to GPUs and
disaggregated memory

o DDR is accessed via PCIe, CXL, or NoC

44

Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

45

Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

46

Cache Bottlenecks

▪ For each additional level of the memory hierarchy, we can add another
term to our model…

Peak GFLOP/s
GFLOP/s = min

AIL2 * L2 GB/s

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * DRAM GB/s

AIL1 * L1 GB/s

47

Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

48

Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

49

Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

50

Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
➢performance is ultimately the minimum

of these bounds L2 Bound
L2 AI*BW

is less than
DRAM AI*BW

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

51

Cache Bottlenecks

▪ Plot equation in a single figure…
o “Hierarchical Roofline” Model
o Bandwidth ceiling (diagonal line) for each

level of memory
o Arithmetic Intensity (dot) for each level of

memory
➢performance is ultimately the minimum

of these bounds

▪ If L2 bound, we see DRAM dot

well below DRAM ceiling

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

52

Cache Hit Rates

▪Widely separated Arithmetic
Intensities indicate high reuse in
the (L2) cache

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

High Reuse

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

53

Cache Hit Rates

▪Widely separated Arithmetic
Intensities indicate high reuse in
the (L2) cache

▪ Similar Arithmetic Intensities
indicate effectively no (L2) cache
reuse (== streaming)

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

Peak GFLOP/s

no reuse
(streaming)

T. Koskela, Z. Matveev, C. Yang, A. Adedoyin, R. Belenov, P. Thierry, Z. Zhao, R. Gayatri, H.
Shan, L. Oliker, J. Deslippe, R. Green, S. Williams, "A Novel Multi-Level Integrated Roofline
Model Approach for Performance Characterization", ISC, 2018.

54

Below the Roofline?
Fused Operations and Accelerators

Fused Operations and Accelerators

▪ Vectors have their limits (finite DLP, register file energy scales with VL, etc…)
▪ Death of Moore’s Law is incentivizing operator fusion (e.g. FMA) and compute

accelerators (matrix multipliers)

➢ Define a set of “ceilings” based on instruction type
 (all tensor, all FMA, or all FADD)

▪ Modern CPUs and GPUs are increasingly reliant on special (fused) instructions

that perform multiple operations (fuse common instruction sequences)…

o FMA (Fused Multiply Add): z=a*x+y …z,x,y are vectors or scalars

o 4FMA (Quad FMA): z=A*x+z …A is a FP32 matrix; x,z are

vectors

o WMMA (Tensor Core): Z=AB+C …A,B are FP16 matrices; Z,C are FP32

56

Floating-Point and Mixed Precision Ceilings

▪ Consider NVIDIA Volta GPU
▪ We may define 3 performance

ceilings…
o 15 TFLOPS for FP32 FMA

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

o 7.5 TFLOPs for FP32 Add

FP16 WMMA

o ~100 TFLOPs for FP16 Tensor

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

57

Floating-Point and Mixed Precision Ceilings

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

FP32 FMA

FP32 Add

FP16 WMMA

▪ DL performance can often be well
below nominal Tensor Core peak

▪ When calculating (AI,GFLOP/s),
count the total FLOPs from all types

of instructions

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

58

Floating-Point and Mixed Precision Ceilings

At
ta

in
ab

le
 F

LO
P/

s

Arithmetic Intensity (FLOP:Byte)

▪ DL applications are a mix Tensor,
FP16, and FP32 instructions

▪ Thus, there is a ceiling on

performance defined by the mix of

instructions

Instruction Mix Ceiling▪ DL performance can often be well
below nominal Tensor Core peak

▪ When calculating (AI,GFLOP/s),
count the total FLOPs from all types

of instructions

Charlene Yang, Thorsten Kurth, Samuel Williams, "Hierarchical Roofline Analysis for
GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter
System", Cray User Group (CUG), May 2019.

59

Below the Roofline?
Lack of Parallelism

Roofline and Parallelism

▪We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

GFLOP/sPeak

GFLOP/s = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM * GB/sDRAM

61

Roofline and Parallelism

▪We’ve assumed we can always hit either peak GFLOP/s or peak GB/s

▪ But all CPUs and GPUs are highly parallel architectures
▪GFLOP/s and GB/s are a function of how much parallelism we utilize…

GFLOP/sPeak(P)
GFLOP/s(P) = min

AIx (Arithmetic Intensity at level “x”) = FLOPs / Bytes (moved to/from level “x”)

AIDRAM(P) * GB/sDRAM(P)

AIDRAM is a function of parallelism because cache contention can
generate superfluous LLC capacity misses (==DRAM data movement)

62

Roofline and Parallelism

▪How do we visualize parallelism in
the Roofline?
o Naively, GFLOP/s(P) and GB/s(P) are

proportional to parallelism P

o SMs are capable of pulling more than their
fair share of HBM

o DVFS implies not true for GFLOP/s

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s (80 SMs)

63

Roofline and Parallelism

▪How do we visualize parallelism in
the Roofline?
o Naively, GFLOP/s(P) and GB/s(P) are

proportional to parallelism P

o SMs are capable of pulling more than their
fair share of HBM

o DVFS implies not true for GFLOP/s

➢one must benchmark GFLOP/s
and GB/s at each concurrency

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s (80 SMs)

64

Roofline and Parallelism

▪Consider CUDA kernel optimized
for Fermi (16 SMs) running on
Volta (80 SMs)
o Performance looks very poor

At
ta

in
ab

le
 G

FL
O

P/
s

Arithmetic Intensity (FLOP:Byte)

GFLOP/s (80 SMs)

65

Roofline and Parallelism

▪Consider CUDA kernel optimized
for Fermi (16 SMs) running on
Volta (80 SMs)
o Performance looks very poor

o Kernels using only 16 SMs underutilize the
V100 architecture.

o Roofline highlights the fact that
performance is constrained by a lack of
software parallelism At

ta
in

ab
le

 G
FL

O
P/

s

Arithmetic Intensity (FLOP:Byte)

20 active SMs

66

Roofline Scaling Trajectories

▪ Traditional Scalability:
o Plot performance vs. concurrency (#cores or #SMs)
o Observation without much insight
o Why does performance decrease?

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

#SMs Enabled
804020105

67

Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Arithmetic Intensity (FLOP:Byte)

80 SMs

40 SMs

20 SMs

10 SMs

5 SMs

68

Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline
o Perfect scaling is a vertical line Pe

rf
or

m
an

ce
 (G

FL
O

P/
s)

Arithmetic Intensity (FLOP:Byte)

80 SMs

40 SMs

20 SMs

10 SMs

5 SMs

Pe
rf

ec
t S

ca
lin

g

69

Roofline Scaling Trajectories

▪Khaled Ibrahim leveraged Roofline
to understand the interplay
between concurrency, data locality,
and performance

➢Roofline Scaling Trajectories
o Measure (AI,GFLOP/s) for each concurrency
o Plot as a trendline on Roofline
o Perfect scaling is a vertical line
o Turnover in AI indicates cache capacity

exhaustion (extra L2 misses drives down AI)

Pe
rf

or
m

an
ce

 (G
FL

O
P/

s)

Arithmetic Intensity (FLOP:Byte)

80 SMs

40 SMs

20 SMs

10 SMs

5 SMs

70

Recap

Recap

▪ Loop Arithmetic Intensity (for each level of memory)
o Total FLOPs / Total Data Movement (for that level of memory)

o Measure of a loop’s temporal locality

o Includes all cache effects

▪ Roofline bounds performance as a function of Arithmetic Intensity
o Horizontal Lines = Compute Ceilings

o Diagonal Lines = Bandwidth Ceilings

o Bandwidth ceilings are always parallel on log-log scale

o Collectively, define an upper limit on performance (speed-of-light)

▪ Plotting loops on the (Hierarchical) Roofline
o Each loop has one dot per level of memory

o x-coordinate = arithmetic intensity at that level

o y-coordinate = performance (e.g. GFLOP/s)

o Proximity to associated ceiling is indicative of a performance bound

o Proximity of dots to each other is indicative of streaming behavior (low cache hit rate)

72

What is Roofline used for?

▪ Predict performance on future machines / architectures
o Set realistic performance expectations

o Drive for HW/SW Co-Design

▪ Identify performance bottlenecks & motivate software optimizations

▪ Determine when we’re done optimizing code
o Assess performance relative to machine capabilities

o Track progress towards optimality

o Motivate need for algorithmic changes

▪ Understand performance differences between Architectures,
Programming Models, implementations, etc…
o Why do some Architectures/Implementations move more data than others?

o Why do some compilers outperform others?

73

Hands-on example on Aurora

extremecomputingtraining.anl.gov

Vendor tools for Roofline analysis

• Intel
• Intel Advisor

• https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

• NVIDIA
• NVIDIA Nsight Compute

• https://developer.nvidia.com/nsight-compute
• https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page

• AMD
• AMD ROCm Compute Profiler (Omniperf, previously)

• https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html

• We won’t try every tool. They have different instructions for the same concept. (I know it is
annoying, but that is what we have. )

https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://docs.nvidia.com/nsight-compute/NsightCompute/index.html#details-page
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html
https://rocm.docs.amd.com/projects/rocprofiler-compute/en/latest/what-is-rocprof-compute.html

Intel Advisor for roofline analysis

Overhead

Step 1: Survey (-collect survey)
- Provide #Seconds
- Root access not needed
- User mode sampling, non-intrusive.

1x

Step 2: FLOPS (-collect tripcounts –flops)
- Provide #FLOP, #Bytes, AVX-512 Mask
- Root access not needed
- Precise, instrumentation based, count number of instructions

3-5x

77

Getting Roofline data in Intel® Advisor:
 two-pass approach

Roofline :

 Axis X: AI = #FLOP / #Bytes

 Axis Y: FLOP/S = #FLOP (mask aware) / #Seconds

Original, Cache-Aware (CARM)
 and Memory-Level Roofline

Original Roofline
• AI based on external memory :

 DDR (GPU GTI)

• Ceilings for DDR and compute

• AI dependent of problem size
Unique features: DDR bound focus and simplicity

CARM (cache-aware roofline)

▪ Single AI based on aggregated traffic:

 CPU core (GPU EUs) <-> memory sub-system

▪ Ceilings for compute, cache/memory levels

▪ AI independent of problem size

Unique features: algorithmic focus and simplicity

Memory Level Roofline - MLR (see also “Hierarchical Roofline” by LBL)

▪ AI for all memory sub-system levels, combines (1), CARM, (2)Original and (3) Lx-only perspectives

▪ Harder to interpret for multiple kernels at a time

Unique features: unambiguous bottleneck detection

How to interpret MLR on CPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

L1 GB/s

L2 GB/s

L3 GB/s

DRAM GB/s

Find the minimum of all memory subsystems

Shortest distance == main bottleneck

(Shortest distance == max saturation (utilization) observed)
(Shortest distance == max effective bandwidth/throughput observed)

Actual performance

G
FL

O
PS

How to interpret MLR on GPU ?

Arithmetic intensity (Flop/Byte)

Peak Flop/s

SLM GB/s

L2 GB/s

HBM GB/s

Find the minimum of all memory subsystems

Shortest distance == main bottleneck

(Shortest distance == max saturation (utilization) observed)
(Shortest distance == max effective bandwidth/throughput observed)

Actual performance

How to generate (profile*) Roofline
for your application

1st method. Not compatible with MPI applications :

$ advisor -collect roofline --project-dir

./your_project -- <your-executable-with-

parameters>

How to generate CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project --

<your-executable-with-parameters>

$ advisor -collect tripcounts --flop --project-dir

./your_project -- <your-executable-with-parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html

1st method. Not compatible with MPI applications :

$ advisor -collect roofline –enable-cache-

simulation --project-dir ./your_project --

<your-executable-with-parameters>

How to generate MLR+CARM CPU Roofline profile?

As simple as: $ advisor -collect roofline –enable-cache-simulation -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --project-dir ./your_project --

<your-executable-with-parameters>

$ advisor -collect tripcounts –flop –enable-cache-simulation

--project-dir ./your_project -- <your-executable-with-

parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --project-dir ./your_project > roofline.html

1st method. Not compatible with MPI applications :

$ advisor -collect roofline --profile-gpu -

-project-dir ./your_project -- <your-

executable-with-parameters>

How to generate GPU (MLR & CARM) Roofline profile?

As simple as: $ advisor -collect roofline –-profile-gpu -- <your-executable-with-parameters>

2nd method (compatible with MPI, more flexible):

$ advisor -collect survey --profile-gpu --project-dir

./your_project -- <your-executable-with-parameters>

$ advisor -collect tripcounts –flop --profile-gpu --project-

dir ./your_project -- <your-executable-with-parameters>

More details / How-To

$ source advisor-vars.sh

(optional) copy data to your UI desktop system

$ advisor-gui ./your_project

$ advisor -report roofline --gpu --project-dir ./your_project > roofline.html

GPU Roofline: Extended HTML GUI
See HTML report in project-dir/e000|rank.*/report folder by default

source advisor_install_dir/advisor-vars.sh

advisor
 --report all
 --project-dir ./your_project
 --report-output ./roofline.html

Extended HTML GUI
For any system with web browsers

86

Roofline on Multi-GPU systems
Add --target-gpu option in command line

advisor
 --collect roofline
 --profile-gpu
 --project-dir ./your_project
 --target-gpu 0:77:0.0
 -- <your-executable-with-
parameters>

ISO3DFD Code
: A 16th order Finite-Difference Stencil for the 3D Isotropic Wave Equation

• A Finite Difference stencil kernel for solving the 3D acoustic isotropic wave equation
• A proxy for propagating a seismic wave
• 16th order in space, with symmetric coefficients
• 2nd order in time scheme without boundary conditions.

• Problem Statement
• Partial Differential Equation (PDE) for wave propagation

 , where p is pressure, v is velocity, and t is time.
• For a 16th order finite difference stencil, we use the adjacent 8 values in each direction of the x, y, and z

axis
• The expanded equation looks like this, where the array C holds the coefficients for the changes in x, y

and z.

89

https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

ISO3dfd code

https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html
https://www.intel.com/content/www/us/en/developer/articles/technical/iso3dfd-code-walkthrough.html

90

▪ Variables
– n1 n2 n3 : Grid dimensions for the

stencil
– Iterations : No. of timesteps.
– n1, n2, and n3 has the addition of

2*kHalfLength to represent the entire
block including the halo region.

Code walk through
…

 try {

 // Parse command line arguments and increase them by HALO

 n1 = std::stoi(argv[1]) + (2 * kHalfLength);

 n2 = std::stoi(argv[2]) + (2 * kHalfLength);

 n3 = std::stoi(argv[3]) + (2 * kHalfLength);

 num_iterations = std::stoi(argv[4]);

 } catch (...) {

 Usage(argv[0]);

 return 1;

 }

…

 // Compute the total size of grid

 size_t nsize = n1 * n2 * n3;

…

 // Apply the DX, DY and DZ to coefficients

 coeff[0] = (3.0f * coeff[0]) / (dxyz * dxyz);

 for (auto i = 1; i <= kHalfLength; i++) {

 coeff[i] = coeff[i] / (dxyz * dxyz);

 }

• Dark blue: grid
• Gray: halo of the

grid
• Pink: points needed

for calculation

• In this hands-on, we use four ISO3DFD variants.

• These variants add progressive/incremental levels of optimization as follow:

o 1_CPU_only.cpp: an initial CPU version

o 2_GPU_basic.cpp: basic GPU offloading using SYCL

o 3_GPU_linear.cpp: reduced index calculation

o 4_GPU_private_memory_I.cpp: addition of private array for coefficients

91

ISO3dFD code versions

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization

https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization
https://github.com/oneapi-src/oneAPI-samples/tree/master/DirectProgramming/C%2B%2BSYCL/StructuredGrids/guided_iso3dfd_GPUOptimization

$ qsub -I -l select=1 -l walltime=02:00:00 -l filesystems=home:flare -A ATPESC2025 -q ATPESC

$ cd /flare/ATPESC2025/usr/$USER

$ git clone https://github.com/oneapi-src/oneAPI-samples.git
$ cd oneAPI-samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/
or
$ cp -r /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/oneAPI-
samples/DirectProgramming/C++SYCL/StructuredGrids/guided_iso3dfd_GPUOptimization/ .
$ cd guided_iso3dfd_GPUOptimization

$ mkdir build
$ cd build

$ module load cmake
$ cmake ..
$ make

Build the code

92

https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git
https://github.com/oneapi-src/oneAPI-samples.git

93

…

for (auto iz = kHalfLength; iz < n3_end; iz++) {

 for (auto iy = kHalfLength; iy < n2_end; iy++) {

 // Calculate start pointers for the row over X dimension

 float* ptr_next = ptr_next_base + iz * dimn1n2 + iy * n1;

 float* ptr_prev = ptr_prev_base + iz * dimn1n2 + iy * n1;

 float* ptr_vel = ptr_vel_base + iz * dimn1n2 + iy * n1;

 // Iterate over X

 for (auto ix = kHalfLength; ix < n1_end; ix++) {

 // Calculate values for each cell

 float value = ptr_prev[ix] * coeff[0];

 for (int i = 1; i <= kHalfLength; i++) {

 value +=

 coeff[i] *

 (ptr_prev[ix + i] + ptr_prev[ix - i] +

 ptr_prev[ix + i * n1] + ptr_prev[ix - i * n1] +

 ptr_prev[ix + i * dimn1n2] + ptr_prev[ix - i * dimn1n2]);

 }

 ptr_next[ix] = 2.0f * ptr_prev[ix] - ptr_next[ix] + value * ptr_vel[ix];

 }

 }

}

…

1_CPU_only.cpp

Computing values for each cell

Iterate over x

Iterate over y and z

$ src/1_CPU_only 512 512 512 10
Running on CPU serial version

time : 11.309 secs

throughput : 118.682 Mpts/s

flops : 7.23962 GFlops

bytes : 1.42419 GBytes/s

Run 1_CPU_only

94

// Send a SYCL kernel(lambda) to the device for parallel execution

 // Each kernel runs single cell

 h.parallel_for(kernel_range, [=](id<3> idx) {

 // Start of device code

 // Add offsets to indices to exclude HALO

 int i = idx[0] + kHalfLength;

 int j = idx[1] + kHalfLength;

 int k = idx[2] + kHalfLength;

 // Calculate values for each cell

 float value = prev_acc[i][j][k] * coeff_acc[0];

#pragma unroll(8)

 for (int x = 1; x <= kHalfLength; x++) {

 value +=

 coeff_acc[x] * (prev_acc[i][j][k + x] + prev_acc[i][j][k - x] +

 prev_acc[i][j + x][k] + prev_acc[i][j - x][k] +

 prev_acc[i + x][j][k] + prev_acc[i - x][j][k]);

 }

 next_acc[i][j][k] = 2.0f * prev_acc[i][j][k] - next_acc[i][j][k] +

 value * vel_acc[i][j][k];

 // End of device code

 });

95

2_GPU_basic: offloading the CPU code to GPU using SYCL

Computing values for each cell

SYCL kernel to the device
for parallel execution

over x, y, and z

$ export ZE_AFFINITY_MASK=0.0
$ src/2_GPU_basic 512 512 512 100
Running GPU basic offload version

Running on Intel(R) Data Center GPU Max 1550

The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

time : 7.25 secs

throughput : 1851.28 Mpts/s

flops : 112.928 GFlops

bytes : 22.2153 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_02_512 -- ./src/2_GPU_basic 512 512 512 100

or

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_02_512 .

Download advisor-report.html from /ADV_02_512/e000/report

Run 2_GPU_basic

96

Compared 113.09 sec on CPU for 100 steps
- 15.6X speed-up on GPU from on a CPU core

97

Orient yourself in GPU+CPU Roofline!

• Quiz: What are GFLOPS of CPU
and GPU?

• Quiz: What is a cumulative
application bottleneck (Bounded
by)?

• Quiz: Do you see iso3dfd kernel?

▪ Now, let’s switch to the main page
(“GPU Roofline Regions”)

GPU MLR Roofline

Note some difference, “HBM” by default

1. Enable Memory Metrics and Point info

2. Look into GPU Details tab and find
INDIVIDUAL ROOFLINE chart with small
Guidance, Hints and BoundBy
• Quiz: what is a main bottleneck (“Bound By”)

for the iso3dfd kernel?
• Quiz: what are FP AI and INT AI?
• Quiz: what are Instruction Mix Details?

3. Go back to Main Roofline Chart and
double-click on the circle to get the same
guidance on the large chart

Kernel (loop) locality is proportional to the width
of the “bound by” line (ratio of DRAM to Lx bytes)

Cache locality extent

99
2_GPU_basic

// Send a SYCL kernel(lambda) to the device for parallel execution

 // Each kernel runs single cell

 h.parallel_for(kernel_range, [=](id<3> nidx) {

 // Start of device code

 // Add offsets to indices to exclude HALO

 int n2n3 = n2 * n3;

 int i = nidx[0] + kHalfLength;

 int j = nidx[1] + kHalfLength;

 int k = nidx[2] + kHalfLength;

 // Calculate linear index for each cell

 int idx = i * n2n3 + j * n3 + k;

 // Calculate values for each cell

 float value = prev_acc[idx] * coeff_acc[0];

#pragma unroll(8)

 for (int x = 1; x <= kHalfLength; x++) {

 value +=

 coeff_acc[x] * (prev_acc[idx + x] + prev_acc[idx - x] +

 prev_acc[idx + x * n3] + prev_acc[idx - x * n3] +

 prev_acc[idx + x * n2n3] + prev_acc[idx - x * n2n3]);

 }

 next_acc[idx] = 2.0f * prev_acc[idx] - next_acc[idx] +

 value * vel_acc[idx];

 // End of device code

 });

100

3_GPU_linear: using linearized index to reduce index calculation

Computing values for each cell

SYCL kernel to the device
for parallel execution

over x, y, and z

Linearized index

$ export ZE_AFFINITY_MASK=0.0
$ src/3_GPU_linear 512 512 512 100
 Running linear indexed GPU version

 Running on Intel(R) Data Center GPU Max 1550

 The Device Max Work Group Size is : 1024

 The Device Max EUCount is : 448

time : 0.866 secs

throughput : 15498.6 Mpts/s

flops : 945.414 GFlops

bytes : 185.983 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_03_512 -- ./src/3_GPU_linear 512 512 512 100

or

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_03_512 .

Download advisor-report.html from /ADV_03_512/e000/report

Run 3_GPU_linear

101

Compared 7.25 sec from 2_GPU_basic
- 8.4X speed-up

Check 3_GPU_linear

1
0
2

▪ Please open the html for 3_GPU_linear

• Quiz: GFLOPS? Did it change?

(hint: look at Summary , and then go back to GPU Roofline Regions)

• Quiz: what is a main bottleneck for the kernel?

• Quiz: Any changes in INTOP?

103
3_GPU_linear

104

Comparison from 2_GPU_basic to 3_GPU_linear in FLOAT roofline chart

ANY OPTIMIZATION OPPORTUNITIES FOR 3_GPU_LINEAR?

Possible to increase AI by re-using data multiple times?

// Iterate over first dimension excluding HALO

 for (; i < end_i; i++) {

 // Calculate values for each cell

 float value = front[0] * coeff[0];

 #pragma unroll(kHalfLength)

 for (int x = 1; x <= kHalfLength; x++) {

 value += coeff[x] *

 (prev_acc[idx + x] + prev_acc[idx - x] +

 prev_acc[idx + x * n3] + prev_acc[idx - x * n3] +

 front[x] + back[x - 1]);

 }

 next_acc[idx] = 2.0f * front[0] - next_acc[idx] +

 value * vel_acc[idx];

 // Increase linear index, jump to the next cell in first dimension

 idx += n2n3;

 // Shift values in front and back arrays

 for (auto x = kHalfLength - 1; x > 0; x--) {

 back[x] = back[x - 1];

 }

 back[0] = front[0];

 for (auto x = 0; x < kHalfLength; x++) {

 front[x] = front[x + 1];

 }

 front[kHalfLength] = prev_acc[idx + kHalfLength * n2n3];

 }

 // End of device code

});

// Send a SYCL kernel(lambda) to the device for parallel execution

// Each kernel runs single row over first dimension

h.parallel_for(kernel_range, [=](id<2> nidx) {

 // Start of device code

 // Add offsets to indices to exclude HALO

 // Start and end index used in loop

 int n2n3 = n2 * n3;

 int i = kHalfLength;

 int j = nidx[0] + kHalfLength;

 int k = nidx[1] + kHalfLength;

 int end_i = n1 - kHalfLength;

 // Calculate global linear index for each cell

 int idx = i * n2n3 + j * n3 + k;

 // Create arrays to store data used multiple times

 // Local copy of coeff buffer/continous values over 1st dim which

 // are used to calculate stencil front and back arrays are used to

 // ensure the values over 1st dimension are read once, shifted in`

 // these array and re-used multiple times before being discarded

 // This is an optimization technique to enable data-reuse and

 // improve overall FLOPS to BYTES read ratio

 float coeff[kHalfLength + 1];

 float front[kHalfLength + 1];

 float back[kHalfLength];

 // Fill local arrays, front[0] contains current cell value

 for (int x = 0; x <= kHalfLength; x++) {

 coeff[x] = coeff_acc[x];

 front[x] = prev_acc[idx + n2n3 * x];

 }

 for (int x = 1; x <= kHalfLength; x++) {

 back[x-1] = prev_acc[idx - n2n3 * x];

 }

105

4_GPU_private_memory_I: adding private array for coefficients

Computing values
for each cell

SYCL kernel to the device
for parallel execution

over y and z

Local array and
reuse multiple times

$ export ZE_AFFINITY_MASK=0.0
$ src/4_GPU_private_memory_I 512 512 512 100

Running GPU private memory version with iterations over first dimension

Running on Intel(R) Data Center GPU Max 1550

The Device Max Work Group Size is : 1024

The Device Max EUCount is : 448

time : 0.637 secs

throughput : 21070.3 Mpts/s

flops : 1285.29 GFlops

bytes : 252.843 GBytes/s

$ advisor -collect roofline --profile-gpu --project-dir ADV_04_512 -- ./src/4_GPU_private_memory_I 512 512 512 100

or

$ cp /flare/ATPESC2025/EXAMPLES/track6-tools/roofline/ADV_results/ADV_04_512 .

Download advisor-report.html from /ADV_04_512/e000/report

Run 4_GPU_private_memory_I

106

Compared 0.866 sec from 3_GPU_linear
- 1.35X speed-up
Compared 7.25 sec from 2_GPU_basic
- 11.4X speed-up

Check 4_gpu_private_memory_I

1
0
7

▪ Please open the html for 4_GPU_Private_memory_I

• Quiz: GFLOPS? Did it change?

(hint: look at Summary , and then go back to GPU Roofline Regions)

• Quiz: what is a main bottleneck for the kernel?

108
4_GPU_private_memory_I

109

Comparison from 3_GPU_linear to 4_GPU_private_memory_I

AI for L3 increases by re-using data; as a result, GFLOPS improves from 1,137 to 1,816: 1.6X
speed-up

Recap

Selected versions Target
platform GFLOPs Kernel time

(s)
Speed up from

1_CPU_only
Speed-up from
2_GPU_basic

1_CPU_only* 1 core from
CPU 7.24 113.09 1 x -

2_GPU_basic
1 stack from

GPU

112.9 7.25 15.7 x 1 x

3_GPU_linear 945.4 0.866 131 x 8.4 x

4_GPU_private_memory_I 1285.3 0.637 179 x 11.4 x

111

Grid size: 512x512x512

Number of iteration: 100

Employed Compute Platform

• CPU: Intel Xeon CPU Max

• GPU: Intel Data Center GPU Max

* 1_CPU_only ran 10 iterations instead of 100 iterations since its performance is too low; therefore, the kernel time is projected for 100 iterations.

Performance results

Thank you!

extremecomputingtraining.anl.gov
extremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

	Slide 1: Roofline Performance Model
	Slide 2
	Slide 3: Introduction to the Roofline Model
	Slide 4
	Slide 5: Getting our money’s worth?
	Slide 6: Are we getting good performance?
	Slide 7: Are we getting good performance?
	Slide 8: Are we getting good performance?
	Slide 9: What’s missing…
	Slide 10: Data Movement or Compute?
	Slide 11: Data Movement or Compute?
	Slide 12: Data Movement or Compute?
	Slide 13: Data Movement or Compute?
	Slide 14: Arithmetic Intensity
	Slide 15: (DRAM) Roofline Model
	Slide 16: (DRAM) Roofline Model
	Slide 17: (DRAM) Roofline Model
	Slide 18
	Slide 19: Roofline Example #1
	Slide 20: Roofline Example #2
	Slide 21: Roofline Example #2
	Slide 22: Roofline Example #2
	Slide 23: Roofline Example #2
	Slide 24: Roofline Example #2
	Slide 25: Roofline Example #3
	Slide 26: Are we getting good performance?
	Slide 27: Are we getting good performance?
	Slide 28: Are we getting good performance?
	Slide 29: Are we getting good performance?
	Slide 30: Are we getting good performance?
	Slide 31: Are we getting good performance?
	Slide 32: Recap: Roofline is made of two components
	Slide 33: Recap: Roofline is made of two components
	Slide 34: Recap: Optimization Strategy
	Slide 35: Recap: Optimization Strategy
	Slide 36
	Slide 37: How can performance be below the Roofline?
	Slide 38: Below the Roofline? Memory Hierarchy and Cache Bottlenecks
	Slide 39: Memory Hierarchy
	Slide 40: Memory Hierarchy
	Slide 41: Memory Hierarchy
	Slide 42: Memory Hierarchy
	Slide 43: Memory Hierarchy
	Slide 44: Memory Hierarchy (Discrete GPU)
	Slide 45: Cache Bottlenecks
	Slide 46: Cache Bottlenecks
	Slide 47: Cache Bottlenecks
	Slide 48: Cache Bottlenecks
	Slide 49: Cache Bottlenecks
	Slide 50: Cache Bottlenecks
	Slide 51: Cache Bottlenecks
	Slide 52: Cache Bottlenecks
	Slide 53: Cache Hit Rates
	Slide 54: Cache Hit Rates
	Slide 55: Below the Roofline? Fused Operations and Accelerators
	Slide 56: Fused Operations and Accelerators
	Slide 57: Floating-Point and Mixed Precision Ceilings
	Slide 58: Floating-Point and Mixed Precision Ceilings
	Slide 59: Floating-Point and Mixed Precision Ceilings
	Slide 60: Below the Roofline? Lack of Parallelism
	Slide 61: Roofline and Parallelism
	Slide 62: Roofline and Parallelism
	Slide 63: Roofline and Parallelism
	Slide 64: Roofline and Parallelism
	Slide 65: Roofline and Parallelism
	Slide 66: Roofline and Parallelism
	Slide 67: Roofline Scaling Trajectories
	Slide 68: Roofline Scaling Trajectories
	Slide 69: Roofline Scaling Trajectories
	Slide 70: Roofline Scaling Trajectories
	Slide 71: Recap
	Slide 72: Recap
	Slide 73: What is Roofline used for?
	Slide 74: Hands-on example on Aurora
	Slide 75: Vendor tools for Roofline analysis
	Slide 76: Intel Advisor for roofline analysis
	Slide 77: Getting Roofline data in Intel® Advisor: two-pass approach
	Slide 78: Original, Cache-Aware (CARM) and Memory-Level Roofline
	Slide 79: How to interpret MLR on CPU ?
	Slide 80: How to interpret MLR on GPU ?
	Slide 81: How to generate (profile*) Roofline for your application
	Slide 82: How to generate CARM CPU Roofline profile?
	Slide 83: How to generate MLR+CARM CPU Roofline profile?
	Slide 84: How to generate GPU (MLR & CARM) Roofline profile?
	Slide 85: GPU Roofline: Extended HTML GUI
	Slide 86: Extended HTML GUI
	Slide 87: Roofline on Multi-GPU systems
	Slide 88: ISO3DFD Code : A 16th order Finite-Difference Stencil for the 3D Isotropic Wave Equation
	Slide 89
	Slide 90: Code walk through
	Slide 91: ISO3dFD code versions
	Slide 92: Build the code
	Slide 93
	Slide 94: Run 1_CPU_only
	Slide 95
	Slide 96: Run 2_GPU_basic
	Slide 97: Orient yourself in GPU+CPU Roofline!
	Slide 98
	Slide 99
	Slide 100
	Slide 101: Run 3_GPU_linear
	Slide 102: Check 3_GPU_linear
	Slide 103
	Slide 104
	Slide 105
	Slide 106: Run 4_GPU_private_memory_I
	Slide 107: Check 4_gpu_private_memory_I
	Slide 108
	Slide 109
	Slide 110: Recap
	Slide 111
	Slide 112: Thank you!
	Slide 113: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resea

