
extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

Large Language Models at Scale

Shilpika
Argonne National Laboratory

Contributor: Sam Foreman

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.gov

Outline

1. Scaling: Overview

2. Data Parallel Training

• Communication

• Why Distributed Training?

3. Beyond Data Parallelism

• Additional Parallelism Strategies

4. Hands On

https://samforeman.me/talks/ai-for-science-2024/slides#/scaling-overview
https://samforeman.me/talks/ai-for-science-2024/slides#/scaling-overview
https://samforeman.me/talks/ai-for-science-2024/slides#/data-parallel-training
https://samforeman.me/talks/ai-for-science-2024/slides#/data-parallel-training
https://samforeman.me/talks/ai-for-science-2024/slides#/communication
https://samforeman.me/talks/ai-for-science-2024/slides#/communication
https://samforeman.me/talks/ai-for-science-2024/slides#/why-distributed-training
https://samforeman.me/talks/ai-for-science-2024/slides#/why-distributed-training
https://samforeman.me/talks/ai-for-science-2024/slides#/going-beyond-data-parallelism
https://samforeman.me/talks/ai-for-science-2024/slides#/going-beyond-data-parallelism
https://samforeman.me/talks/ai-for-science-2024/slides#/additional-parallelism-strategies
https://samforeman.me/talks/ai-for-science-2024/slides#/additional-parallelism-strategies
https://samforeman.me/talks/ai-for-science-2024/slides#/hands-on
https://samforeman.me/talks/ai-for-science-2024/slides#/hands-on

extremecomputingtraining.anl.gov

Scaling: Overview

Goal:

Minimize: Cost (i.e. amount of time spent training)

Maximize: Performance

Note:

See Performance and Scalability for more details

https://huggingface.co/docs/transformers/v4.46.0/performance
https://huggingface.co/docs/transformers/v4.46.0/performance

extremecomputingtraining.anl.gov

Training on a Single Device

See Methods and tools for efficient training on a single GPU

https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one

extremecomputingtraining.anl.gov

Training on a Single Device

See Methods and tools for efficient training on a single GPU

https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one

extremecomputingtraining.anl.gov

Training on a Single Device

See Methods and tools for efficient training on a single GPU

https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one
https://huggingface.co/docs/transformers/v4.46.0/perf_train_gpu_one

extremecomputingtraining.anl.gov

Training on Multiple GPUs: Data Parallelism

extremecomputingtraining.anl.gov

Data Parallel: Forward Pass

extremecomputingtraining.anl.gov

Data Parallel: Backward Pass

extremecomputingtraining.anl.gov

Data Parallel: Full Setup

extremecomputingtraining.anl.gov

Data Parallel: Training

Each GPU:

• has identical copy of model

• works on a unique subset of data

Easy to get started (minor modifications to code):

 saforem2/ezpz

PyTorch / DDP

HF / Accelerate

Microsoft / DeepSpeed

Requires global communication

• every rank must participate (collective communication) !!

https://github.com/saforem2/ezpz
https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://huggingface.co/docs/transformers/accelerate
https://huggingface.co/docs/transformers/accelerate
https://www.deepspeed.ai/
https://www.deepspeed.ai/

extremecomputingtraining.anl.gov

 Communication

Need mechanism(s) for communicating across GPUs:

• mpi4py

• torch.distributed

Collective Communication:

• Nvidia Collective Communications Library (NCCL)

• Intel oneAPI Collective Communications Library (oneCCL)

 Timeouts

• Collective operations have to be called for each rank to form a complete collective operation.

• Failure to do so will result in other ranks waiting indefinitely

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://pytorch.org/docs/stable/distributed.html
https://pytorch.org/docs/stable/distributed.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html#gs.gouznn
https://www.intel.com/content/www/us/en/developer/tools/oneapi/oneccl.html#gs.gouznn

extremecomputingtraining.anl.gov

AllReduce

Perform reductions on data (e.g. sum, min, max) across ranks, send result back to everyone.

extremecomputingtraining.anl.gov

Reduce

Perform a reduction on data across ranks, send to individual

extremecomputingtraining.anl.gov

Broadcast

extremecomputingtraining.anl.gov

AllGather

extremecomputingtraining.anl.gov

Why Distributed Training?

• N workers each processing unique batch1 of data:

• [micro_batch_size = 1] × [N GPUs] → [global_batch_size = N]

• Improved gradient estimators

• Smooth loss landscape

• Less iterations needed for same number of epochs

• common to scale learning rate lr *= sqrt(N)

• See: Large Batch Training of Convolutional Networks
 1 micro_batch_size = batch_size per GPU

https://arxiv.org/abs/1708.03888

extremecomputingtraining.anl.gov

Why Distributed Training? Speedup!

extremecomputingtraining.anl.gov

Dealing with Data

At each training step, we want to ensure that each worker receives unique data

This can be done in one of two ways:

1. Manually partition data (ahead of time)

• Assign unique subsets to each worker

• Each worker can only see their local portion of the data

• Most common approach

2. From each worker, randomly select a mini-batch

• Each worker can see the full dataset

• When randomly selecting, it is important that each worker uses

 different seeds to ensure they receive unique data

extremecomputingtraining.anl.gov

Broadcast Initial State

At the start of training (or when loading from a checkpoint), we want all of our workers to be initialized consistently
Broadcast the model and optimizer states from rank() = 0 worker

extremecomputingtraining.anl.gov

Best Practices

Computation stalls during communication !!
Keeping the communication to computation ratio small is important for effective scaling.

• Use parallel IO whenever possible
• Feed each rank from different files
• Use MPI IO to have each rank read its

own batch from a file
• Use several ranks to read data, MPI to

scatter to remaining ranks
• Most practical in big at-scale

training

• Take advantage of data storage
• Use striping on lustre

• Use the right optimizations for Aurora,
Polaris, etc.

• Preload data when possible
• Offloading to a GPU frees CPU

cycles for loading the next batch of
data

• minimize IO latency this way

https://wiki.lustre.org/Configuring_Lustre_File_Striping

extremecomputingtraining.anl.gov

Going Beyond Data Parallelism

• Useful when model fits on single GPU:

• ultimately limited by GPU memory

• model performance limited by size

• When model does not fit on a single GPU:

• Offloading (can only get you so far…):

• DeepSpeed + ZeRO (ZeRO++)

• PyTorch + FSDP

• Otherwise, resort to model parallelism strategies

https://www.deepspeed.ai/tutorials/zero/
https://www.deepspeed.ai/tutorials/zero/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://samforeman.me/talks/ai-for-science-2024/slides#/additional-parallelism-strategies

extremecomputingtraining.anl.gov

Going Beyond Data Parallelism : DeepSpeed + ZeRO/(++)

Depending on the ZeRO stage (1, 2, 3), we can
offload:

Stage 1: optimizer states (Pos)
Stage 2: gradients + opt. states (Pos+g)
Stage 3: model params + grads + opt.
states (Pos+g+p)

extremecomputingtraining.anl.gov

Fully Sharded Data Parallel: PyTorch + FSDP

• Instead of maintaining
per-GPU copy
of {params, grads,
opt_states}, FSDP
shards (distributes) these
across data-parallel
workers
• can optionally offload

the sharded model
params and grads to
CPU

• Introducing PyTorch Fully
Sharded Data Parallel
(FSDP) API | PyTorch

Source

https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/
https://huggingface.co/blog/pytorch-fsdp

extremecomputingtraining.anl.gov

Additional Parallelism Strategies

• Tensor (/ Model) Parallelism (TP):

• Tensor Parallelism

• Large Scale Transformer model training with Tensor Parallel (TP)

• Pipeline Parallelism (PP):

• PyTorch, DeepSpeed

• Sequence Parallelism (SP):

• DeepSpeed Ulysses

• Megatron / Context Parallelism

• Unified Sequence Parallel (USP)

• feifeibear/long-context-attention

• argonne-lcf/Megatron-DeepSpeed

• Supports 4D Parallelism (DP + TP + PP + SP)

https://huggingface.co/docs/text-generation-inference/en/conceptual/tensor_parallelism
https://pytorch.org/tutorials/intermediate/TP_tutorial.html
https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://github.com/microsoft/DeepSpeed/blob/master/blogs/deepspeed-ulysses/README.md
https://github.com/microsoft/DeepSpeed/blob/master/blogs/deepspeed-ulysses/README.md
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://docs.nvidia.com/megatron-core/developer-guide/latest/api-guide/context_parallel.html
https://arxiv.org/abs/2405.07719v3
https://arxiv.org/abs/2405.07719v3
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/feifeibear/long-context-attention
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed
https://github.com/argonne-lcf/Megatron-DeepSpeed

extremecomputingtraining.anl.gov

Additional Parallelism Strategies: Pipeline Parallelism (PP)

• Model is split up vertically (layer-level) across multiple GPUs

• Each GPU:

• has a portion of the full model

• processes in parallel different stages of the pipeline (on a small chunk

of the batch)

• See:

• PyTorch / Pipeline Parallelism

• DeepSpeed / Pipeline Parallelism

https://pytorch.org/docs/main/distributed.pipelining.html
https://pytorch.org/docs/main/distributed.pipelining.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html
https://deepspeed.readthedocs.io/en/latest/pipeline.html

extremecomputingtraining.anl.gov

Additional Parallelism Strategies: Tensor Parallel (TP)

• Each tensor is split up into multiple chunks

• Each shard of the tensor resides on its designated GPU

• During processing each shard gets processed separately (and

in parallel) on different GPUs

• synced at the end of the step

• See: Model Parallelism for additional details

https://huggingface.co/docs/transformers/v4.15.0/parallelism
https://huggingface.co/docs/transformers/v4.15.0/parallelism

extremecomputingtraining.anl.gov

Additional Parallelism Strategies: Tensor Parallel (TP)

• Suitable when the model is too large to fit onto a single device

(CPU / GPU)

• Typically, more complicated to implement than data parallel

training

• This is what one may call horizontal parallelism

• Communication whenever dataflow between two subsets

• argonne-lcf/Megatron-DeepSpeed

• huggingface/nanotron

extremecomputingtraining.anl.gov

Tensor (/ Model) Parallel Training: Example

Want to compute:

where each GPU only has only its portion of the full weights as

shown below

Compute:

Compute:

Compute:

extremecomputingtraining.anl.gov

2D/3D Parallelism

DP + TP + PP (3D) ParallelismDP + PP

Credit: DeepSpeed pipeline tutorial Credit: 3D parallelism: Scaling to trillion-parameter models

https://www.deepspeed.ai/tutorials/pipeline/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

extremecomputingtraining.anl.gov

Deciding on a Parallelism Strategy: Single GPU

• Model fits onto a single GPU:

• Normal use

• Model DOES NOT fit on a single GPU:

• ZeRO + Offload CPU (or, optionally, NVMe)

• Largest layer DOES NOT fit on a single GPU:

• ZeRO + Enable Memory Centric Tiling (MCT)

• MCT Allows running of arbitrarily large layers by automatically splitting them and executing

them sequentially.

https://deepspeed.readthedocs.io/en/latest/zero3.html#memory-centric-tiling

extremecomputingtraining.anl.gov

Deciding on a Parallelism Strategy: Single Node/Multi GPU

• Model fits onto a single

GPU

• DDP

• ZeRO

• Model DOES NOT fit onto a single GPU

• Pipeline Parallelism (PP)

• ZeRO

• Tensor Parallelism (TP)

With sufficiently fast connectivity between nodes, these three strategies should be comparable.

• Otherwise, PP > ZeRO ≃ TP.

https://pytorch.org/docs/stable/notes/ddp.html
https://pytorch.org/docs/stable/notes/ddp.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://www.deepspeed.ai/tutorials/pipeline/
https://www.deepspeed.ai/tutorials/pipeline/
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://deepspeed.readthedocs.io/en/latest/zero3.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html
https://pytorch.org/docs/stable/distributed.tensor.parallel.html

extremecomputingtraining.anl.gov

Deciding on a Parallelism Strategy: Multi Node/Multi GPU

• When you have fast inter-node connectivity:

• ZeRO (virtually NO modifications)

• PP + ZeRO + TP + DP (less communication, at the cost of MAJOR

modifications)

• when you have slow inter-node connectivity and still low on GPU

memory:

 DP + PP + TP + ZeRO-1

extremecomputingtraining.anl.gov

References

- Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, et al. 2022. “Emergent Abilities of Large Language
Models.” https://arxiv.org/abs/2206.07682.
- Yao, Shunyu, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. “Tree of Thoughts: Deliberate Problem Solving with
Large Language Models.” https://arxiv.org/abs/2305.10601.
- Foreman, Sam. 2024. “Parallel Training Methods.” November 5. https://samforeman.me/talks/ai-for-science-2024/slides.
- Foreman, Sam. 2025. “LLMs on Aurora: Overview.” May 21. https://samforeman.me/talks/incite-hackathon-2025/AuroraGPT/slides.html.

Footnotes:
micro_batch_size = batch_size per GPU
Efficient Large-Scale Language Model Training on GPU Clusters
Source: Hannibal046/Awesome-LLM
Figure from The Illustrated Transformer
Figure from The Illustrated Transformer
Video from: Generation with LLMs
Video from: Generation with LLMs

Acknowledgements
This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357

https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/ai-for-science-2024/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/incite-hackathon-2025/auroragpt/slides
https://samforeman.me/talks/ai-for-science-2024/#fnref1
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://arxiv.org/abs/2104.04473
https://samforeman.me/talks/ai-for-science-2024/#fnref2
https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM
https://github.com/Hannibal046/Awesome-LLM
https://samforeman.me/talks/ai-for-science-2024/#fnref3
http://jalammar.github.io/illustrated-transformer/
https://samforeman.me/talks/ai-for-science-2024/#fnref4
http://jalammar.github.io/illustrated-transformer/
https://samforeman.me/talks/ai-for-science-2024/#fnref5
https://huggingface.co/docs/transformers/main/en/llm_tutorial
https://huggingface.co/docs/transformers/main/en/llm_tutorial
https://samforeman.me/talks/ai-for-science-2024/#fnref6
https://huggingface.co/docs/transformers/main/en/llm_tutorial
https://huggingface.co/docs/transformers/main/en/llm_tutorial
https://samforeman.me/talks/ai-for-science-2024/#fnref7

extremecomputingtraining.anl.gov

Hands-on

https://github.com/argonne-lcf/ATPESC_MachineLearning/blob/master/06_training_LLMs_at_scale/instructions-atpesc-2025.md

extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

ARGONNE TRAINING PROGRAM ON EXTREME-SCALE
COMPUTING

Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory
managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357.

Special thanks to the National Energy Research Scientific Computing Center (NERSC)
and Oak Ridge Leadership Computing Facility (OLCF) for the use of their resources

during the training event.

The U.S. Government retains for itself and others acting on its behalf a nonexclusive,
royalty-free license in this video, with the rights to reproduce, to prepare derivative

works, and to display publicly.

http://extremecomputingtraining.anl.gov/

extremecomputingtraining.anl.govextremecomputingtraining.anl.gov

Thank you

http://extremecomputingtraining.anl.gov/

	Slide 1: Large Language Models at Scale
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: ARGONNE TRAINING PROGRAM ON EXTREME-SCALE COMPUTING Produced by Argonne National Laboratory, a U.S. Department of Energy Laboratory managed by UChicagoArgonne, LLC under contract DE-AC02-06CH11357. Special thanks to the National Energy Resear
	Slide 37: Thank you
	Slide 38

