
Trame

Patrick Avery

An Open Source Framework for
Efficiently Building Interactive
Visualization and Analysis Applications

Who am I - Patrick Avery

⬣ Ph. D. in Computational Chemistry from University at Buffalo

● 2019 - Research on Crystal Structure Prediction

⬣ Staff R&D Engineer at Kitware

● 2019 - Present

● Lead a variety of materials science and chemistry projects

in the scientific computing team

● Helped Sebastien Jourdain develop trame

22

Kitware
What we do?

Areas of expertise / Built on open source

Computer
Vision

Data and
Analytics

Scientific
Computing

Medical
Computing

Software
Solutions

Making the world a better place through custom software solutions

Customers / Various fields of application

50+ government agencies and
national laboratories

Government agencies

70+ academic institutions
worldwide

Academics

Over 500 commercial customers
Commercial companies

HPC, in-situ simulation, scientific
visualisation, particle flow, fluid

mechanics, ground exploration…

Energy

Image processing, multimodal
visualization, image registration

& segmentation, assisted
surgery, custom software…

Medical

Scene analysis, big data analysis, scientific
visualization, flow analysis…

Intelligence

Getting more with less

https://kitware.github.io/trame/

Let’s add
some stars

What is trame? (1/2)

⬣ Open Source Python framework to create Web UI for applications

⬣ Runs locally, in the cloud, in Jupyter or on HPC

⬣ Seamless integration with VTK and ParaView

⬣ Seamless integration with any Python and Vue.js libraries

⬣ A French word - the weft or framework of a woven fabric

What is trame? (2/2)

⬣ Simple
All logic and UI definitions can be done in plain Python

⬣ Powerful
Python offers scientific and information data visualization with
capable data processing (numpy, scipy, PyTorch, Matplotlib, VTK,
ParaView…)

⬣ Ubiquitous
Runs on laptops, desktops, clusters, and the cloud while displaying
everywhere (phone, tablet, laptop, workstation)

⬣ Server
● Application logic
● Data & processing
● Work like everything

is local

⬣ Client
● Presentation layer

and user input

Architecture

How to set up UI?
You have access to all of Vuetify in Python!!

Lots of trame examples available: github.com/Kitware/trame/tree/master/examples

Alternative UI frameworks like “Quasar” and “Tweakpane” also available

Look up API on Vuetify website

Convert names to trame/Python syntax (“-” becomes “_”)

https://vuetifyjs.com/en/api/v-slider/#props

vuetify.VSlider(
 v_model=('sigma', 0),
 min=0,
 max=10,
 step=0.05,
 hide_details=True,
 dense=True,
 style='max-width: 300px',
)

Bind widget value to this state variable

Default value for state variable

Make a slider

Set other widget properties

@state.change('sigma')
def sigma_changed(sigma, **kwargs):
 …

Define callback function for when
state variable is modified

http://github.com/Kitware/trame/tree/master/examples
https://vuetifyjs.com/en/api/v-slider/#props

M&M 2024 Interactive Demos (Toolbar UI)

with SinglePageLayout(server) as layout:
 with layout.toolbar:
 html.Div("Sigma: {{ sigma }}")
 vuetify.VSpacer()
 vuetify.VSlider(
 v_model=('sigma', 0),
 min=0,
 max=10,
 step=0.05,
 hide_details=True,
 dense=True,
 style='max-width: 300px',
)
 vuetify.VDivider(vertical=True, classes='mx-2')

github.com/psavery/mm2024_trame_demo
Try it out: uv run https://raw.githubusercontent.com/psavery/mm2024_trame_demo/refs/heads/main/volume.py

http://github.com/psavery/mm2024_trame_demo

M&M 2024 Interactive Demos (Slider Callback)

@state.change('sigma')
def sigma_changed(sigma, **kwargs):
 shape = np_data.shape
 np_data[:] = scipy.ndimage.gaussian_filter(
 original_data.reshape(shape[::-1]),
 sigma,
).reshape(shape)

 # Update the view
 data.Modified()
 ctrl.view_update()

github.com/psavery/mm2024_trame_demo
 uv run https://raw.githubusercontent.com/psavery/mm2024_trame_demo/refs/heads/main/volume.pyTry it out:

http://github.com/psavery/mm2024_trame_demo

Try it out?
● Easiest way to try out a trame app is through uv

○ Install uv: docs.astral.sh/uv/getting-started/installation
■ Easiest way might be `pip install uv`

● Run the command below the app you want to try

●

uv run
https://raw.githubusercontent.com/psavery/mm20

24_trame_demo/refs/heads/main/contour.py

uvx multivariate-view

uvx parsli uv run
https://raw.githubusercontent.com/Kitware/trame/r
efs/heads/master/examples/06_vtk/04_wasm/app.p

y

http://docs.astral.sh/uv/getting-started/installation/

Multivariate View Example

⬣ Multivariate Volume Viz
● XRF Tomography from BNL

⬣ ~1500 lines of Python
⬣ ~300 lines of JavaScript

github.com/Kitware/multivariate-view

Run: uvx multivariate-view

Multivariate View

https://docs.google.com/file/d/1LfeLqhjZU4eEAfRZxGo5fO8duHAcllww/preview

Many Examples

Many Applications

https://docs.google.com/file/d/1iv3u7bDdRTF62X8OUKOEn1PdmlfT6f2M/preview

Peacock - Idaho National Laboratory

https://github.com/Kitware/peacock

https://docs.google.com/file/d/14rdE4l-CjMukU8yz0qlzu_e5ie0uK6jk/preview

ArrowFlow - Live and templated CFD workflow

https://www.kitware.com/arrowflow/

Example: VeraCore - Simulation result exploration

https://github.com/Kitware/veracore

Example: XAITK - Understanding complex machine learning models

https://xaitk.org/

Usage examples (1/5)

Com
plexity

Usage examples (2/5)

Usage examples (3/5)

Usage examples (4/5)

Usage examples (5/5)

Nothing is too big or too small for trame

⬣ From visualization to interactive data processing
⬣ Running locally or on HPC
⬣ Within Jupyter or in the cloud
⬣ Trame has you covered

What you do with it is up to you…

It is like playing with legos…

Demo Time - Trame with ParaView

⬣ Create Python 3.10.13 conda environment
● Python 3.10.13 is needed for ParaView later

conda create -n trame-examples -y
conda activate trame-examples
conda install -y -c conda-forge python=3.10.13 \
 paraview-trame-components paraview=5.13.3

Alternatively, these can be installed with pip.
These include dependencies needed for the

ParaView example later.

Demo Time - Trame with ParaView (Pip only, external ParaView)

⬣ Create Python 3.10.13 virtual environment
● Python 3.10.13 is needed for ParaView later

pip install \
 trame trame-vtk trame-client trame-components trame-vuetify

These include dependencies needed for the
ParaView example later.

Validate it is working

python -m trame.app.demo

Important: differences between remote and local rendering

⬣ It’s very easy to switch between remote and local rendering in
trame

⬣ Remote: all rendering done on the server, images are streamed
to the client. Mouse interactions are streamed from the client
to the server.

⬣ Local: geometry/data is sent from the server to the client. All
rendering and interactions are done on the client.
● Local rendering is usually done with VTK.js. It may not

contain all components.
● When VTK-WASM is ready (getting close), that will be used

for local rendering, and all components will be available.

https://kitware.github.io/vtk-js/index.html
https://docs.vtk.org/en/latest/getting_started/using_webassembly.html

Tricks Needed for ParaView
⬣ Using ParaView from conda-forge

● Everything works out of the box.

⬣ Using pre-installed ParaView
● ParaView’s pvpython does not come with network capabilities (pip

and OpenSSL), making it difficult to install new Python packages
￮ This is partly so ParaView can be easily integrated in systems with

security concerns
● Often need to merge our venv with ParaView’s venv

￮ Requires identical version of Python in our venv

conda install -c conda-forge paraview trame …
Then run your trame apps that use ParaView

ParaView Demo Time

⬣ Ensure your virtual environment is activated
⬣ Download these ParaView state file examples
⬣ Unzip them somewhere and remember location
⬣ Clone trame. We will run an example script in it.

git clone https://github.com/kitware/trame
cd trame

https://drive.google.com/file/d/1IN_Hcfsum4CXmgMIbQMYauanOydUBOPK/view?usp=sharing

ParaView Examples - Cone

python ./examples/07_paraview/SimpleCone/RemoteRendering.py

RemoteRendering.py Link

https://github.com/Kitware/trame/blob/master/examples/07_paraview/SimpleCone/RemoteRendering.py

Caching Issues?
⬣ Modern web browsers do a lot of caching (for improved performance)
⬣ You may occasionally get pages with issues, such as failure to load, due to caching

issues, especially when switching between Vue2 and Vue3 trame apps.
⬣ To fix: open dev tools, go to “Network”, check “Disable cache”, and reload web page

● Note that “Disable cache” only works while dev tools are open. If you close the dev
tools, the cache will not be disabled. You must open dev tools and reload again.

ParaView Examples - State Viewer

3737

ptc-state --state $HOME/Downloads/pv-state/<file>.pvsm

motobike2.pvsm diskout/diskout2.pvsm

ParaView Trame Components - control ParaView with trame!

https://github.com/kitware/paraview-trame-components

ptc-lite

https://github.com/kitware/paraview-trame-components

Using external ParaView

First, be sure to remove ParaView from the conda environment
conda remove paraview --force

/Applications/ParaView-5.13.3.app/Contents/bin/pvpython \
 ./examples/07_paraview/SimpleCone/RemoteRendering.py --venv $CONDA_PREFIX

This was for my Mac

● Use the path to pvpython on your
system.

● On Windows, use %CONDA_PREFIX%

RemoteRendering.py Link

https://github.com/Kitware/trame/blob/master/examples/07_paraview/SimpleCone/RemoteRendering.py

Running trame on HPC

⬣ ParaView handles the parallelism (i. e., pvbatch)
⬣ Need to connect to the root node from web browser
⬣ Might require a little network configuration/tricks for

each HPC cluster
● For example, a reversed connection
● Sebastien can handle it…

￮ Infrastructure is available to set it up on any cluster
⬣ Already being done at Sandia

New Developments

● WASM for client-side rendering
○ More robust local rendering (uses the same VTK code

locally)
○ Access to more VTK components, including 3D widgets

(whatever is serializable in VTK)
○ More user-friendly API for interacting with objects
○ Better performance through access to WebGPU (coming

soon)

Check out the website and the many examples available
⬣ Website with Great Examples: kitware.github.io/trame

Live Trame Examples
(might be slow if everyone runs them at once)

⬣ VERACore: vera.trame.kitware.com
⬣ Visualizer: visualizer.trame.kitware.com
⬣ ArrowFlow: arrowflow.trame.kitware.com
⬣ XAITK: xaitk.trame.kitware.com

● Example File

https://kitware.github.io/trame/
https://vera.trame.kitware.com/
https://visualizer.trame.kitware.com/
https://arrowflow.trame.kitware.com/
https://xaitk.trame.kitware.com/
https://farm1.staticflickr.com/74/202734059_fcce636dcd_z.jpg

Kitware Services

Questions?
Thank you

VTK Demo

⬣ Do this in a separate conda environment than ParaView
● The conda VTK may collide with ParaView’s VTK

⬣ First, install VTK

⬣ Second, run VTK example scripts in trame repo

conda install -c conda-forge 'vtk>=9.3'

python ./examples/06_vtk/01_SimpleCone/RemoteRendering.py

