FASTMath Unstructured Mesh Technologies

E. Boman', V. Dobrev?, D.A. Ibanez!, K.E. Jansen3, T. KoleV?,
J.Merson4, O. Sahni4, M.S. Shephard?4, C.W. Smith*, M. Stowell?

Sandia National Laboratories
2l awrence Livermore National Laboratory
3University of Colorado
4‘Rensselaer Polytechnic Institute

) Netora N R E L
ona »‘-ﬁ
Laboratories
THE UNIVERSITY OF

B USCU f
@ Rensselaer @) SMU 7 Soucrn Catoenia 8 [ENNESSEE

Argon ne ™=

rrerrer u
l - Massachusetts
Institute of
Technology

SUSTAINABLE HORIZONS INSTITUTE

Unstructured Mesh Methods

-
Unstructured mesh — a spatial domain discretization composed

of topological entities with general connectivity and shape

Advantages

Automatic mesh generation for
any level of geometric complexity.

Can provide the highest accuracy
on a per degree of freedom basis

General mesh anisotropy possible

Meshes can easily be adaptively
modified.

Given a complete geometry, with
analysis attributes defined on that
model, the entire simulation
workflow can be automated.

Disadvantages

More complex data structures and
increased program complexity,
particularly in parallel.

Requires careful mesh quality
control (level of control required is
a function of the unstructured
mesh analysis code).

Poorly shaped elements increase
condition number of global system
which makes iterative matrix
solves slower and harder.

Non-tensor product elements not
as computationally efficient.

36

Unstructured Mesh Methods

-
Goal of FASTMath unstructured mesh developments include:

Provide unstructured mesh components that are easily used
by application code developers to extend their simulation
capabillities.

Ensure those components execute on exascale computing
systems and support performant exascale application codes.

Develop components to operate through multi-level APIs that
iIncrease interoperability and ease of integration.

Address technical gaps by developing tools that address
needs and/or eliminate/minimize disadvantages of
unstructured meshes.

Work with DOE application developers on integration of these
components into their codes.

=== = Develop unstructured mesh version of applicationsé

MATH 7

FASTMath Unstructured Mesh Development Areas

|
A

Unstructured Mesh Analysis Codes — Support application’s
PDE solution needs — MFEM library is a key example.

Performant Mesh Adaptation — Parallel mesh adaptation to
Integrate into analysis codes to ensure solution accuracy.

Dynamic Load Balancing and Task Management —
Technologies to ensure load balance and effectively
execute by optimal task placement.

Unstructured Mesh for Particle Codes — Tools to support
particle operations on unstructured meshes.

Code Coupling Tools — Parallel geo./mesh/field coupling

In Situ Vis and Data Analytics — Tools to gain insight as
simulations execute.

Unstructured Mesh ML and UQ — ML for data reduction,

=== gdaptive mesh UQ.

MATH 38

FASTMath Unstructured Mesh Tools and Components

" FE Analysis codes:
* MFEM (https://mfem.org/): High-order exascale finite element library.
* LGR (https://github.com/SNLComputation/lgrtk): Tool Kit for Lagrangian
grid reconnection.
* PHASTA (https://github.com/phasta/phasta): Stabilized finite element
fluid dynamics code.
® Load balancing, task placement:
* Jet (hitps://github.com/sandialabs/Jet-Partitioner/): Parallel graph
partitioner that runs on most CPU and GPU systems.
* Zoltan (https://github.com/sandialabs/Zoltan): Dynamic load balancing
library.
* Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2):
A package of combinatorial algorithms for scientific computing.

* PUMI-Balance (http://scorec.qgithub.io/EnGPar/): A hyper-graph based
parallel unstructured mesh dynamic partition improvement component

A
—

S
MATH 39

https://mfem.org/
https://github.com/SNLComputation/lgrtk
https://github.com/phasta/phasta
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Zoltan
https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2
http://scorec.github.io/EnGPar/

Parallel Unstructured Mesh Infrastructure
T,
® Unstructured Mesh Infrastructure:

* PUMI-General-Adapt (hitps://github.com/SCOREC/core): CPU based
scalable conforming mesh adaptation based on local mesh modification.

* PUMI-Portable-Adapt (https:/github.com/SCOREC/omega_h):
Perfromant (CPUs and GPUs currently) infrastructure supporting scalable
conforming mesh adaptation based on local mesh modification.

* PUMI-Pic (https://github.com/SCOREC/pumi-pic): Performance portable

(CPUs and GPUs) with scalable mesh and particle data structures and
operators to support particle-in-cell simulation codes.

* PUMI-Tally (to be released soon): Performance portable (CPUs and
GPUs) infrastructure with scalable mesh and particle data structures and
operators to support Monte Carlo neutral particle transport.

* PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based
parallel unstructured mesh dynamic partition improvement component.
" General code coupling:

* PCMS (https://github.com/SCOREC/pcms): Code coupling library for

_“%se. exascale applications (from file based to parallel in memory). 40

https://github.com/SCOREC/core
https://github.com/SCOREC/omega_h
https://github.com/SCOREC/pumi-pic
https://github.com/SCOREC/pumi-pic
https://github.com/SCOREC/pumi-pic
http://scorec.github.io/EnGPar/
https://github.com/SCOREC/pcms

Parallel Unstructured Mesh Infrastructure

Support unstructured mesh interactions on exascale systems

* Mesh hierarchy to support interrogation

and modification of meshes. inter-process part
: : : .. boundary _
- Maintains linkage to original geometry. Proc | Procj
« Conforming mesh adaptation.
* Inter-process communication.

« Supports field operations.

/| intra-process part
boundary

Geomeric model Partition model Distributed mesh

A
—

>N

MATH 41

Mesh Generation and Control
e

Mesh Generation:

= Automatically mesh complex domains — should work
directly from CAD, image data, etc.

= Use tools like Gmsh, Simmetrix, etc. {
Mesh control:
= Use a posteriori information to improve mesh.
= Curved geometry and curved mesh entities.

= Support full range of mesh modifications —
vertex motion, mesh entity curving, cavity based
refinement and coarsening, etc. anisotropic adaptation.

= Control element shapes as needed by the various
discretization methods for maintaining accuracy and efficiency.

Parallel execution of all functions is critical on large meshes.

S, .
MATH 42

General Mesh Modification for Mesh Adaptation

= Driven by an anisotropic mesh size field that can be set by any

combination of criteria.

= Employ a set of mesh modification operations to alter the mesh

Into one that matches the given mesh size field

= Advantages:

» Supports general anisotropic meshes.
« Can obtain level of accuracy desired.
« Can deal with any level of geometric domain complexity

 Solution transfer can be applied incrementally - provides
more control to satisfy conservation constraints.

09 -

Edge split face split

L&

Edge collapse

MATH

Improved
geometry
approximation

&~

Double split collapse to remove sliver

43

Mesh Adaptation Capabilities

Parallel
& adaptation of
& " . mesh with > 90
& . | billion elements

Adaptation of
curved high-
order elements

Mixed element

Automatic topology
detection and boundary layer
isolation of mesh adaptation

solution features

44

Mesh Adaptation of Evolving Geometry Problems
.

Many applications have geometry that evolves as a function of the results:
Effective adaptive loops combine mesh motion and mesh modification.

Adaptive loop:

1.
2.

3.

Initialize analysis case, generate initial mesh, start time stepping loop.
Perform time steps employing mesh motion - monitor element quality

and discretization errors.
When element quality is not satisfactory or discretization errors too
large — set mesh size field and perform mesh modification.

. Return to step 2.

Load Balancing, Dynamic Load balancing
-
= Purpose: Balance or rebalance computational load while

controlling communications.
- Equal “work load” with minimum inter-process communications.

= FASTMath load balancing tools:

 Jet library is a multilevel graph partitioner
that runs on a GPU (distributed mesh
version under development).

« Zoltan/Zoltan2 libraries

- HYPERGRAPH.

8000

D
o
o

Number of Rgn

provide multiple dynamic » *Mz* g
partitioners with general control “e e
” : . 2000'¢ f** B **ﬁyﬁg
of partition objects and weights. et it T A
« PUMI-Balance diffusive multi-criteria | | |
partition improvement. - x1136‘1‘072
A~

MATH 46

Zoltan/Zoltan2 Toolkits: Partitioners

-
Suite of partitioners supports a wide range of applications;
no single partitioner is best for all applications.

Geometric
* * «| Recursive Coordinate Bisection zil
0 . ° . . R) v
. - Recursive Inertial Bisection =
- ol " *| Multi-Jagged Multi-section \
5 B Space Filling Curves =2

Topology-based
- PHG Graph Partitioning

Interface to ParMETIS (U. Minnesota)

Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning
Interface to PaToH (Ohio St.)

MATH 47

A New Graph Partitioner for GPU: Jet

= Multilevel graph partitioner
on GPU.

- Uses new label propagation
refinement algorithm.

= Results (blue bars) slightly
better than Metis/Parametis,

but significant speedup due
to GPU execution.

= Best partitions for 98% of
the test graphs from finite
element meshes.

= Currently single GPU (up to ~1B edges)
: Multi GPU - distributed memory version is under development.

S
FASTMATH 48

PUMI-Balance Reduces Hyper-Graph Imbalance

" Hyper-graph supports multiple . initial —0—
. o EnGPar —&—
dependencies (edges) between g | Tolerance
application work/data items (vertices). Eé s
" Application defined graph vertices 3 *
O
and edges. > Y N -
. . . 1
“ Diffusion movement of work from heavily = = .
: rocesses(Ki)
Ioaded partS to |Ight|y Ioaded partS' Particle Imbalance 24 Processes, 250 Million Ptcls
® In 8 seconds, PUMI-Balance reduceda ¢ [——
53% vix imbalance to 6%, at a costof £
5% elm imbalance, and edge cut i o Lo e ——
increase by 1% on a 1.3B element mesh. ;|
" Applied to PIC calculations for particle I
balance — 20% reduction in run time. Application of EnGPar particle
L dynamic load balancing in a GITRm
' ”‘_ﬁ:l impurity transport simulation ¢

Creation of Parallel Adaptive Loops

-
Parallel data and services used to develop adaptive simulations:

= Geometric model topology for domain linkage.

= Mesh topology — it must be distributed.

= Simulation fields distributed over geometric model and mesh.
= Partition control.
= Dynamic load

Physics and Model Parameters Input Domain Definition with Attributes

non-manifold

pltransfer constraints

balanC|ng requ”.ed . it Gereration model construction
. Solution . and/or Adaptation geometric
at multiple steps. Transfer nterrogation
h size
[} . . PDE’ d meshes mes
u API S to Ilnk to discrséfi?ation and ;
fields Attributed eI fes

Parallel Data & Services Domain

¢ CA D/Geometry metnoc mesh size

- Mesh generation | el > e
) ndicator ¢ Mesh Topology/Shape
and adaptatlon mesh Simulation Fields —

. . W|th :
* Error estimation. gwwes - Postprocessing/
. Mesh-Based Visualization
- Field transfer. el /
caIcuIated fields :
b,

S
FASTMATH 50

Definition

geometry updates

—>

mesh with fields

A

Parallel Adaptive Simulation Workflows

*In memory adaptive loops support effective

O T

data movement. AL
= In-memory adaptive loops for: 8 _ A e
- MFEM - High order w-_— o a%V,awcraﬂ tails

FE framework
« PHASTA — FE for NS
« FUN3D -FV CFD

* Proteus — multiphase FE

« Albany — FE framework O .
. AC E3 P B H Ig h O rd e r F E o \‘:««.u.--«::‘mm-umcc-aq+—«o|||n|,t\\~,..
e I eCt rO m ag netl CS ILC cryomodule of 8 Superconducting RF cavities

 M3D-C1 - FE based MHD
* Nektar++ — High order FE flow

A
—

>N

MATH 51‘“\

Fields in beam frame moving at speed of light

Application interactions — Accelerator EM

-
Omega3P Electro Magnetic Solver (second-order curved meshes)

Final mesh with
380K elements

Initial mesh with
126K elements

-

efield_Magnitude

000 750 150 225 300
L

efield_Magnitude

000 750 150 225 30.0
I

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with
~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)
. = shows the first eigenmode of the electric field on the final (adapted) mesh.

FASTMATH 52

Application interactions — Land Ice

= FELIX, a component of the Albany
framework is the analysis code.

 PUMI-Perfromant-Adapt parallel & ..o
mesh adaptation is integrated % :
with Albany to do.

= Estimate error.
= Adapt the mesh.

= |ce sheet mesh is modified to
minimize degrees of freedom.

= Field of interest is the ice sheet
velocity.

q..h

-
FASTMATH 53

Application interactions — RF Fusion

= Accurate RF simulations require: |
* Detailed antenna CAD geometry. \.
« CAD geometry defeaturing.

 Extracted physics curves from
GEQDSK equilibrium file.

 Analysis geometry combines
CAD, and physics geometry.

» 3D meshes for accurate FE antenna array
calculations in MFEM.

 Projection based error
estimator.

« Conforming mesh
adaptation with PUMI.

S
FASTMATH

Initial Mesh Final Adapted Mesh

54

Supporting Unstructured Mesh for

Particle-in-Cell Calculations

PUMI-Pic data structures are mesh centric:

Mesh is distributed as needed by the
application in terms of PICparts.

Mesh can be graded and anisotropic.
Particle data associated with elements.

Operations take advantage of
distributed mesh topology.

"'."‘ .v..i‘me‘&r,kl‘
Mesh relation to geometry used to speed !/ By

calculation for near surface physics.
Mesh distributed in PICparts:
Start with a partition of mesh into a
set of “core parts”.
A PICpart is defined by a “core part”
and sufficient buffer to keep particles
on process for one or more pushes.

Particle Push

(update x, v)

Field to Particle Charge Deposition
(mesh — particle (particle — mesh)
BRI Zas T

3 %. N
— Field solve on o~/
_ mesh Y,

k

Upper: PICpart more for
random particle motion.
Lower: Two PICparts for
field following particles

P N AN
gﬂz‘%@ﬁﬁ i
- PO,

my‘,mi‘bt‘b
Vi, Ly 45
SOPATAN Ly AR
NS
ﬂ*i
Iy
KO
: Pl
55 | Wi SHSPOAL

Mesh Data Structure for Heterogeneous Systems

" Mesh topology/adaptation tool —
PUMI-Portable-Adapt:

Conforming mesh adaptation (coarsening past
initial mesh, refinement, swap).

Manycore and GPU parallelism using Kokkos.

Distributed mesh via mesh partitions with MPI
communications. Adaptation following

Support for mesh-based fields. rotating Tow el
Curved mesh adaptation. N ,
Efficient field storage. | adj vertex [O[1[312[3]1

Kokkos implementation on 4 teimngle [TOTTTITOT]
a riangle |
latest NVIDIA, AMD and TS & ‘f’r
offset [0[1[3[4]6]
vertex 01 2 3

Intel GPUs.
Mesh entity adjacency arrays.

Serial and RIB partitioned mesh of RF
v . antenna and vessel model.

MATH 56

PUMI-Pic Particle Data Structures

-
" Layout of particles in memory is critical to performance:

Optimizes push (sort/rebuild), scatter, and gather operations.
Associate particles with elements for large per element particle cases.
Support changes in the number of particles per element.

Evenly distributes work under a range of particle distributions

(e.g. uniform, Gaussian, exponential, etc.).

Stores a lot of particles per GPU — low overhead.

" Particle data structure interface and implementation:

APl abstracts implementation for PIC code developers.
CSR, Sell-C-o0, CabanaM, DPS. A E=:

Performance is a function of c{.'$
particle distribution. ~:{ .-

Cabana AoSoA w/a CSR index of _ .-4[E
elements-to-particles are promising. =

DPS particle structure for low c ¢ c
particle density applications. Left to Right: CSR, SCS with vertical slicing

—— (yellow boxes), CabanaM (red boxes are

. :
MATH SOAs). C is a team of threads. 57

PIC Operations Supported by PUMI-Pic

» Total Search Timings on Sampled Compute Ranks

Particle push. . -

Adjacency based search é\%{;
— Faster than grid based search. 5 NN &

Element-to-particle association update.

Particle Migration. R

Adjacency search XGC1 grid search

Particle path visualization.
Mesh partitioning w/buffer regions.
Mesh field association.

Fast construction of elements within given distance of mesh
faces on model surface.

Poisson field solve using PETSc DMPlex on GPUs.

L 2020 PUMIPic Paper: https://www.scorec.rpi.edu/REPORTS/2020-2.pdf
MATH 58

PUMI-Pic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMI-Pic:
B All operations on GPUs — push, gather/scatter, etc.
Testing of PUMI-Pic for use in XGC like push:
B 2M elements, 1M vertices, 2 to 128 poloidal planes.
B Pseudo push and particle-to-mesh gyro scatter.

B Tested on up to 24,576 GPUs with 1.1 trillion
particles, for 100 iterations: push, adjacency.

B PUMI-Pic weak scaling up to 24,576 GPUs (4096
nodes) with 48 million particles per GPU.

Time cost breakdown

Total time comparison: ’ R —_———
B Ran on NERSC’s Perimutter.

G4 milion lons per GPU; | | W XGCm
B XGCm 3 times faster than XGC for adiabatic

electron case, 21% faster for
kinetic electron case.

=
o

=]
L

(=2
L

Time cost (seconds)
-y

N
L

S
—

L~ .
FASTMATH

PUMIPic based GITRm Impurity Transport Code
-
" Incorporates impurity transport capabilities of GITR. [FEaaE
= 3D mesh for cases including divertors, tiles, limiters,
specific diagnostics/probes efc.

= Status:

* Physics equivalent to GITR.
Efficient Multi-species capabilities.
Anisotropy mesh for accurate field transfer.
Field transfer from SOLPS to 3D mesh.

Non-uniform particle distribution
— evolves quickly in time.

Load balancing particles via PUMI-Balance.
* Distance to boundary for sheath E field.
* Post-processing on 3D unstructured mesh.

S
—

S
FASTMATH

PUMI-Tally - GPU Acceleration of Monte Carlo Tallies

I Active Batch (PUMI GPU) BER Active Batch (Current) @ Active Batch (PUMI OpenMP)
. PUMIPic Copy (PUMI GPU) mmm KDTree (Current) #4%% PUMIPic Copy (PUMI OpenMP)
u B u I IdS On P U M I- P I C CO re to Su p po rt Emm Misc. (PUMI GPU) B Misc. (Current) @ Misc. (PUMI OpenMP)
mesh-based tallies.

500K Element Mesh

= Implements track length tallies. o
* Sum weighted length of moves. o
= Batch the particles for data parallel. ?OOO
= Tested on both GPU and CPU'’s. o
= Compared to OpenMC implementation 10000_ | s L _I_
(does not batch particles): UIOK 200K a00K 80Ok oM oW
* 19.7 times faster on and NVIDIA A100. Computation Time
* 9.2 times faster using OpenMP on two T
AMD EPYC 7763 CPUs. o] - 3
* Field transfer from SOLPS to 3D mesh. 3’ |
* GPU version demonstrated a 6.7 times §
improvement in energy consumption. ® | [g @ |
-, - " Ene;\;y consurPrU:;‘)tioC; "

MATH 61

Parallel Coupler for Multimodel Simulations (PCMS)

Goals of PCMS:

= Keep applications clean. Only modification to application
codes is access its data structures.

" General structures and functions for coupling operations.

" Make effective use of the massively parallel,
heterogeneous computing systems.

Multiscale Simulation

Specification Data in
App A

EFFIS 2,

App A Parameters and App B Parameters and Data in
ipti P App B
description of structures description of structures .
\ 4 ormat

\ 4
Unmodifie | 55] ArpAdataf=] 2 ¢ s g N%E U dif
%égg 8§ng0up|er‘ég<\c 8522 nmodiiie
dAPPA €25 o253 P53 55:] dAppB
Routines T App B < § ° 3 4 Routines

In-Memory Coupling of Fusion Codes

Each application solves its model(s) over a portion of the domain.

The domains overlap: The overlap can
include three subregions.

The blended region in which the fields are
coupled based on a field blending strategy.

A buffer region for Application A (edge) in
which the “right” end boundary conditions
are determined by Application B (core)
and/or source terms added.

A buffer region for Application B (core) in
which the “left” end boundary conditions are
determined by Application A (edge) and/o
source terms added.

Red curves are flux
curves used to

define region
_ boundaries

= ’

i
|
%\ |
W\ 9
\\
1/ o’ ” - ~) .
{ 'A’., " 7 - T
| Lal ry
| . o 4 T W
G & /8 G
-) F A 3 P .'#
g
» ¢ \’,
3

! ‘T
QAppA / ?4nded Atr)) f? AppA

er I given by AppB

T, : :
ppB | AppB :
given by AppA buffer Blended :

“Rendezvous” Algorithm to Control Coupler Domain Partition
-
Challenge:

= The coupled applications need to control their domain partitioning
to meet their specific needs.

Approach:

= Coupling applications A and B, each of which has it own partitions.

= Rendezvous algorithm uses a third partition to coordinate data transfers
between the applications.

= “Rendezvous” algorithm “enables scalable algorithms which are most
useful when processors neither know which other processors to send data
to, nor which other processors will be sending data to them”.

g \

EET

Fig. 4. Thermal (left) and stress (right) grids. The colored ovals are clumps of grid cells the same processor owns in the two grids.

5 gll!

65

Example Field Transfer with RBF on LCPP

-2.0e+18 0 2.0e+18

»2.0e+18_ 0 é()eﬂ& [‘ - i
XGC mesh with 611,359 idensity loaded as the idensity after 10 MLS-RBF idensity error field after 10
elements and 306, 002 exact/initial field in the interpolation operation: cell to MLS-RBF interpolation
nodes coupler app node and node to cell in each operation: cell to node and
iteration. p = 0.007 node to cell in each iteration.
p =0.007

error = log,olf; — gil

L~ .
FASTMATH

In Situ Machine Learning During Simulations

SmartRedis SmartSim Database SmartRedis
Client Client

training data -’
metadata rank 0

Simulation data too large to save
=> need Online Machine Learning.

Dynamic PDE data stream provides more
and better training data.

Training using Smartsim/SmartRedis.

Clustered and co-located deployment of I
components utilizing CPU and/or GPU. T

Scalable: negligible overhead on simulation e

[— T
{raining data Distributed

ML Training
training data i

User
[nteractive

Python Script

Data parallel training with Horovod NN
and PyTorch DDP.) e
No dependency on analysis code/ARCH Online training with user

i int ti ipt
(tested Wlth PHASTA (IegaCY) and R.Balinle:r‘tZT.a, cI:aneit?JcII;IrF;mework
libCEED (ECP) on Aurora and Polaris). for Coupling Machine Learning

with Application to CFD,
https://doi.org/10.48550/
. arXiv.2306.12900

MATH 66

Mesh Related Al/ML Developments

Robust feature detection/processing:

= Physics-based and Al/ML sensors: neural network
processes fragmented/noisy data.

= Application: anisotropic diffusion transport in

fusion devices, ground line dynamics in ice sheets. - %“*»,‘5 L
= Y
= Physics informed material models
" Machine learned constitutive models can reduce .
runtime cost of upscaling FEM simulations by § ol
orders of magnitude while retaining 80% of]
accuracy. o 04*@;5:&5'9_

Comparing ML to Multiscale

= ML Agents for automated hex meshing

= Reinforced learning agent decomposes
CAD modes into regions suitable for
hexahedral mesh generation.

A
—

S, .
FASTMATH 67

Run the latest Simmetrix and PUMI software on RPI systems
.

We will help you run the latest Simmetrix and PUMI model
preparation, mesh generation, and adaptation tools on your
problem using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via
email at smithc11@rpi.edu for more information.

| |
st l_, i iE
{ !

e 15 N5 00

68

mailto:smithc11@rpi.edu

Finite elements are a good foundation for large-scale
simulations on current and future architectures

= Backed by well-developed theory
= Naturally support unstructured and curvilinear grids.

= Finite elements naturally connect different physics

[H(grad)]l) H(curl) AN H (div) BN 8

“nodes” “edges” “faces” “elems” ;
High-order High-order High-order High-order 8" order Lagrangian simulation
kinematics MHD rad. diffusion thermodynamics of shock triple-point interaction

= High-order finite elements on high-order meshes
* increased accuracy for smooth problems
* sub-element modeling for problems with shocks
* bridge unstructured /structured grids
* bridge sparse/dense linear algebra

« HPC utilization, FLOPs/bytes increase with the order

- [[' L] s
Need new (interesting!) R&D for full benefits Core-Edge tokamak EM wave

* meshing, discretizations, solvers, AMR, UQ, visualization, ... propagation

ATPESC 2025 1 EReTMA

Modular Finite Element Methods (MFEM)

Flexible discretizations on unstructured grids

® Triangular, quadrilateral, tetrahedral, hexahedral, prism, pyramid; volume,
surface and topologically periodic meshes

= Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, ...
® Local conforming and non-conforming AMR, mesh optimization

® Hybridization and static condensation

High-order methods and scalability

= Arbitrary-order H1, H(curl), H(div)- and L2 elements mfem.org

= Arbitrary order curvilinear meshes (v4.8, April 2025)

® MPI scalable to millions of cores + GPU accelerated

* Enables development from laptops to exascale machines. FlEE mg C__) radiuss

Solvers and preconditioners =\
= Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, Vislt, ... E\(C CE

EXASCALE DISCRETIZATIONS

= AMG solvers for full de Rham complex on CPU+GPU, geometric MG
® Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

—
FASTMATH Rf fC|DAC

Open-source software

xSDK
= Open-source (GitHub) with 114 contributors, 50 clones /day ES @

= Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...
-~ NUMFOCUS (-, open
= 75+ exqmple Codes & minid pps: m_f_e_m_'gr_g_'Lngm_p_l_e_s OPEN CODE = BETTER SCIENCE

ATPESC 2025 > ER=T AR

http://mfem.org/examples

Example 1 — Laplace equation

= Mesh = Linear solve

63 // 2. Read the mesh from the given mesh file. We can handle triangular, 130 | #ifndef MFEM_USE_SUITESPARSE
64 i quadrilateral, tetrahedral, hexahedral, surface and volume meshes with 131 // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
65 I the same code. 132 /I solve the system Ax=b with PCG.
&6 Mesh *mesh; 133 GSSmoother M(A);
87 ifstream imesh(mesh_file); 134 PCG(A, M, *b, x, 1, 200, le-12, 0.0);
68 if {limesh) 135 | #else
&9 { 136 // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
70 cerr << "\nCan not open mesh file: " << mesh file << "\n' << endl; 137 UMFPackSolver umf solver;
71 return 23 - 138 umf_solver.Control [UMFPACK_ORDERING) = UMFPACK_ORDERING_METIS;
=3 } 139 umf_solver.SetOperatcor(i);
73 mesh = new Mesh({imesh, 1, 1); 140 umf_solver.Mult({*b, x);
74 imesh.close(); 141 | #endif
75 int dim = mesh->Dimension(};
76 . . .
77 // 3. Refine the mesh to increase the resolution. In this example we do [] V I t
78 I ‘ref_levels' of uniform refinement. We choose 'ref_levels' to be the Isua Iza Ion
79 / largest number that gives a final mesh with no more than 50,000
80 1 elements.
g; { int ref levels = 152 // 10. Send the sclution by socket to a GLVis server.
P - . 5 153 if (visualization)
B3 {int)floor(log(50000./mesh->GetNE())/log(2.)/dim); 152 {
84 for (int 1 = 0; 1 < ref_levels; l4+) 156 char vishost[] = "localhost';
BS mesh->UniformRefinement () ; : ; ’
26 } 156 int wvisport = 19916; i
= 157 socketstream scl_sock(vishost, visport);
158 sol_sock.precision(8);
. . izg } sol_sock << "solution\n" << #mesh << x << flush;
= Finite element space
B8 // 4. Define a finite element space on the mesh. Here we use continuous 8 00 |\ GLVis [scalar data]
B9 7 Lagrange finite elements of the specified order. If order < 1, we
90 7 instead use an isoparametric/iscgeometric space.
91 FiniteElementCollection *fec;
92 if (order > 0)
93 fec = new Hl_FECollection{order, dim);
94 else if (mesh->GetNodes())
95 fec = mesh->GetNodes()->0OwnFEC();
96 else
97 fec = new Hl_FECollectien{order = 1, dim);
98 FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99 cout << "Number of unknowns: " << fespace->CetVSize() << endl;
o, 0 . oy
= Initial guess, linear/bilinear forms
101 // 5. Set up the linear form b(.) which corresponds to the right-hand side of
102 I the FEM linear system, which in this case is (1,phi_ i) where phi_i are
103 I the basis functions in the finite element fespace.
104 LinearForm *b = new LinearForm(fespace);
105 ConstantCoefficient one(l.0);
106 b->AddDomainIntegrator (new DomainLFIntegrator{one));
107 b->Assemble();
108
109 // 6. Define the solution vector x as a finite element grid function
110 i/ corresponding to fespace. Initialize x with initial guess of zero,
111 I’ which satisfies the boundary conditions.
112 GridFunction x(fespace);
113 x = 0.0;
114
115 // 7. Bet up the bilinear form a{.,.) on the finite element space
116 i/ corresponding to the Laplacian operator -Delta, by adding the Diffusion
117 i domain integrator and imposing homogeneous Dirichlet boundary v
118 77 conditions. The boundary conditions are implemented by marking all the
119 i boundary attributes from the mesh as essential (Dirichlet). Rfter
120 77 assembly and finalizing we extract the corresponding sparse matrix A. - k f h
121 BilinearForm *a = new BilinearForm(fespace); l I I & H1 d
122 a=->AddDomainIntegrator (new Diffusionlnfegrator{anej (H WO r S O r a n y eS a ny O r e r
123 a->Assemble();
124 Array<int> ess_bdr(mesh->bdr_attributes.Max{));
125 ess_bdr = 1; b old 0 h I d d .
126 a=>EliminateEssentialBC(ess_bdr, x, *b);
(esa bds, x, *b); = Dbuilas without external dependencies
128 const SparseMatrix &A = a->SpMat();

ATPESC 2025 7 BT

Example 1 — Laplace equation

= Mesh

63
64
65
66
67
68
69
70
71
72
73
T4
75
76
77
78
79
BO
Bl
B2
B3
B4
85
B6

ATPESC 2025

ff 2. Read the mesh from the given mesh file. We can handle triangular,

fr quadrilateral, tetrahedral, hexahedral, surface and wvolume meshes with

fr the same code.

Mesh *mesh;

ifstream imesh(mesh_ file);

if (!imesh)

{
cerr << "\nCan not open mesh file: " << mesh file << "\n' << endl;
return 2

}

mesh = new Mesh(imesh, 1, 1);

imesh.close();

int dim = mesh->Dimension();

ff 3. Refine the mesh to increase the resolution. In this example we do

i 'ref levels' of uniform refinement. We choose 'ref levels' to be the
L largest number that gives a final mesh with no more than 50,000

fr elements.

{

int ref levels =
{int)floor{log{50000./mesh->GetKRE())/log(2.)/dim);

for (int 1 = 0; 1 < ref levels; 1++)
mesh->UniformRefinement () ;

-_——
4 FASTMATH

Example 1 — Laplace equation

= Finite element space

ATPESC 2025

// 4. Define a finite element space cn the mesh. Here we use continuous
Fi Lagrange finite elements of the specified order. If order < 1, we
ri instead use an isoparametric/iscgeometric space.
FiniteElementCollection *fec:
if {order > 0)

fec = new Hl FECollection(order, dim);
glse if [(mesh->GetNodes())

fec = mesh-=>*CetWodes()=>0wnFEC{);
else

fec = new Hl FECollection(order = 1, dim);
FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec):;
cout << "Number of unknowns: " << fespace->GetVSize() << endl;

L L
———

-
5 FASTMATH

Example 1 — Laplace equation

= [|nitial guess, linear/bilinear forms

101 // 5. Set up the linear form b{.) which corresponds toc the right-hand side of
102 /e the FEM linear system, which in this case is (l1l,phi i) where phi i are
103 £ the basis functionzs in the finite element fespace.

104 LinearForm *b = new LinearForm(fespace);

105 ConstantCoefficient one{l.0);

106 b->AddDomainIntegrator(new DomainL.FIntegrator{one)):

107 b->Assemble() :

108

109 // 6. Define the solution wvector x as a finite element grid function

110 /e corresponding to fespace. Initialize x with initial guess of zero,

111 £ which satisfies the boundary conditions.

112 GridFunction x(fespace);

113 x = 0.0;

114

115 /f 7. Set up the bilinear form a(.,.) on the finite element space

116 /o corresponding to the Laplacian operator -Delta, by adding the Diffusion
117 /e domain integrator and imposing homogeneous Dirichlet boundary

118 /e conditions. The boundary conditions are implemented by marking all the
119 £ boundary attributes from the mesh as essential (Dirichlet). After

120 Iy assembly and finalizing we extract the corresponding sparse matrix A.
121 BilinearForm *a = new BilinearForm(fespace):;

122 a->*AddDomainIntegrator(new DiffusionIntegrator{one)):

123 a=->Assemble():

124 Array<int> ess_bdr(mesh->bdr attributes.Max());

125 ess bdr = 1;

126 a->EliminateEssentialBC({ess bdr, x, *b):

127 a->Finalize(}):

128 const SparseMatrix EA = a->SpMat():

L L

ATPESC 2025 6 FASI'M?\TI‘A

Example 1 — Laplace equation

= Linear solve

130 | #ifndef MFEM USE SUITESPARSE

131 // B. Define a simple symmetric Gauss-Seidel preconditioner and use it to
132 fr solve the system Ax=b with PCG.

133 GESSmoother M({A):

134 PCG(A, M, *b, x, 1, 200, le-12, 0.0};

135 | #else

136 // B. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
137 UMFPackSolver umf solver;

138 umf solver.Control [UMFPACK ORDERING] = UMFPACK ORDERING METIS;

139 umf solver.SetOperator(A);

140 umf solver.Mult(*b, x);

141 | #endif

= Visualization

152 ff 10. Send the solution by socket to a GLVis server.
153 if {wisualization)

154 {

155 char vishost[] = "localhost";

156 int wvisport = 19916;

15% socketstream sol sock(vishost, wvisport);

158 sol sock.precision(B8);

159 sol sock << "sclution\n" << *mesh << x << flush;
160 }

ATPESC 2025 7 EASTMATH

Example 1 — parallel Laplace equation

= Parallel mesh

101
102
103
104
105
106
107
108
109
110

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
r this mesh further in parallel to increase the resolution. Once the
Iy parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh(MPI_COMM WORLD, *mesh};

delete mesh;

{
int par_ref_ levels = 2;
for (int 1 = 0; 1 < par ref levels; l++)
pmesh->UniformRefinement();
b

5

N

550!
AN

s
vl

O

SO0

@y

e)] 2

ORKRRIRIKKA

o
%

ravaras
rara
s

KRR
KRR

22

d
g
&
R
K
&
Kt
g
KL
g
KE
g
KL
g
g
KL
0

Arava
s
2
&

AR
Vavar,
VAAANSRRR

ravararar
5

VAR

= Parallel finite element space

122

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec):

C, @

B) R E!

C; &
P :true_dof — dof

= Parallel initial guess, linear/bilinear forms

130 |
138
147

ParLinearForm *b = new ParLinearForm(fespace);
ParGridFunction x{fespace);

ParBilinearForm *a = new ParBilinearForm(fespace);

= Parallel assembly

155
156
157
158
159

A=PlqP

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
l/ b{.) and the finite element approximation.

HypreParMatrix #A = a->ParallelAssemble();

HypreParVector #B = b->Parallelhssemble();

BypreParVector *X = x.ParallelAverage();

B = Py rx=PX

ATPESC 2025

= Parallel linear solve with AMG

164
165
166
167

169
170
171
172

// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
I preconditioner from hypre.

HypreSolver *amg = new HypreBoomerAMG({*A);

HyprePCG *pcg = new ByprePCG(*A);

pcg->SetTol(le-12);

pog->SetMaxIter(200);

pcg=>SetPrintLevel (2);

pcg=->SetPreconditioner(*amg);

pcg->Mult(*B, *X);

= Visualization

// 14. Send the sclution by socket to a GLVis server.
if (visualization)
{

char vishost[] = "localhost"”;
int wvisport = 19916;
socketstream sol_sock(vishost, visport):

sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << *pmesh << x << flush;

800 x| GLVis [scalar data]

%

e

v

= highly scalable with minimal changes
= build depends on hypre and METIS

N
8 FASTMATH

Example 1 — parallel Laplace equation

101
102
103
104
105
106
107
108
109

110

122 |
130 |
138 |
147 |

155
156
157
158
159

164
165
166
167
168
169
170
171
172

200
201
202

ATPESC 2025

// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
ri this mesh further in parallel to increase the resclution. Once the
ri parallel mesh is defined, the serial mesh can be deleted.

ParMesh *pmesh = new ParMesh{MPI COMM WORLD, *mesh);

delete mesh;

{
int par_ref levels = 2;
for (int 1 = 0: 1 < par ref levels; 1l++)
pmﬂsh-bﬂnlfcrmReflnement{J,
}

ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
ParLinearForm *b = new ParLinearForm{fespace);
ParGridFunction =x({fespace);

ParBilinearForm *a = new ParBilinearForm(fespace);

// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
i bB{.) and the finite element approximation.

BypreParMatrix *A = a->Parallelhssemble();

BypreParVector #B = h->Parallelhssemble():

HypreParVector *X = x.ParallelAverage():

/f 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
i preconditicner from hypre.

HypreSclver *amg = new HypreBoomerAMG(*A);

HyprePCE *pocg = new HyprePCG(*A);

pocg->SetTol ({le=12);

pocg->SetMaxTter(200);

pocg->SetPrintLevel (2);

pcg->SetPreconditioner (*amg) ;

pcg=->Mult(*B, *X);

sol_sock << "parallel " << num procs << " " << myid << "\n"
sol sock.precision(8);
sol _sock << "solution\n" << *pmesh << x << flush;

L L

-_—
9 FASTMATH

MFEM example codes: mfem.org/examples

Example Codes and Miniapps

pisiasampapbpiovidpseny

Conta e o MFEM e b et e ot e

40+ example codes, most with both serial + parallel versions R — e .

e D @& D & 1 D

Exampla 1 I.aplar.e Pmblem

Tutorials to learn MFEM features

Starting point for new applications

[————t

Show integration with many external packages

Miniapps: more advanced, ready-to-use physics solvers \

m Y .
libCEED N/

SUNDIALS Laghos
STRUMPACK

. NekCEM

SuperLU

A

Omega h Nekbone e

ExaWind

Ny |

ATPESC 2025 10 FASTMATH

Some large-scale simulation codes powered by MFEM

Inertial confinement Topology optimization for Core-edge .tokam:f\k EM
fusion (BLAST) additive manufacturing (LiDO) wave propagation (SciDAC, RPI)

Adaptive MHD island
coalescence (SciDAC, LANL)

MRI modeling (Harvard Medical) Heart modeling (Cardioid)

ATPESC 2025 11 FASTMATH

BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

Lagrange phase
Physical time evolution

Remap phase

Pseudo-time evolution

Based on physical motion Based on mesh motion

. dv : = d(pv
Momentum Conservation: P = V.o ‘/ Gauss-Lobatto basis Momentum Conservation: Eip\/) = Vm - V(pV)
T
. dp S . dp
Mass Conservation: Frie —pV - v s Discont. Ga|erk|n Mass Conservation: e Vm - Vp
T
- de _ oo : d(pe) _ _
Energy Conservation: P =0 Vv Energy Conservation: 4 m- V(pe)
T
dx .
Equation of Motion: =y Mesh velocity: U = dx
dt D Bernstein basis dr

ATPESC 2025 12 FASTMATH

High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

Symmetry in
3D implosion

Symmetry in
_ Sedov blast

Robustness in
Parallel ALE for Q4 Rayleigh- Lagrangian shock-3pt
Taylor instability (256 cores) axisymm. interaction

ATPESC 2025 13 FASTMATH

High-order finite elements have excellent strong scalability

Strong scaling, p-refinement Strong scaling, fixed #dofs
BLAST Strong Scaling on Vulcan 8 00
10000 2D Lagrangian Sedov Problem on 131,072 zones : == SGH
=~SGH Code 2D
Q2 FEM (Inline) 4.00 ‘ il
1000 - ~600 dofs/zone - niine U0 7
~ QU FEM (nlne) -~Q2Q1_ Sl
~-Q8 FEM (InIirTe) 200 ==04Q3 SU
= +Q16 FEM (Inline) E 4
%'n ﬁ 1,00 \ 256 cores
E 1zone/core| €7
=
14

“~ 0.50
N
T~ =
T~ i 0.25 more FLOPs, | =
***** \/ same runtime
0.001 : : 013 T T T
TSI FITITT TS 1 2 4 8 16 3 64
Number of cores NOdeS
Finite element partial assembly FLOPs increase faster than runtime
ATPESC 2025 ey~

-_——
14 FASTMATH

ATPESC 2025

Conforming & Nonconforming Mesh Refinement

m Conforming refinement

-5 L5

m Nonconforming refinement

m Natural for quadrilaterals and hexahedra

15

MATH

MFEM'’s unstructured AMR infrastructure

Adaptive mesh refinement on library level:
— Conforming local refinement on simplex meshes
— Non-conforming refinement for quad/hex meshes

— h-refinement with fixed p

General approach:

— any high-order finite element space, H1, H(curl),
H(div), ..., on any high-order curved mesh

Example 15
— 2Dand 3D

— arbitrary order hanging nodes

— anisotropic refinement

— derefinement

— serial and parallel, including parallel load balancing

— independent of the physics (easy to incorporate in
applications)

Shaper miniapp

L L
———

ATPESC 2025 16 FASTMATH

General nonconforming constraints

H(curl) elements

High-order elements
€

f

Constraint: e=f=d/2

!
Indirect constraints
s € Py (K)

> m € Py(K)
ISV Constraint: local interpolation matrix
> s=Q-m, @Q¢cR™

More complicated in 3D...

fat S

ATPESC 2025 17 FASTMATH

ATPESC 2025

Nonconforming variational restriction

m General constraint:
— Px P = /
y=r ""=1"wl

x — conforming space DOFs,
y — nonconforming space DOFs (unconstrained + slave),

dim(x) < dim(y)
W — interpolation for slave DOFs
m Constrained problem:
P'APx = P'b,
y = Px.

18

MATH

Nonconforming variational restriction

ATPESC 2025

Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

ATPESC 2025

Nonconforming variational restriction

=P Xx

Conforming solution y

ATPESC 2025

AMR = smaller error for same number of unknowns

2D Shock-like Problem AMR Benchmark (Quad Mesh, Anisotropic Refinements)

100 ¢
! : ! ' uniforﬁp refinement '
I ‘ ‘ 1st, 214, 4h 8 order
10 |3 N :
B T T e = N o R
(=] s) I, G : !
5 g, il
£ g !
% [‘ 15t order AMR
() 0_1 o SRR S ANAEYS ' """""""""""""""""""""""""" e e SR or (R e R e R e R LA e L s - Al
i 5 :
% 0.01 Fr — N <y AR o Gl AMR
= [: : f ; 3 i
Re) -
© =
E 0.001 : ‘ ‘
X ; s
S I order 1 uniform ---e---
a 00001 b order2uniform e
%5 I order 4 uniform ---e---
order 8 uniform ---e---
" order 1 aniso AMR —e— : ; ; ;
1e-05 - order2 aniso AMR o v
- order 4 aniso AMR —— : 8 order AMR]
| order 8 aniso AMR —e— .
16-06 i i i a i i
0 50 100 150 200 250 300 Anisotropic adaptation to
Square root of the number of unknowns shock-like fields in 2D & 3D

ATPESC 2025 22 FASTMATH

Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and Parallel load balancing based on space-
derefinement. 2" order Lagrangian Sedov filling curve partitioning, 16 cores

e\
ATPESC 2025 23 FASFM‘A}—l

ParaIIeI AMR scalmg to "'4OOK MPI tasks

100 [

Time of AMR iteration [seconds]

|deal strong scallng —_—

weak scaling - |

size 0.5M —=— |

size 1M —— |

size 2M ——

sizedM ——=—
size8M ——+—

size 16M]

size 32M ——+—

size 64M

64

128 256 512

1K

2K

4K 8K
CPU cores

16K 32K 64K 128K 256K 384K

* weak+strong scaling up to ~400K MPI tasks on BG/Q

1]

1]

it i = =

] B B

Parallel decomposition
(2048 domains shown)

Parallel partitioning via

Hilbert curve

* measure AMR only components: interpolation matrix, assembly, marking,

refinement & rebalancing (no linear solves, no “physics”)

ATPESC 2025

24 FASTMATH

Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh

topology, basis, and components:
global domain sub ' quadrature
all (shared) dofs device) ([é};aﬂ:doE)T G T B I efe@@dﬁ?s point values /-)D
p \latachiE:: G B
> — —
—— — B ——
P GT BT
T-vector L-vector E-vector Q-vector
——mm————— - element APl ------------ >
DEiiaiaee device AP| ------------------------ >
ST mTsmosmosmsomooooomoooes global AP -==---=-------------------------o»

v partial assembly = store only D, evaluate B (tensor-product structure)

v better representation than A: optimal memory, near-optimal FLOPs

v purely algebraic v’ high-order operator format v/ AD-friendly 8339

ATPESC 2025 * libCEED, github.com/ceed/libceed 25 FASTMATH

Example of a fast high-order operator

Poisson problem in variational form

Findu € Q, C H} s.t. Yo € Q,,

/QVU-Vv:/va

Stiffness matrix (unit coefficient)
/ V%V% = / VoiVp;
= Zzak Tz (@) Veilar) 5" (@) Véiar) [T (ar)]

- ; ;Wi) (on T " (@) T ()| T (1)) V05)

!

_'_I
G,G" (B7); B

ATPESC 2025

J is the Jacobian of the element
mapping (geometric factors)

G is usually Boolean (except AMR)

Element matrices A = B7DB, are full,
account for bulk of the physics, can be
applied in parallel

Al
A2

A4

Never form Ag, just apply its action
based on actions of B, B and

26

CEED BP1 bakeoff on BG/Q

MFEM (512 nodes, 32 tasks/node), xlc, BP1 V1

MFEM (512 nodes, 32 tasks/node), xlc, BP1 V1

. deal.ll (512 nodes, 32 tasks/node), gcc, BP1

w

[DOFs x CG iterations] / [compute nodes x seconds]
=

—o— p=9, q=p+2
—e— p=10, q=p+2
—o— p=11, q=p+2
—o— p=12, q=p+2

wv

—eo— p=10, q=p+2
—e— p=11, q=p+2
—— p=12, q=p+2
—o— p=13, q=p+2

8 8 8
—— p=1, q=p+2 —— p=2,q=p+2 —— p=1, q=p+2
p=2, q=p+2 p=3, q=p+2 p=2, q=p+2
74— p=3,q=p+2 74 ~* p=4,q=p+2 74 —* p=3.q=p+2
—o— p=4,q=p+2 —o— p=5,q=p+2 —o— p=4,q=p+2
—e— p=5, q=p+2 —e— p=6, q=p+2 —o— p=5, q=p+2
6 p=6, q=p+2 6 p=7,q=p+2 6 p=6, g=p+2
p=7,q=p+2 p=8, q=p+2 p=7, q=p+2
p=8, q=p+2 p=9, q=p+2 p=8, q=p+2

w

—o— p=9,q=p+2
—o— p=10, g=p+2
—o— p=11, q=p+2
—o— p=12, q=p+2

Points per compute node

Nek5000

[DOFs x CG iterations] / [compute nodes x seconds]

Points per compute node

MFEM-improved

[DOFs x CG iterations] / [compute nodes x seconds]

—o— p=13, q=p+2 41 o p=14, q=p+2 41 o p=13, q=p+2
p=14, q=p+2 p=14, q=p+2

—e— p=15, q=p+2 —— p=15, q=p+2
3 p=16, q=p+2 3 3 p=16, q=p+2
2 2 2
1 1 1
0 —t— 0 0 RSP o
10! 102 10 104 10° 106 107 = 10! 102 103 104 10° 106 107 = 10! 102 103 104 10 106 107

Points per compute node

deal.ii

¢ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.
¢ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.
v Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020

v Cooperation/collaboration is what makes the bake-offs rewarding.

ATPESC 2025 27 FASTMATE

Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

Library Kernels Backends Hardware

linalg GPU
OCCA
mesh
libCEED
fem CPU

= Several MFEM examples + miniapps have been ported with small changes
= Many kernels have a single source for CUDA, RAJA and OpenMP backends
= Backends are runtime selectable, can be mixed

= Recent improvements in CUDA, HIP, RAJA, SYCL, ...

ATPESC 2025 “MFEM: A modular finite element methods library”, CAMWA 2020 28 ER=TI VAR

[DOFs x CG iterations] / [MPI tasks x seconds]

MFEM performance on multiple GPUs

1e9 Config: MFEM/ceed-cuda, host: lassen (1 node, 1 task/node), gcc, BP3 1e9 Config: MFEM/ceed-cuda, host: lassen (1 node, 4 tasks/node), gcc, BP3 1e9 Config: MFEM/ceed-cuda, host: lassen (256 nodes, 4 tasks/node), gcc, BP3
o p=]
25(4 o g=2 Oo Oo % 1 25p
o0 p=3
00 p=4
20ty o p=6 j:::: 1 20H
o0 p=8|
15} 15}
1.0} 10}
05} IR 05l
0.0 Lea-2:00 007 0.0 ba—aon-000-6:90

103 104 105 106 107 103 104 105 106 107

Points per MPI task Points per MPI task Points per MPI task
1GPU 4 GPUs 1024 GPUs
Single GPU performance: 2.6 GDOF/s Best total performance: 2.1 TDOF/s
Problem size: 10+ million Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

fat S

ATPESC 2025 29 FASTMATH

Recent improvements on NVIDIA and AMD GPUs

MFEM BP1 (atomics) @ V100 MFEM BP1 (atomics) @ MI100 MFEM BP1 (dmma) @ A100 MFEM BP1 (atomics) @ H100
12 12 12 12
o V100 =1 MI100 =i A100 -
——p=2 —eo-p=2 —e-p=>5 ——p=2
10||-*pr=3 10| |-*p=3 10| |-*p=6 10}|-*pr=3
—e—p=14 —o—p=4 ——p=4
B ——p=35 —e—p=2>5 ——p=5
o = = -
Lo,_ 8 —-o—p==6 8 —-eo—p==06 8 8 —o—p==6
[a)]
9.
5 6 6 6 6
o
<
[eT]
]
© 4 4 4 4
i
i—
2 2 2 2
%4 904 107 10t 107

New MFEM GPU kernels: perform on both V100 + MI100,

have better strong scaling,

can utilize tensor cores on A100
achieve 10+ GDOFs on H100

ATPESC 2025 MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

30 FASTMATH

Matrix-free preconditioning

* Explicit matrix assembly impractical at high order:
— Polynomial degree p, spatial dimension d
— Matrix assembly + sparse matvecs:
s 0(p?*?) memory transfers
« 0(p3?) computations
* can be reduced to 0(p2d+1) computations by sum factorization
— Matrix-free action of the operator (partial assembly):
s O(p%) memory transfers — optimal
s O0(**1) computations — nearly-optimal

» efficient iterative solvers if combined with effective preconditioners

* Challenges:
— Traditional matrix-based preconditioners (e.g. AMG) not available
— Condition number of diffusion systems grows like O(p3/h?)

ATPESC 2025

O(p%) element dofs

p+1

31 MATH

MR
s s
. s e
v e e

= Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

Low-Order-Refined (LOR) preconditioning

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

= A orissparse and spectrally equivalent to Ayo

Air

g =108
Copper
gm]
VeVxu+pfu=jJ
LOR-AMS
P Its. Assembly (s) AMG Setup (s) Solve (s) # DOFs # NNZ
2 41 0.082 0.277 0.768 516,820 1.65 x 107
3 63 0.251 0.512 2.754 1,731,408 5.64 x 107
4 75 0.679 1.133 7.304 4,088,888 1.34 x 108
5 62 1.574 2.185 11.783 7,968,340 2.61 x 10°
6 89 3.336 4.024 30.702 13,748,844 4.51 x 10%
Matrix-Based AMS
P Its. Assembly (s) AMG Setup (s) Solve (s) # DOFs # NNZ
2 39 0.140 0.385 1.423 516,820 5.24 x 107
3 44 1.368 1.572 9.723 1,731,408 4.01 x 108
4 49 9.668 5.824 45.277 4,088,888 1.80 x 10°
5 53 61.726 15.695 148.757 7,968,340 5.92 x 109
6 56 502.607 40.128 424.100 13,748,844 1.59 x 10%0

My, ~ My,
MWh o= MW,,1
Mx, ~ Mx,,
My, ~ My,_,,
Mz, ~ Mz,

Theorem 2. Let M, and K, denote the mass and stiffness matrices, respectively, where x represents one
of the above-defined finite element spaces with basis as in Section 4.3. Then we have the following spectral
equivalences, independent of mesh size h and polynomial degree p.

KVh NKV,,v
Kw, ~ Kw,,
Kx, ~ Kx,,

Kz, ~Kz,.

"= (Ayo)!= (Aor) = B or - can use BoomerAMG, AMS, ADS

ATPESC 2025

VeV -u)-fu=f

Matrix-Based ADS

LOR-ADS
p | Runtime (s) Memory (GB) | Runtime (s) Memory (GB) | Speedup
2 2.11 0.04 2.98 0.20 1.41x
3 6.64 0.15 22.58 1.84 3.40x
4 17.40 0.35 114.35 9.13 6.57x
5 43.70 0.68 422.74 32.21 9.67x
6 92.76 1.18 1324.94 91.09 14.28%

“Low-order preconditioning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022 32 Fr=1TMATH

High-order methods show promise for high-quality &
performant simulations on exascale platforms

= More information and publications
* MFEM - mfem.org
« BLAST - computation.linl.gov/projects/blast

* CEED - ceed.exascaleproject.org

= Open-source software

o . M . %» p—
R M T N2 e e

e I A N

LN il 0l il \. -— e Ee——

‘ EXASCALE DISCRETIZATIONS

= Ongoing R&D

* GPU-oriented algorithms for Frontier, Aurora, El Capitan

« Matrix-free scalable preconditioners
+ Automatic differentiation, design optimization Q4 Rayleigh-Taylor single-

- Deterministic transport, multi-physics coupling material ALE on 256 processors
ATPESC 2025 33 MATH

Upcoming MFEM Events

MFEM at LLNL HPC Tutorials MFEM Community Workshop

September 9, 2025 September 10-11, 2025
Portland State University + Virtual

.@I'

https://hpcic.linl.gov/ https://mfem.org/workshop

22\ EOLE TN Seminar series: https://mfem.org/seminar

ATPESC 2025 34 FEASTMATH

B Lawrence Livermore
National Laboratory

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.
LLNL-PRES-755924

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United
States govemment. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States govemment or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
govemment or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

	Slide 35: FASTMath Unstructured Mesh Technologies
	Slide 36: Unstructured Mesh Methods
	Slide 37: Unstructured Mesh Methods
	Slide 38: FASTMath Unstructured Mesh Development Areas
	Slide 39: FASTMath Unstructured Mesh Tools and Components
	Slide 40: Parallel Unstructured Mesh Infrastructure
	Slide 41: Parallel Unstructured Mesh Infrastructure
	Slide 42: Mesh Generation and Control
	Slide 43: General Mesh Modification for Mesh Adaptation
	Slide 44: Mesh Adaptation Capabilities
	Slide 45: Mesh Adaptation of Evolving Geometry Problems
	Slide 46: Load Balancing, Dynamic Load balancing
	Slide 47: Zoltan/Zoltan2 Toolkits: Partitioners
	Slide 48: A New Graph Partitioner for GPU: Jet
	Slide 49: PUMI-Balance Reduces Hyper-Graph Imbalance
	Slide 50
	Slide 51
	Slide 52: Application interactions – Accelerator EM
	Slide 53: Application interactions – Land Ice
	Slide 54: Application interactions – RF Fusion
	Slide 55: Supporting Unstructured Mesh for Particle-in-Cell Calculations
	Slide 56: Mesh Data Structure for Heterogeneous Systems
	Slide 57: PUMI-Pic Particle Data Structures
	Slide 58: PIC Operations Supported by PUMI-Pic
	Slide 59: PUMI-Pic based XGCm Edge Plasma Code
	Slide 60: PUMIPic based GITRm Impurity Transport Code
	Slide 61: PUMI-Tally - GPU Acceleration of Monte Carlo Tallies
	Slide 62: Parallel Coupler for Multimodel Simulations (PCMS)
	Slide 63: In-Memory Coupling of Fusion Codes
	Slide 64: “Rendezvous” Algorithm to Control Coupler Domain Partition
	Slide 65: Example Field Transfer with RBF on LCPP
	Slide 66: In Situ Machine Learning During Simulations
	Slide 67: Mesh Related AI/ML Developments
	Slide 68: Run the latest Simmetrix and PUMI software on RPI systems

