ARGONNE ATPESC2025 EXTREME-SCALE COMPUTING

Data Analysis and Visualization

Visualization & Data Analysis

Time	Title of presentation	Lecturer	
8:30 am	Data Analysis and Visualization Introduction	Joe Insley ANL, Silvio Rizzi ANL	
9:15 am	Visualization and Analysis of HPC Simulation Data with VisIt	Cyrus Harrison LLNL, Justin Privitera LLNL	
10:00 am	Break		
10:30 am	Visualization and Analysis of HPC Simulation Data with Vislt (continued)	Cyrus Harrison LLNL, Justin Privitera LLNL	
11:00 am	Exploring Visualization with Jupyter Notebooks	David Koop <i>NIU</i>	
11:45 am	Large Scale Visualization with ParaView	Dan Lipsa <i>Kitware</i>	
12:30 pm	Lunch		
1:30 pm	Large Scale Visualization with ParaView	Dan Lipsa <i>Kitware</i>	
2:00 pm	Uncertainty Visualization	Mengjiao Han <i>ANL</i>	
2:45 pm	Ascent	Cyrus Harrison LLNL, Justin Privitera LLNL	
3:30 pm	Break		
4:00 pm	Trame	Patrick Avery Kitware	
4:45 pm	AI/ML Visualization	Shilpika, ANL	
5:30 pm	Hands-on	All	
6:30 pm	Dinner		
7:30 pm	After-dinner talk	Jack Dongarra	

Here's the plan...

- Examples of visualizations
- Visualization tools and formats
- Data representations
- Visualization for debugging
- Advanced Rendering
- In Situ Visualization and Analysis

JLSE (2013)

Al Testbed (2020) Edge Testbed (2021)

Multi-Scale Simulation / Visualization Arterial Blood Flow

PI: George Karniadakis, Brown University 2010 2011 2012

Engineering / Combustion / Biofuels

PI: Sibendu Som, Argonne National Laboratory

2015

2023

CA: 1 aTDC

Climate

PI: Warren Washington, National Center for Atmospheric Research

2012

2022

PI: Rao Kotamarthi, Argonne National Laboratory

Physics: Stellar Radiation

2018

PI: Lars Bildsten, University of California, Santa Barbara

2017

2021

Astrophysics

PI: Adam Burrows, Princeton University

2019

2021

2022 2023

Argonne Leadership Computing Facility

Argonne 📤

Aurora

Arterial Blood Flow

PI: Amanda Randles, Duke University

2020

2023 Rendered on Aurora

2023 Rendered on Aurora

Materials Science / Molecular

All Sorts of Tools

Visualization Applications

- -VisIt
- -ParaView
- -EnSight

Domain Specific

–VMD, PyMol, Ovito, Vapor

APIs

- –VTK: visualization
- –ITK: segmentation & registration

Analysis Environments

- -Matlab
- -Parallel R

Utilities

- -GnuPlot
- ImageMagick
- -ffmpeg

Available on Polaris and Aurora

ParaView & Vislt vs. vtk

ParaView & VisIt

- General purpose visualization applications
- -GUI-based
- —Client / Server model to support remote visualization
- -Scriptable / Extendable
- –Built on top of vtk (largely)
- -In situ capabilities

vtk

- –Programming environment / API
- Additional capabilities, finer control
- -Smaller memory footprint
- -Requires more expertise (build custom applications)

Data File Formats (ParaView & VisIt)

Parallel (partitioned)

VTK

VTK

VTK MultiBlock

(MultiGroup,

Hierarchical,

Hierarchical Box)

Legacy VTK

Parallel (partitioned)

legacy VTK

EnSight files

EnSight Master

Server

Exodus

BYU

XDMF

PLOT2D

PLOT3D

SpyPlot CTH

HDF5 raw image

data

DEM

VRML

PLY

Polygonal Protein

Data Bank

XMol Molecule

Stereo Lithography

Gaussian Cube

Raw (binary)

AVS

Meta Image

Facet

PNG

SAF

LS-Dyna

Nek5000

OVERFLOW

paraDIS

PATRAN

PFLOTRAN

Pixie

PuReMD

S3D

SAS

Tetrad

UNIC

VASP

ZeusMP

ANALYZE

BOV

GMV

Tecplot

Vis5D

Xmdv

XSF

Data Representations: Cutting Planes

Data Representations: Volume Rendering

Data Representations: Contours (Isosurfaces)

A Line (2D) or Surface (3D), representing a constant value Vislt & ParaView:

– good at this

vtk:

- same, but again requires more effort

Data Representations: Pathlines

From vector field on a mesh (needs connectivity)

- Trace the path an element will travel over time.

Vislt & ParaView & vtk good at this

Molecular Dynamics Visualization

VMD/Ovito:

- Lots of domain-specific representations
- Many different file formats
- Animation
- Scriptable

VisIt & ParaView:

 Limited support for these types of representations, but improving

VTK:

Anything's possible if you try hard enough

Visualization for Debugging

Visualization for Debugging

Visualization as Diagnostics: Color by Thread ID

Rendering

Slide courtesy of Roba Binyahib and Dave Demarle of Intel

Visualizing water flowing through a limestone karst from a South Florida ground core sample. Credit: Data courtesy of Michael Sukop, Sade Garcia, Florida International University and Kevin Cunningham, United States Geological

Survey. Visualization: Carson Brownlee, Aaron Knoll, Paul Navratil, Texas Advanced Computing

Slide courtesy of Roba Binyahib and Dave Demarle of Intel

In Situ Visualization and Analysis

Five orders of magnitude between compute and I/O capacity on Titan Cray system at ORNL

In Situ vis and Analysis Problem:

FLOPS to I/O Bottleneck

- Frontier
 - Peak Performance: 1.6 EF
 - Storage: 2-4x Summit's I/O 2.5TB/s. At best 10TB/s
 - 5 orders of magnitude difference

Aurora

- Peak Performance: 1.012 EF
- Storage: 31TB/s
- 5 orders of magnitude difference

Problem

I/O is too expensive Scientists cannot save every timestep, and/or resolution Lost cycles: simulation waits while I/O is happening Lost discoveries: scientists might miss discoveries

Solution: In situ visualization and analysis

What is *IN SITU* vis and analysis

Traditionally visualization and analysis happens post hoc

-aka: Data gets saved to the disk, scientist opens it after the simulation has ended

In situ

- Data gets visualized/analyzed while in memory.
- -If zero-copy used, there is no data movement
- -Ideally the data is on the GPU and stays on the GPU

In Situ

~2014
PHASTA, Catalyst,
Ken Jansen

2018 Nek5000, SENSEI

2021 - 2024

Palabos+LAMMPS, SENSEI + Catalyst, bi-directional

2024
nekRS,
Ascent +
Catalyst

43 Argonne Lead

2019
SENSEI +
Catalyst

Ascent + Catalyst 2024

In Situ Frameworks and Infrastructures at ALCF

Name	Description	Contact person at ATPESC	
Ascent	The Ascent in situ infrastructure is designed for leading-edge supercomputers, and has support for both distributed-memory and shared-memory parallelism.	Cyrus Harrison, Justin Privitera	
Catalyst	In situ use case library, with an adaptable application programming interface (API), that orchestrates the delicate alliance between simulation and analysis and/or visualization tasks	Dan Lipsa	
Cinema	Cinema is an innovative way of capturing, storing, and exploring both extreme scale scientific data and experimental data. It is a highly interactive image-based approach to data analysis and visualization that promotes investigation of large scientific datasets.	Joe Insley, Silvio Rizzi	
Viskores	Viskores is a toolkit of scientific visualization algorithms for emerging processor architectures. Viskores supports the fine-grained concurrency for data analysis and visualization algorithms required to drive extreme scale computing.	Joe Insley, Silvio Rizzi	
44 Argonne Leadership Computing Facility Argonne Leadership Computing Facility			

- Flyweight design, minimizes dependencies
- Data model based on Conduit from LLNL
- Vis and analysis algorithms implemented in VTK-m

```
//
// Run Ascent
//

Ascent ascent;
ascent.open();
ascent.publish(data);
ascent.execute(actions);
ascent.close();
```


Catalyst 2.0: Rethinking the ParaView in situ data analysis and visualization API

- inspired by MPICH ABI compatibility initiative
- leverages Conduit
- Catalyst: a new project with no external dependencies: https://gitlab.kitware.com/paraview/catalyst
- Gitlab-Cl enabled, ReadTheDocs-enabled
- Provides API **specification**, **stub** implementation, **SDK** for developing adaptors and custom implementations

Source: https://gitlab.kitware.com/paraview/catalyst

https://catalyst-in-situ.readthedocs.io/en/latest/ Docs:

Lulesh, a miniapp representing a typical hydrodynamics simulation code, instrumented with Catalyst

What is Cinema?

- Cinema is part of an integrated workflow, providing a method of extracting, saving, analyzing or modifying and viewing complex data artifacts from large scale simulations.
 - If you're having difficulty exploring the complex results from your simulation, Cinema can help.
- The Cinema 'Ecosystem' is an integrated set of writers, viewers, and algorithms that allow scientists to export, analyze/modify and view Cinema databases.
 - This ecosystem is embodied in widely used tools (ParaView, Vislt, Ascent) and the database specification.

www.anl.gov

