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Scaling: Overview

Goal:

Minimize: Cost (i.e. amount of time spent training)

Maximize: Performance

Note:

See  Performance and Scalability for more details

https://huggingface.co/docs/transformers/v4.46.0/performance
https://huggingface.co/docs/transformers/v4.46.0/performance
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Training on a Single Device

See  Methods and tools for efficient training on a single GPU

https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
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extremecomputingtraining.anl.gov

Training on a Single Device

See  Methods and tools for efficient training on a single GPU

https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
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Training on Multiple GPUs: Data Parallelism
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Data Parallel: Forward Pass
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Data Parallel: Backward Pass
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Data Parallel: Full Setup
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Data Parallel: Training

Each GPU:

• has identical copy of model

• works on a unique subset of data

Easy to get started (minor modifications to code):

    saforem2/ezpz

PyTorch / DDP

HF / Accelerate

Microsoft / DeepSpeed

Requires global communication

• every rank must participate (collective communication) !!

https://github.com/saforem2/ezpz
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://huggingface.co/docs/transformers/accelerate
https://huggingface.co/docs/transformers/accelerate
https://www.deepspeed.ai/
https://www.deepspeed.ai/
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 Communication

Need mechanism(s) for communicating across GPUs:

• mpi4py

• torch.distributed

Collective Communication:

• Nvidia Collective Communications Library (NCCL)

• Intel oneAPI Collective Communications Library (oneCCL)

 Timeouts

• Collective operations have to be called for each rank to form a complete collective operation.

• Failure to do so will result in other ranks waiting indefinitely

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html#gs.gouznn
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html#gs.gouznn
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AllReduce

Perform reductions on data (e.g. sum, min, max) across ranks, send result back to everyone.
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Reduce

Perform a reduction on data across ranks, send to individual
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Broadcast
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AllGather



extremecomputingtraining.anl.gov

Why Distributed Training?

• N workers each processing unique batch1 of data:

• [micro_batch_size = 1] × [N GPUs] → [global_batch_size = N]

• Improved gradient estimators

• Smooth loss landscape

• Less iterations needed for same number of epochs

• common to scale learning rate lr *= sqrt(N)

• See: Large Batch Training of Convolutional Networks
 1 micro_batch_size = batch_size per GPU

https://arxiv.org/abs/1708.03888
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Why Distributed Training? Speedup!
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Dealing with Data

At each training step, we want to ensure that each worker receives unique data

This can be done in one of two ways:

1. Manually partition data (ahead of time)

• Assign unique subsets to each worker

• Each worker can only see their local portion of the data

• Most common approach

2. From each worker, randomly select a mini-batch

• Each worker can see the full dataset

•  When randomly selecting, it is important that each worker uses 

       different seeds to ensure they receive unique data
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Broadcast Initial State

At the start of training (or when loading from a checkpoint), we want all of our workers to be initialized consistently
Broadcast the model and optimizer states from rank() = 0 worker
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Best Practices

Computation stalls during communication !!
Keeping the communication to computation ratio small is important for effective scaling.

• Use parallel IO whenever possible
• Feed each rank from different files
• Use MPI IO to have each rank read its 

own batch from a file
• Use several ranks to read data, MPI to 

scatter to remaining ranks
• Most practical in big at-scale 

training

• Take advantage of data storage
• Use striping on lustre

• Use the right optimizations for Aurora, 
Polaris, etc.

• Preload data when possible
• Offloading to a GPU frees CPU 

cycles for loading the next batch of 
data

• minimize IO latency this way

https://wiki.lustre.org/Configuring_Lustre_File_Striping


extremecomputingtraining.anl.gov

Going Beyond Data Parallelism

•  Useful when model fits on single GPU:

• ultimately limited by GPU memory

• model performance limited by size

•  When model does not fit on a single GPU:

• Offloading (can only get you so far…):

• DeepSpeed + ZeRO (ZeRO++)

• PyTorch + FSDP

• Otherwise, resort to model parallelism strategies

https://www.deepspeed.ai/tutorials/zero/
https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://samforeman.me/talks/ai-for-science-2024/slides#/additional-parallelism-strategies
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Going Beyond Data Parallelism : DeepSpeed + ZeRO/(++)

Depending on the ZeRO stage (1, 2, 3), we can 
offload:

Stage 1: optimizer states (Pos)
Stage 2: gradients + opt. states (Pos+g)
Stage 3: model params + grads + opt. 
states (Pos+g+p)
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Fully Sharded Data Parallel:  PyTorch + FSDP

• Instead of maintaining 
per-GPU copy 
of {params, grads, 
opt_states}, FSDP 
shards (distributes) these 
across data-parallel 
workers
• can optionally offload 

the sharded model 
params and grads to 
CPU

• Introducing PyTorch Fully 
Sharded Data Parallel 
(FSDP) API | PyTorch

Source

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://huggingface.co/blog/pytorch-fsdp
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Additional Parallelism Strategies

• Tensor (/ Model) Parallelism (TP):

• Tensor Parallelism

• Large Scale Transformer model training with Tensor Parallel (TP)

• Pipeline Parallelism (PP):

• PyTorch, DeepSpeed

• Sequence Parallelism (SP):

• DeepSpeed Ulysses

• Megatron / Context Parallelism

• Unified Sequence Parallel (USP)

• feifeibear/long-context-attention

• argonne-lcf/Megatron-DeepSpeed

• Supports 4D Parallelism (DP + TP + PP + SP)

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism
https://pytorch.org/tutorials/intermediate/TP_tutorial.html
https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://github.com/microsoft/DeepSpeed/blob/master/blogs/deepspeed-ulysses/README.md
https://github.com/microsoft/DeepSpeed/blob/master/blogs/deepspeed-ulysses/README.md
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://arxiv.org/abs/2405.07719v3
https://arxiv.org/abs/2405.07719v3
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
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Additional Parallelism Strategies: Pipeline Parallelism (PP)

• Model is split up vertically (layer-level) across multiple GPUs

• Each GPU:

• has a portion of the full model

• processes in parallel different stages of the pipeline (on a small chunk 

of the batch)

• See:

• PyTorch / Pipeline Parallelism

• DeepSpeed / Pipeline Parallelism

https://pytorch.org/docs/main/distributed.pipelining.html
https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
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Additional Parallelism Strategies: Tensor Parallel (TP)

• Each tensor is split up into multiple chunks

• Each shard of the tensor resides on its designated GPU

• During processing each shard gets processed separately (and 

in parallel) on different GPUs

• synced at the end of the step

• See:  Model Parallelism for additional details

https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://huggingface.co/docs/transformers/v4.15.0/parallelism
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Additional Parallelism Strategies: Tensor Parallel (TP)

• Suitable when the model is too large to fit onto a single device 

(CPU / GPU)

• Typically, more complicated to implement than data parallel 

training

• This is what one may call horizontal parallelism

• Communication whenever dataflow between two subsets

•     argonne-lcf/Megatron-DeepSpeed

• huggingface/nanotron
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Tensor (/ Model) Parallel Training: Example

Want to compute:

where each GPU only has only its portion of the full weights as 

shown below

Compute:

Compute:

Compute:
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2D/3D Parallelism

DP + TP + PP (3D) ParallelismDP + PP

Credit: DeepSpeed pipeline tutorial Credit: 3D parallelism: Scaling to trillion-parameter models

https://www.deepspeed.ai/tutorials/pipeline/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/


extremecomputingtraining.anl.gov

Deciding on a Parallelism Strategy: Single GPU

• Model fits onto a single GPU:

• Normal use

• Model DOES NOT fit on a single GPU:

• ZeRO + Offload CPU (or, optionally, NVMe)

• Largest layer DOES NOT fit on a single GPU:

• ZeRO + Enable Memory Centric Tiling (MCT)

• MCT Allows running of arbitrarily large layers by automatically splitting them and executing 

them sequentially.

https://deepspeed.readthedocs.io/en/latest/zero3.html#memory-centric-tiling
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Deciding on a Parallelism Strategy: Single Node/Multi GPU

• Model fits onto a single 

GPU

• DDP

• ZeRO

• Model DOES NOT fit onto a single GPU

• Pipeline Parallelism (PP)

• ZeRO

• Tensor Parallelism (TP)

With sufficiently fast connectivity between nodes, these three strategies should be comparable.

• Otherwise, PP > ZeRO ≃ TP.

https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://www.deepspeed.ai/tutorials/pipeline/
https://www.deepspeed.ai/tutorials/pipeline/
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html
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Deciding on a Parallelism Strategy: Multi Node/Multi GPU

• When you have fast inter-node connectivity:

• ZeRO (virtually NO modifications)

• PP + ZeRO + TP + DP (less communication, at the cost of MAJOR 

modifications)

• when you have slow inter-node connectivity and still low on GPU 

memory:

 DP + PP + TP + ZeRO-1
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Hands-on

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/06_training_LLMs_at_scale/instructions-atpesc-2025.md
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ARGONNE TRAINING PROGRAM ON EXTREME-SCALE 
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory 
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC) 
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources 

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive, 
royalty-free license in this video, with the rights to reproduce, to prepare derivative 

works, and to display publicly.

http://extremecomputingtraining.anl.gov/
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Thank you
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