
UNDERSTANDING
AND TUNING HPC
I/O PERFORMANCE
Jean Luca Bez
jlbez@lbl.gov
Lawrence Berkeley National Laboratory

1

Surveying the HPC I/O landscape

● We have a complex data management ecosystem!

● Using the HPC I/O stack efficiently is a tricky problem

● Interplay of factors can affect I/O performance

● Various optimizations techniques available

● Tons of tunable parameters across the stack

● HPC applications are evolving and facing new challenges

● Understanding I/O behavior is difficult

○ How to turn observations into actionable tuning decisions?

Applications

High-Level I/O Libraries

Parallel I/O Middleware

Low-level I/O Libraries

I/O Forwarding Layer

Storage System

Storage Hardware

HDF5, PNetCDF, ADIOS

MPI-IO

IBM ciod, Cray DVS

 Lustre, GPFS, PVFS,
OrangeFS, BeeGFS,

DAOS

HDD, SSD, SCM

POSIX, STDIO

2

3
I/O Access Patterns in HPC Applications: A 360-Degree Survey

https://dl.acm.org/doi/10.1145/3611007

4
I/O Access Patterns in HPC Applications: A 360-Degree Survey

https://dl.acm.org/doi/10.1145/3611007

Metrics to the rescue?

● Darshan is a popular tool to collect I/O profiling

● Extended tracing mode (DXT) for a fine grain view

● There are other profiling tools that capture I/O

○ Recorder, TAU, IOPin, Score-P, etc…

● How to optimize the I/O of my application?

5

HTML (pyDarshan) based Darshan Report

A LOOK under the hood of an HPC application

● You have already heard some basics

about Darshan, a powerful tool for

users to better understand and tune

their I/O workloads.

● Darshan provides many helpful

stats across multiple layers of the

I/O stack that are critical to

understanding application I/O

behavior and performance.

Data Model Support

Application

I/O Hardware

Transformations

Storage System

6

A LOOK under the hood of an HPC application

● You have already heard some basics

about Darshan, a powerful tool for

users to better understand and tune

their I/O workloads.

● Darshan provides many helpful

stats across multiple layers of the

I/O stack that are critical to

understanding application I/O

behavior and performance.

Data Model Support

Application

I/O Hardware

Transformations

Storage System

e.g.: HDF5 stats*

● Accessed files/datasets

● Operation counts

● Total read/write volumes

● Common access info (including

details of hyperslab accesses)

● Chunking parameters

● Dataset dimensionality and size

● MPI-IO usage

● I/O timing

*Note: HDF5 instrumentation is not typically enabled for facility
Darshan installs – you will need to install this version yourself.

7

A LOOK under the hood of an HPC application

● You have already heard some basics

about Darshan, a powerful tool for

users to better understand and tune

their I/O workloads.

● Darshan provides many helpful

stats across multiple layers of the

I/O stack that are critical to

understanding application I/O

behavior and performance.

Data Model Support

Application

I/O Hardware

Transformations

Storage System

e.g.: MPI-IO stats

● Operation counts

(open, read, write, sync, etc)

● Collective and independent I/O

● Total read/write volumes

● Access size info

○ Common values

○ Histograms

● I/O timing

8

A LOOK under the hood of an HPC application

● You have already heard some basics

about Darshan, a powerful tool for

users to better understand and tune

their I/O workloads.

● Darshan provides many helpful

stats across multiple layers of the

I/O stack that are critical to

understanding application I/O

behavior and performance.

Data Model Support

Application

I/O Hardware

Transformations

Storage System

e.g.: POSIX stats

● Operation counts

(open, read, write, seek, stat)

● Total read/write volumes

● File alignment

● Access size/stride info

○ Common values

○ Histograms

● I/O timing

9

A LOOK under the hood of an HPC application

● You have already heard some basics

about Darshan, a powerful tool for

users to better understand and tune

their I/O workloads.

● Darshan provides many helpful

stats across multiple layers of the

I/O stack that are critical to

understanding application I/O

behavior and performance.

Data Model Support

Application

I/O Hardware

Transformations

Storage System

e.g.: Lustre stats*

● Data server (OST) and metadata

server (MDT) counts

● Stripe size/width

● OST list serving a file

*Note: Lustre instrumentation is typically enabled for facility
Darshan installs that have a Lustre-based parallel file system.

10

What is the problem?

● There is still a gap between profiling and tuning

● How to convert I/O metrics to meaningful information?

○ Visualize characteristics, behavior, and bottlenecks

○ Detect root causes of I/O bottlenecks

○ Map I/O bottlenecks into actionable items

○ Guide end-user to tune I/O performance

PROFILING

TUNED APPLICATION

11

Tuning the Storage System

● How to ensure storage resources match application I/O needs?

○ For some parallel file systems like Lustre, users have direct control over file striping parameters

● BAD NEWS!

○ Users may have to have some knowledge of the file system to get good I/O performance.

○ Your choices could have an impact on others using the system

○ Shared file systems aren’t perfect (nor perfectly tuned) for every workload!

● GOOD NEWS!

○ Users can often get higher I/O performance than system defaults with thoughtful tuning

12

13

● 2 IOR instances

○ Started simultaneously

● Disjoint sets of 16 nodes

○ 8 ranks per node

○ 128 ranks per application

● Access to a single shared-file

○ 32MB block size (per rank)

○ 4MB transfer sizes

○ HDF5 + MPI interface

UNDERSTANDING TRANSFORMATIONS

14

UNDERSTANDING TRANSFORMATIONS

Tuning the Storage System

● Tuning decisions can and should be made independently for different file approaches

15

16

0 1 2 6 7 8

File Layout

Process 1

3 4 5

Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8

File Layout

Process 1Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

File A

Process 1Process 0 Process N

File B File C

0 1 2

Process 4

0 1 2

File D

0 1 2 6 7 8

File Layout

Process 1

3 4 5

Process 0 Process 3

9 10 11

Process 4

0 1 2 3 4 5 6 7 8 9 10 11

FILE-PER-PROCESS SHARED FILE, RANK 0

SHARED FILE, COORDINATED SHARED FILE, AGGREGATORS

FILE APPROACH

Tuning the Storage System

● Tuning decisions can and should be made independently for different file approaches

17

Tuning the Storage System

● Tuning decisions can and should be made independently for different file approaches

18

Tuning the Storage System

● Tuning decisions can and should be made independently for different file approaches

○ On the other hand, smaller files often benefit from being stored on a single server

19

Tuning the Storage System

● Tuning decisions can and should be made independently for different file approaches

○ On the other hand, smaller files often benefit from being stored on a single server

20

Tuning the Storage System

● Be aware of what file system settings are available to you

● Do not assume system defaults are always the best for your case… you might be surprised

○ ALCF Polaris and NERSC Perlmutter Lustre scratch file systems both have a default stripe width of 1

(i.e., files are stored on one server)

256 process (4 node) h5bench
runs on NERSC Perlmutter

h5bench contains lots of
parameters for controlling
characteristics of generated
HDF5 workloads

https://github.com/hpc-io/h5bench

21

Tuning the Storage System

● Be aware of what file system settings are available to you

● Do not assume system defaults are always the best for your case… you might be surprised

○ ALCF Polaris and NERSC Perlmutter Lustre scratch file systems both have a default stripe width of 1

(i.e., files are stored on one server)

All the I/O is funneled
through rank 0!

MPI-IO collective I/O driver for
Lustre assigns dedicated
aggregator processes for
each stripe, yielding a single
aggregator for files of 1 stripe.

22

Tuning the Storage System

● Ensuring storage resources match application I/O needs

Manually setting the stripe width to
16 yields more I/O aggregators and
better performance:

> lfs setstripe -c 16 testFile

23

Tuning the Storage System

● Ensuring storage resources match application I/O needs

Manually setting the stripe width to
16 yields more I/O aggregators and
better performance:

> lfs setstripe -c 16 testFile

1341.13
MiB/s

5571.27
MiB/s

4X!

24

Tuning the Storage System

● Consult facilities documentation for established best practice!

○ Suggestions and commands for properly striping different types of files and workloads

25

Tuning the Storage System

● Consult facilities documentation for established best practice!

○ Sometimes (quite often!) you may even need to experiment yourself!

128-node example of the IOR benchmark using various
stripe counts on ALCF Polaris:
https://github.com/radix-io/io-sleuthing/tree/main/examples/striping

For more I/O intensive programs, it’s typically better to err
on the side of more storage servers.

The following command stripes across all servers:

> lfs setstripe -c -1 testFile

26

Tuning the Storage System

● Files are broken down into stripes and distributed for parallelism

○ A single I/O operation might need to reach multiple servers (OSTs in Lustre)

○ Requests not aligned to the PFS stripe boundaries might perform poorly

270 1 3 4 5 6 7 8

File Layout

OST 1 OST 2 OST 3

0 3 6 1 4 7 2 5 8

2

64 KB

0 1 3 4 5 6 7 8

File Layout

OST 1 OST 2 OST 3

0 3 6 1 4 7 2 5 8

2

136 KB

REQUEST ALIGNED TO STRIPE REQUEST NOT ALIGNED TO STRIPE

Tuning the Storage System

● Simple 10-process (10-node) run where processes write in an interleaved fashion to a single shared file:

○ Use a tracing tool (e.g. Darshan DXT or Recorder) to get details about individual accesses

28

Tuning the Storage System

● Simple 10-process (10-node) run where processes write in an interleaved fashion to a single shared file:

○ Use a tracing tool (e.g. Darshan DXT or Recorder) to get details about individual accesses

● Each access is aligned to the Lustre stripe size (1 MiB)

● Each process interacts with a single Lustre server (OST)

29

Tuning the Storage System

● Simple 10-process (10-node) run where processes write in an interleaved fashion to a single shared file:

○ Use a tracing tool (e.g. Darshan DXT or Recorder) to get details about individual accesses

● Each access spans two Lustre stripes due to unaligned offsets

● Each process interacts with two Lustre servers (OSTs)

30

Tuning the Storage System

● Even in this small workload

○ We pay a ~20% performance penalty when I/O accesses are not aligned to file stripes (1 MB)

31

NO NEED TO REINVENT THE WHEEL

● Accounting for subtle I/O performance factors like file alignment can be a painstaking process…

● As highlighted by other presentations:

○ High-level I/O libraries like HDF5 and PnetCDF can help mask much of the complexity needed for

transforming scientific computing I/O workloads into performant POSIX-level file system accesses

● Use high-level I/O libraries wherever you can!

○ But also read the documentation and follow best practices!

32

TuNING HIGH-LEVEL LIBRARIES

● e.g. OpenPMD / WarpX

○ 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks

○ Mesh size is [65536 ⨉ 256 ⨉ 256], 10 iterations, total file size is ≈121GB

DATA DATA

MET

A

MET

A DATA

MET

A

33

TuNING HIGH-LEVEL LIBRARIES

● e.g. OpenPMD / WarpX

○ Collective I/O using ROMIO hints with 1 agg/node and 16 MB collective buffer size

○ GPFS large block I/O with HDF5 collective metadata

○ Collective operations used for data and metadata

DATA DATA

MET

A

MET

A DATA

MET

A

110.6s
BASELINE

16.1s
OPTIMIZED

6.8x

34

HDF5 tuning Parameter Space

35Courtesy image from Suren Byna

TuNING HIGH-LEVEL LIBRARIES

● e.g. E2E Benchmarks

○ 4 compute nodes, 6 ranks per node, and a total of 1024 MPI ranks

○ 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

○ 44% of the time is taken by rank 0!

Rank 0 is sequentially writing fill values
to all of the defined variables (10 in this

workload), issuing over 40 thousand write
requests with of ≈1MB

36

TuNING HIGH-LEVEL LIBRARIES

● e.g. E2E Benchmarks

○ 4 compute nodes, 6 ranks per node, and a total of 1024 MPI ranks

○ 1024 processes arranged in a 32 x 32 x 16 distribution, total file size is ≈41GB

○ 44% of the time is taken by rank 0!

○ Disabling the data filling (NC_NOFILL in NetCDF) translates to 7.3x speedup

80s
BASELINE

8s
OPTIMIZED

10x

37

TuNING HIGH-LEVEL LIBRARIES

● e.g. FLASH

○ 64 compute nodes, 6 ranks per node, and a total of 384 MPI ranks

○ 2 checkpoint files (≈2.3TB each) and 2 plot file (≈14GB each) both using HDF5 backend

38

TuNING HIGH-LEVEL LIBRARIES

● e.g. FLASH

○ Collective I/O using ROMIO hints with 1 agg/node and 16 MB collective buffer size provides 3.2x speedup

○ Setting the HDF5 alignment size to 16 MB provides an additional 1.18x speedup

○ Deferring the HDF5 metadata flush provides another 1.1x speedup

1495s
BASELINE

361s
OPTIMIZED

4.1x

39

Summarizing I/O tuning options

● As a user of I/O interface X, what tuning vectors do I have?

I/O Interface Striping Alignment Collective I/O Chunking

HDF5

PnetCDF

MPI-IO

POSIX

40

Summarizing I/O tuning options

● As a user of I/O interface X, what tuning vectors do I have?

I/O Interface Striping Alignment Collective I/O Chunking

HDF5

PnetCDF

MPI-IO

POSIX

Automatically align application data and
library metadata, if user requests so

Collective I/O can be
automatically aligned

POSIX I/O requires manually
aligning every access

41

SOMETIMES WE NEED MORE!

● By default, Darshan captures a (large!) fixed set of counters for each file

● With DXT (Darshan Extended Tracing):

○ Darshan traces every read/write operation (for POSIX and MPI-IO interfaces)

● Enabled by setting DXT_ENABLE_IO_TRACE env variable

● Finer grained instrumentation data comes at a cost of additional overhead and larger logs!

○ Hence, this option is not enabled by default in facilities!

export DXT_ENABLE_IO_TRACE=1

42

DXT_POSIX module data

DXT, file_id: 13771918696892050919, file_name:
/gpfs/alpine/csc300/scratch/anonymous/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.par
DXT, rank: 0, hostname: d11n01
DXT, write_count: 0, read_count: 3
DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
 X_POSIX 0 read 0 0 783 0.0110 0.0110
 X_POSIX 0 read 1 783 0 0.0111 0.0111
 X_POSIX 0 read 2 783 0 0.0111 0.0111

DXT, file_id: 17855743881390289785, file_name:
/gpfs/alpine/csc300/scratch/anonymous/Flash-X-apr8.gcc/FLASH_IO_hdf5_1.10.6/2366525/flash.log
DXT, rank: 0, hostname: d11n01
DXT, write_count: 62, read_count: 0
DXT, mnt_pt: /gpfs/alpine, fs_type: gpfs
Module Rank Wt/Rd Segment Offset Length Start(s) End(s)
 X_POSIX 0 write 0 0 4105 0.0518 0.0527
 X_POSIX 0 write 1 4105 4141 0.0530 0.0530
 X_POSIX 0 write 2 8246 4127 0.0532 0.0532
 X_POSIX 0 write 3 12373 4097 0.0534 0.0547
...

Trace includes the timestamp,
file offset, and size of every
I/O operation on every rank.
darshan-dxt-parser utility
can provide a raw text dump
of the trace.

43

● Build h5bench and try to run it with the atpsec.json configuration

○ https://github.com/hpdc-io/h5bench

○ https://github.com/raxid-io/hands-on/h5bench

● Remember to collect Darshan logs and traces!

● What should I look at?

○ What can you infer about the application I/O behavior from Darshan’s report?

○ What is the I/O bandwidth and time?

○ Do you see any opportunities to tune the I/O?

● Try making changes to the I/O patterns with exposed configuration
44

https://github.com/hpdc-io/h5bench
https://github.com/raxid-io/hands-on/h5bench

{
 "mpi": {
 "command": "srun",
 "configuration": "-N 4 -n 512"
 },
 "vol": {

 },
 "file-system": {
 "lustre": {
 "stripe-size": "1M",
 "stripe-count": "1"
 }
 },
 "directory": "SCRATCHDIR",
 "benchmarks": [
 {
 "benchmark": "write",
 "file": "h5bench.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "YES",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "5 s",
 "NUM_DIMS": "1",
 "DIM_1": "4194304",
 "DIM_2": "1",
 "DIM_3": "1",
 "CSV_FILE": "output.csv",
 "MODE": "SYNC"
 }
 },
 {
 "benchmark": "read",
 "file": "h5bench.h5",
 "configuration": {
 "MEM_PATTERN": "CONTIG",
 "FILE_PATTERN": "CONTIG",
 "READ_OPTION": "FULL",
 "TIMESTEPS": "5",
 "DELAYED_CLOSE_TIMESTEPS": "2",
 "COLLECTIVE_DATA": "YES",
 "COLLECTIVE_METADATA": "NO",
 "EMULATED_COMPUTE_TIME_PER_TIMESTEP": "5 s",
 "NUM_DIMS": "1",
 "DIM_1": "4194304",
 "DIM_2": "1",
 "DIM_3": "1",
 "CSV_FILE": "output.csv",
 "MODE": "SYNC"
 }
 }
]
}

45

46

2025-08-02 20:38:25,859 h5bench - INFO - Starting h5bench Suite
2025-08-02 20:38:25,868 h5bench - WARNING - Base directory already exists: /flare/ATPESC2025/usr/jlbez/h5bench-storage
2025-08-02 20:38:25,898 h5bench - INFO - Lustre support detected
2025-08-02 20:38:25,899 h5bench - DEBUG - LD_LIBRARY_PATH:
/lus/flare/projects/ATPESC2025/track7-io/soft/darshan-3.4.7/lib:/opt/cray/pals/1.4/lib:/opt/cray/libfabric/1.22.0/lib64:/opt/cray/libfabric/1.22.0/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sle
s15-x86_64/oneapi-2025.0.5/mpich-develop-git.6037a7a-sxnhr7p/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/oneapi-2025.0.5/yaksa-0.3-7ks5f26/lib:/opt/aurora/24.347.0/spack/unified/0
.9.2/install/linux-sles15-x86_64/oneapi-2025.0.5/hwloc-2.11.3-mpich-g7c7dzn/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/gcc-13.3.0/libxml2-2.13.5-jxhkqdj/lib:/opt/aurora/24.347.0/
spack/unified/0.9.2/install/linux-sles15-x86_64/gcc-13.3.0/libiconv-1.17-jjpb4sl/lib:/opt/aurora/24.347.0/support/libraries/khronos/default/lib64:/opt/aurora/24.347.0/oneapi/pti/latest/lib:/opt/aurora/24.347.
0/oneapi/tcm/latest/lib:/opt/aurora/24.347.0/oneapi/umf/latest/lib:/opt/aurora/24.347.0/oneapi/ipp/latest/lib:/opt/aurora/24.347.0/oneapi/ippcp/latest/lib:/opt/aurora/24.347.0/oneapi/debugger/latest/opt/debug
ger/lib:/opt/aurora/24.347.0/oneapi/ccl/latest/lib:/opt/aurora/24.347.0/oneapi/dal/latest/lib:/opt/aurora/24.347.0/oneapi/dnnl/latest/lib:/opt/aurora/24.347.0/oneapi/tbb/latest/lib/intel64/gcc4.8:/opt/aurora/
24.347.0/oneapi/mkl/latest/lib:/opt/aurora/24.347.0/oneapi/compiler/latest/opt/compiler/lib:/opt/aurora/24.347.0/oneapi/compiler/latest/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64
/gcc-13.3.0/gcc-13.3.0-4enwbrb/lib64:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/gcc-13.3.0/gcc-13.3.0-4enwbrb/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64
/gcc-13.3.0/mpc-1.3.1-rdrlvsl/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/gcc-13.3.0/mpfr-4.2.1-gkcdl5w/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/gc
c-13.3.0/gmp-6.3.0-mtokfaw/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_64/gcc-13.3.0/gcc-runtime-13.3.0-ghotoln/lib:/opt/aurora/24.347.0/spack/unified/0.9.2/install/linux-sles15-x86_
64/oneapi-2025.0.5/hdf5-1.14.5-zrlo32i/lib
2025-08-02 20:38:25,899 h5bench - DEBUG - DYLD_LIBRARY_PATH:
2025-08-02 20:38:25,899 h5bench - DEBUG - LD_PRELOAD:
2025-08-02 20:38:25,899 h5bench - INFO - JOBID: 6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
2025-08-02 20:38:25,899 h5bench - INFO - h5bench [write] - Starting
2025-08-02 20:38:25,899 h5bench - INFO - h5bench [write] - DIR: /flare/ATPESC2025/usr/jlbez/h5bench-storage/61f2bed5-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/
2025-08-02 20:38:25,902 h5bench - INFO - Parallel setup: mpirun -n 408 --ppn 102 --cpu-bind core
2025-08-02 20:38:25,934 h5bench - INFO - mpirun -n 408 --ppn 102 --cpu-bind core /home/jlbez/h5bench/install/bin//h5bench_write
/flare/ATPESC2025/usr/jlbez/61f2bed5-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/h5bench.cfg /flare/ATPESC2025/usr/jlbez/h5bench-storage/h5bench.h5
2025-08-02 20:43:18,022 h5bench - INFO - SUCCESS (all output files are located at /flare/ATPESC2025/usr/jlbez/h5bench-storage/61f2bed5-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov)
2025-08-02 20:43:18,029 h5bench - INFO - Requested and ran in SYNC mode
2025-08-02 20:43:18,030 h5bench - INFO - Runtime: 292.1215675 seconds (elapsed time, includes allocation wait time)
2025-08-02 20:43:18,030 h5bench - INFO - h5bench [write] - Complete
2025-08-02 20:43:18,030 h5bench - INFO - JOBID: 6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov
2025-08-02 20:43:18,030 h5bench - INFO - h5bench [read] - Starting
2025-08-02 20:43:18,030 h5bench - INFO - h5bench [read] - DIR: /flare/ATPESC2025/usr/jlbez/h5bench-storage/44e89366-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/
2025-08-02 20:43:18,032 h5bench - INFO - Parallel setup: mpirun -n 408 --ppn 102 --cpu-bind core
2025-08-02 20:43:18,046 h5bench - INFO - mpirun -n 408 --ppn 102 --cpu-bind core /home/jlbez/h5bench/install/bin//h5bench_read
/flare/ATPESC2025/usr/jlbez/44e89366-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/h5bench.cfg /flare/ATPESC2025/usr/jlbez/h5bench-storage/h5bench.h5
2025-08-02 20:45:53,467 h5bench - INFO - SUCCESS (all output files are located at /flare/ATPESC2025/usr/jlbez/h5bench-storage/44e89366-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov)
2025-08-02 20:45:53,478 h5bench - INFO - Requested and ran in SYNC mode
2025-08-02 20:45:53,478 h5bench - INFO - Runtime: 155.4389443 seconds (elapsed time, includes allocation wait time)
2025-08-02 20:45:53,478 h5bench - INFO - h5bench [read] - Complete
2025-08-02 20:45:53,478 h5bench - INFO - Finishing h5bench Suite

47

Configuration file: /flare/ATPESC2025/usr/jlbez/61f2bed5-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/h5bench.cfg
Output data file: /flare/ATPESC2025/usr/jlbez/h5bench.h5

================ Benchmark Configuration ==================
File: /flare/ATPESC2025/usr/jlbez/61f2bed5-6930444.aurora-pbs-0001.hostmgmt.cm.aurora.alcf.anl.gov/h5bench.cfg
Number of particles per rank: 1024
Number of time steps: 5
Emulated compute time per timestep: 5
Mode: SYNC
Collective metadata operations: YES
Collective buffering for data operations: YES
Number of dimensions: 1
 Dim_1: 1024
Standard deviation for varying particle size in normal distribution = 1
===

Start benchmark: h5bench_write
Number of particles per rank: 0 M
Total number of particles: 0M
Collective Metadata operations: ON
Opened HDF5 file...
Writing Timestep_0 ...
 data_write_contig_contig_MD_array: Finished writing time step
Computing...
Writing Timestep_1 ...
 data_write_contig_contig_MD_array: Finished writing time step

...

Computing...
Writing Timestep_4 ...
 data_write_contig_contig_MD_array: Finished writing time step

=================== Performance Results ==================
Total number of ranks: 408
Total emulated compute time: 20.000 s
Total write size: 63.750 MB
Raw write time: 1.030 s
Metadata time: 0.001 s
H5Fcreate() time: 0.522 s
H5Fflush() time: 0.032 s
H5Fclose() time: 0.003 s
Observed completion time: 21.680 s
SYNC Raw write rate: 61.880 MB/s
SYNC Observed write rate: 37.941 MB/s
===

GOING BACK TO THE PROBLEM…

● There is still a gap between profiling and tuning

● How to convert I/O metrics to meaningful information?

○ Visualize characteristics, behavior, and bottlenecks

○ Detect root causes of I/O bottlenecks

○ Map I/O bottlenecks into actionable items

○ Guide end-user to tune I/O performance

PROFILING

TUNED APPLICATION

48

GOING BACK TO THE PROBLEM…

● There is still a gap between profiling and tuning

● How to convert I/O metrics to meaningful information?

○ Visualize characteristics, behavior, and bottlenecks

○ Detect root causes of I/O bottlenecks

○ Map I/O bottlenecks into actionable items

○ Guide end-user to tune I/O performance

PROFILING

TUNED APPLICATION

49

TOWARDS A SOLUTION…

● Sanskrit word meaning “point of focus”

○ Interactive web based analysis framework

○ Pinpoint root causes of I/O performance problems

○ Detects typical I/O performance pitfalls

○ Provide a set of actionable recommendations

● Working to support multiple sources of I/O metrics

PROFILING

TUNED APPLICATION

50

TOWARDS A SOLUTION…

● Sanskrit word meaning “point of focus”

○ Interactive web based analysis framework

○ Pinpoint root causes of I/O performance problems

○ Detects typical I/O performance pitfalls

○ Provide a set of actionable recommendations

● Working to support multiple sources of I/O metrics

PROFILING

TUNED APPLICATION

51

HPC Application
I/O Metrics

I/O Analysis
Behavior and I/O Phases

Insights
Recommendations

Interactive Plots
Plotly

Operation

Transfer Size

Spatiality

I/O Phases

Storage System

Darshan / DXT
pyDarshan

HTML
Drishti Output

Recorder
Traces

scorep
OTF2 Traces

Drishti VOL
HDF5 Trace

52

Operation

Spatial Locality I/O Phases

Transfer Size

OST Usage

53

54

55

56

57

Download some files for the hands-on exercise

$ wget https://github.com/jeanbez/dxt-sample-logs/raw/main/samples-openpmd.tar.gz

$ tar zxvf samples-openpmd.tar.gz

On NERSC systems you can also use the container version with Shifter

$ shifter --image=docker:hpcio/dxt-explorer:pre-release

Download the files for local interactive exploration on your browser!

HANDS-ON
DOCKER OR NERSC

Level Description

HIGH High probability of harming I/O performance.

WARN
Detected issues that could cause a significant negative impact on the I/O performance. The confidence
of these recommendations is low as available metrics might not be sufficient to detect application
design, configuration, or execution choices.

OK Best practices have been followed.

INFO Relevant information regarding application configuration.

DRISHTI TRIGGERS
HEURISTIC-BASED

59

Overall information
about the Darshan
log and execution

Number of critical
issues, warning, and

recommendations

Drishti checks
metrics for

over 30 triggers

Highlight the file
that triggered the

issue

Multiple output
formats: textual,
SVG, HTML

Severity based on
certainty and
impact: high,
medium, low, info

Current version
only checks
profiling metrics

Sample code
solutions are

provided

Drishti can check
for HDF5 usage to
fine tune the
recommendations

Provides
actionable
feedback for users

60

WarpX / OpenPMD
USE CASE

61

62

WarpX / OpenPMD
USE CASE

AMReX
USE CASE

63

2.1×
speedup
from 211 to 100 seconds

SETUP
512 ranks (32 nodes)
1024 domain size
1 level, 6 components, 2 particles per cell
10 output plot files

Level Interface Detected Behavior Jobs Total (%) Relative* (%)

HIGH STDIO High STDIO usage (>10% of total transfer size uses STDIO) 43,120 38.29 52.1

OK POSIX High number of sequential read operations (≥ 80%) 38,104 33.84 58.14

OK POSIX High number of sequential write operations (≥ 80%) 64,486 57.26 98.39

INFO POSIX Write operation count intensive (>10% more writes than reads) 26,114 23.19 39.84

INFO POSIX Read operation count intensive (>10% more reads than writes) 23,168 20.57 35.35

INFO POSIX Write size intensive (>10% more bytes written then read) 23,568 20.93 35.96

INFO POSIX Read size intensive (>10% more bytes read then written) 40,950 36.36 62.48

WARN POSIX Redundant reads 14,518 12.89 22.15

WARN POSIX Redundant writes 59 0.05 0.09

HIGH POSIX High number of small (<1MB) read requests (>10% of total read requests) 64,858 57.59 98.96

HIGH POSIX High number of small (<1MB) write requests (>10% of total write requests) 64,552 57.32 98.49

HIGH POSIX High number of misaligned memory requests (>10%) 36,337 32.27 55.44

HIGH POSIX High number of misaligned file requests (>10%) 65,075 57.79 99.29

HIGH POSIX High number of random read requests (>20%) 26,574 23.6 40.54

HIGH POSIX High number of random write requests (>20%) 559 0.5 0.85

HIGH POSIX High number of small (<1MB) reads to shared-files (>10% of total reads) 60,121 53.39 91.73

HIGH POSIX High number of small (<1MB) writes to shared-files (>10% of total writes) 55,414 49.21 84.55

HIGH POSIX High metadata time (at least one rank spends >30 seconds) 9,410 8.36 14.35

HIGH POSIX Data transfer imbalance between ranks causing stragglers (>15% difference) 40,601 36.05 61.95

HIGH POSIX Time imbalance between ranks causing stragglers (>15% difference) 40,533 35.99 61.84

SYSTEM REPORT
I/O ISSUES OVERVIEW

64

CROSS LAYER EXPLORATION
SOURCE CODE

AMREX E3SM

Hammad Ather (UO), Jean Luca Bez (LBNL), Yankun Xia (OSU), Suren Byna (OSU) 65

DRISHTI
HDF5 VOL CONNECTOR

66

I/O NAVIGATOR
Exploring LLM-driven I/O performance diagnosis

Chris Egersdoerfer (UD), Arnav Sareen (UNCC), Jean Luca Bez (LBNL), Dongkuan Xu (NCSU), Suren Byna (OSU), Dong Dai (UD) 67

UNDERSTANDING
AND TUNING HPC
I/O PERFORMANCE
Jean Luca Bez
jlbez@lbl.gov
Lawrence Berkeley National Laboratory

69

