# Large Scale Visualization with ParaView

ATPESC 2025





#### **Outline**

- Kitware
- Introduction
- Basic Usage
- Visualizing Large Models
- Topics for Future Exploration



Volumetric Rendering in VTK and ParaView: Introducing the Scattering Model on GPU



#### **Kitware**

- Open-source, software R&D company
- Core areas of expertise





#### **Kitware – HPC and Visualization**



#### **Kitware: Additional Core Areas of Expertise**

- Computer Vision and AI
- Data and Analytics
- Medical Computing
- Software Process (cmake)











# **To Follow Along...**

Install ParaView 5.13.1

http://www.paraview.org/download





# Introduction



#### What is ParaView?

- An open-source (BSD 3 Clause License), scalable, multi-platform visualization application based on VTK
- Processing paradigms:
  - distributed computing (MPI)
  - shared memory multiprocessing (SMP) (vtkSMPTools)
  - GPU processing (viskores).
- Has an open, flexible, and intuitive user interface
- Has an extensible, modular architecture based on open standards



#### **ParaView on the Desktop**





#### **ParaView on the Web**

Visualizer, Glance (vtk.js)
<a href="https://blog.kitware.com/vis-on-the-web/">https://blog.kitware.com/vis-on-the-web/</a>





# **ParaView Scripting - Python**



Tools > Start Trace
\_\_\_ build a pipeline \_\_\_
Tools > Stop Trace



#### **ParaView Immersive and VR**





OpenVR, OpenXR



#### **ParaView for HPC**





#### **ParaView Catalyst - Insitu Solution**



Simulations with Catalyst: PyFR, HPCMP CREATE HELIOS,

PHASTA, MPAS Ocean, VPIC, RAGE, UH3D, CAM

**Uses Conduit Blueprint** data description

- No need to compile ParaView
- No need to recompile when ParaView version changes



# **ParaView (VTK) Data Types**



Uniform Rectilinear (vtkImageData)





Non-Uniform Rectilinear (vtkRectilinearData)



Unstructured Grid (vtkUnstructuredGrid)



Curvilinear (vtkStructuredData)

- Partitioned Dataset
- Partitioned Dataset Collection
- Adaptive Mesh
   Refinement (AMR)

# ParaView (VTK) Cell Types

- Cell types (linear, nonlinear), interpolation
- Arbitrary order Lagrange Finite Elements
- <u>Discontinuous Galerkin elements and other novel</u>
   <u>cell-types/function-spaces</u>





#### **More Information**

| <u>H</u> elp |                                      |    |
|--------------|--------------------------------------|----|
| P            | Getting Started with ParaView        |    |
|              | ParaView Guide                       | F1 |
|              | Reader, Filter, and Writer Reference |    |
| P            | ParaView Self-directed Tutorial      |    |
|              | ParaView Classroom Tutorials         |    |
|              | Example Visualizations               |    |
|              | ParaView Web Site                    |    |
|              | ParaView Wiki                        |    |
|              | ParaView Community Support           |    |
|              | Release Notes                        |    |
|              | Professional Support                 |    |
|              | Professional Training                |    |
|              | Online Tutorials                     |    |
|              | Online Blogs                         |    |
|              | Bug Report                           |    |
|              | About                                |    |



# **Basic Usage**



#### **User Interface**





#### **Creating a Cylinder Source**

- 1. Go to the Sources menu and select Cylinder.
- 2. Click the button to accept the default parameters.



#### **Simple Camera Manipulation**

- Drag left, middle, right buttons for rotate, pan, zoom.
  - Laptop: use Shift, Ctrl modifiers (see Edit > Setting > Camera)
  - Also try holding down x, y, or z.







### **Pipeline Object Properties**

- 1. Go to the Source menu and select Cylinder.
- 2. Click the button to accept the default parameters.
- 3. Increase the Resolution parameter.
- 4. Resolution 6
- 5. Click the button again.



#### **Pipeline Object Controls**



Pipeline objects - Sources
Filters
Readers
Extractors



# **Display Properties**





#### **Change Display Properties**

- 1. Scroll down to the Display group.
- 2. Click the Edit Color Map button. (This button is replicated in the toolbar.)
- 3. Select a new color for the cylinder.



# **View Properties**

| 0 0           | Properties         |
|---------------|--------------------|
| Apply         | ⊘ Reset            |
| Search (use I | Esc to clear text) |
| ─ View (Rei   | nder V 🐧 🐧 🗸       |
| <b></b>       | Edit Axes Grid     |
| Center Axes   | •                  |
| Orientation A | xes Visibility     |
| Single color  | •                  |
| Color         | Restore Default    |
| Color         | Restore Default    |



# **Change View Properties**

- 1. Scroll down to the Display group.
- 2. Click the Edit Color Map button. (This button is replicated in the toolbar.)
- 3. Select a new color for the cylinder.
- 4. Scroll down to the View group.
- 5. Turn on the Axis Grid.



#### **Advanced Properties**

Search Properties



Toggle Advanced Properties



#### **Searching Properties**

- 1. Type "specular" in the properties search box
- 2. Change Specular value to 1 (makes the cylinder shiny)



#### **Searching Properties**

- 1. Type "specular" in the properties search box
- 2. Change Specular value to 1 (makes the cylinder shiny)

#### Other interesting properties:

- Axes Grid
- Opacity



#### **Changing the Color Palette**

 Make sure the orientation axes are visible in the lower left corner.



2. Click the color palette button and change the colors.



3. Try several color palettes.



#### **Undo Redo**





Redo







#### **Reset ParaView**

#### Edit → Reset Session





#### Load disk\_out\_ref.ex2

Open the file disk\_out\_ref.ex2 from the examples directory.

|   | Look in:                                  | /Applications/ParaView-5.2.0-RC1.app/Contents/data/                      | 0     |
|---|-------------------------------------------|--------------------------------------------------------------------------|-------|
| Ť | Examples Home Desktop Documents Downloads | Filename can.ex2 disk_out_ref.ex2 headsq.vti README.txt                  |       |
|   | Macintosh HD                              |                                                                          |       |
|   |                                           | File name:                                                               | OK    |
|   |                                           | Files of type: Supported Files (*.inp *.cosmo *.cgns *.cml *.csv *.t 💸 C | ancel |



#### Load disk\_out\_ref.ex2

- 1. Open the file disk\_out\_ref.ex2 from the examples directory.
- 2. Click





# **Display Properties**





Representation



#### **Filters Menu**



~200 filters

#### Status bar:

- Short description
- Reason why is grayed



#### **Common Filters**



Calculator



Contour



Clip



Slice



**Threshold** 



**Extract Subset** 



Glyph



Stream Tracer



Warp (vector)



**Group Datasets** 



**Extract Block** 



## **Quick Launch**



- Used for searching for filters by name
- Keyboard shortcut
  - Ctrl-space for Windows & Linux
  - Alt-space for Mac

## **Apply Contour**

- 1. Select disk\_out\_ref.ex2 in the pipeline browser.
- 2./ Press the contour filter.



Specify the data you apply the filter on





## **Apply Contour**

3. Change parameters to create an isosurface at Temp

Scientific

= 400K.**3** Delete Search... Properties (Contour1) ▼ Contour Change to Temp O ASH3 **V** Compute Normals Compute Gradients Compute Scalars ▼ Isosurfaces Value Range: [0.0804768, 0.184839] 0.132658146 Change to 400 Delete Delete All New Value New Range



## **Apply Contour**

- 1. Select disk\_out\_ref.ex2 in the pipeline browser.
- 2. Select the contour filter.



- 3. Change parameters to create an isosurface at Temp = 400K.
- 4. Apply



## **Apply ExtractSurface**

- 1. Select disk\_out\_ref.ex2 in the pipeline browser.
- 2. From the quick launch, select Extract Surface.
- 3. Apply



## **Apply ExtractSurface, Clip**

- 1. Select disk\_out\_ref.ex2 in the pipeline browser.
- 2. From the quick launch, select Extract Surface.
- 3. Apply
- 4. Select ...









## **Multiview - Disk colored by Temp**

- 1. Select disk\_out\_ref.ex2 in the pipeline browser.
- 2. Add Clip filter.



3. Uncheck Show Plane

- 4. Apply
- 5. Hide Clip2



- 1. Split the view horizontally. III
- 2. Make Clip2 visible.
- 3. Color surface by Temp.



- 1. Split the view horizontally.
- 2. Make Clip2 visible.
- 3. Color surface by Temp.
- 4. Right-click view, Link Camera...
- 5. Click other view.



- 1. Split the view horizontally. III
- 2. Make Clip1 visible.
- 3. Color surface by Temp.
- 4. Right-click view, Link Camera...
- 5. Click other view.
- 6. Click and zoom in a bit.



## **Modifying Views**









### **Saving a DataSet**



- Save Data saves the dataset output of the current active
  - pipeline object
- File -> Save Data
- Options to configure writer





#### **Saving a Screenshot**



- Saves an image from the view
- File -> Save Screenshot
- Set Resolution and Quality





#### **Saving the State**



- Save the current state of the application
- File -> Save State
- Include Pipeline, Views, Layouts, all properties...
- PVSM State file : Robust, based on proxy state
  - Descriptive Approach
  - Enable user to modify file path
  - Use with File -> Load State
  - Use for sharing with colleagues
- Python State file: User-friendly, based on UI actions
  - Just a python script
  - Use python shell or in pvpython



53

#### **Reset ParaView**

## Edit → Reset Session





#### **Streamlines**

- 1. Open disk\_out\_ref.ex2. Load all variables.
- 2. Add Stream Tracer. Papply



3. Change Seed Type to Point Source.



- 4. Uncheck Show Sphere. Show Sphere



#### **Streamlines**

Open disk\_out\_ref.ex2. Load all variables.



- 2. Add Stream Tracer.
- 3. Change Seed Type to Point Source.
- 4. Uncheck Show Sphere. ☑ Show Sphere
- 5. PApply
- 6. From the quick launch, select Tube
- 7. Papply



## **Adding Glyphs**

- Select StreamTracer1.
- 2. Add Glyph filter.
- 3. Change Glyph Type to Cone.
- 4. Change Orientation Array and Scale Array to V.
- 5. Change Vector Scale Mode to Scale By Magnitude.
- 6. Click reset mext to Scale Factor.
- 7. Papply
- 8. Color by Temp.



#### **Reset ParaView**

## Edit → Reset Session





## **Volume Rendering**

Open disk\_out\_ref.ex2. Load all variables.



- 2. Change variable viewed to Temp.
- 3. Change representation to Volume.
- 4. In the Are you Sure dialog box, click Yes.



#### **Transfer Function Editor**







## **Modify Transfer Function**

- Select disk\_out\_ref.ex2.
- 2. Click Edit Color Map .
- 3. Click Choose preset 🤂 .
- 4. Select Black-Body Radiation. Apply. Close.
- 5. Try adding and changing control points.



#### **Reset ParaView**

## Edit → Reset Session





## **Query-Based and Brush Selection**

1. Open can.ex2. Select all variables.



- 2. Go to last time step.
- 3. Edit → Find Data.
- 4. Top combo box: Find Cells.
- 5. Next row: EQPS, is  $\geq$  =, and 1.5.
- 6. Click Run Selection Query.











# Visualizing Large Models



 Duplicate pipelines run independently on different partitions of data.





- Many operations will work regardless.
  - Example: Clipping.





- Many operations will work regardless.
  - Example: Clipping





- Many operations will work regardless.
  - Example: Clipping









## ParaView's Running Modes



DS = data server

RS = render server



#### Start the ParaView Server from the Client

#### Prerequisites:

- Able to use ssh to connect to the server machine
- Have a project allocation
- Check paraview versions on server: see <u>documentation</u>
- Use client with the same major.minor version (5.13)



## File > Connect > Fetch Servers





### Connect Unix/Mac

Mac Os: Install Xquartz

| Xterm executable            | /usr/bin/xterm       | <b></b>   |
|-----------------------------|----------------------|-----------|
| SSH executable              | ssh                  |           |
| Remote machine              | polaris.alcf.anl.gov |           |
| Username                    | danlipsa             |           |
| ParaView version            | 5.13.1-EGL           | >         |
| Client port                 | 11111                | \$        |
| Server port                 | 44995                | <b>‡</b>  |
| Number of nodes to reserve  | 2                    | <b>‡</b>  |
| Number of ranks per node    | 1                    | <b>\$</b> |
| Number of minutes to reserv | re 20                | <b>‡</b>  |
| Account                     | ATPESC_Instructors   |           |
| Queue                       | debug                |           |
| File Systems                | home:eagle:grand     |           |
| Job name                    | paraview server      |           |



#### **Connect Windows**







Windows: Install PuTTY

#### **Advanced Data Parallel Pipelines**

- Some operations will have problems.
  - Example: External Faces





# **Advanced Data Parallel Pipelines**

Ghost cells can solve most of these problems.





#### **Balanced Partitioning + Ghost Cells**

- Automatic when reading structured data.
- For unstructured data:
  - Ghost Cells: creates ghost cells (if data is partitioned on disk)
  - D3: also creates a balanced partition.

Extract Surface without ghost cells







Extract Surface after D3

# Topics for future exploration



#### **Python Scripting**

- Tools > Start Trace
- Build visualization pipeline with UI
- Tools > End Trace
- Save Python script





#### **Common Data Analysis Filters**



**Extract Selection** 



Plot Global Variables Over Time



Plot Selection Over Time



Plot Over Line



**Probe Location** 



#### **User Defined Filters**



Calculator



Python Calculator (numpy)



Programmable Filter

#### Python Algorithms

**Plugins** 



#### **Animation**

- Temporal data
- Fly over your data
- Animate filter parameters





#### **Advanced Rendering**

- Physically BasedRendering (PBR)
- Ray Tracing (Intel OSPRay, Nvidia OptiX)





# **Questions**





#### paraview\_server.e5691594

Permission denied (publickey,keyboard-interactive,hostbased).

- generate keys with the ssh-keygen command
- navigate to ~/.ssh
- cp id\_rsa.pub authorized\_keys

