

FASTMath Unstructured Mesh Technologies

E. Boman¹, V. Dobrev², D.A. Ibanez¹, K.E. Jansen³, T. Kolev², J.Merson⁴, O. Sahni⁴, M.S. Shephard⁴, C.W. Smith⁴, M. Stowell²

> ¹Sandia National Laboratories ²Lawrence Livermore National Laboratory ³University of Colorado ⁴Rensselaer Polytechnic Institute

Unstructured Mesh Methods

Unstructured mesh – a spatial domain discretization composed of topological entities with general connectivity and shape

Advantages

- Automatic mesh generation for any level of geometric complexity.
- Can provide the highest accuracy on a per degree of freedom basis
- General mesh anisotropy possible
- Meshes can easily be adaptively modified.
- Given a complete geometry, with analysis attributes defined on that model, the entire simulation workflow can be automated.

Disadvantages

- More complex data structures and increased program complexity, particularly in parallel.
- Requires careful mesh quality control (level of control required is a function of the unstructured mesh analysis code).
- Poorly shaped elements increase condition number of global system which makes iterative matrix solves slower and harder.
- Non-tensor product elements not as computationally efficient.

Unstructured Mesh Methods

Goal of FASTMath unstructured mesh developments include:

- Provide unstructured mesh components that are easily used by application code developers to extend their simulation capabilities.
- Ensure those components execute on exascale computing systems and support performant exascale application codes.
- Develop components to operate through multi-level APIs that increase interoperability and ease of integration.
- Address technical gaps by developing tools that address needs and/or eliminate/minimize disadvantages of unstructured meshes.
- Work with DOE application developers on integration of these components into their codes.
- FASTMATH
- Develop unstructured mesh version of applications.

FASTMath Unstructured Mesh Development Areas

- Unstructured Mesh Analysis Codes Support application's PDE solution needs – MFEM library is a key example.
- Performant Mesh Adaptation Parallel mesh adaptation to integrate into analysis codes to ensure solution accuracy.
- Dynamic Load Balancing and Task Management Technologies to ensure load balance and effectively execute by optimal task placement.
- Unstructured Mesh for Particle Codes Tools to support particle operations on unstructured meshes.
- Code Coupling Tools Parallel geo./mesh/field coupling
- In Situ Vis and Data Analytics Tools to gain insight as simulations execute.
- Unstructured Mesh ML and UQ ML for data reduction,
 adaptive mesh UQ.

FASTMath Unstructured Mesh Tools and Components

- FE Analysis codes:
 - MFEM (https://mfem.org/): High-order exascale finite element library.
 - LGR (https://github.com/SNLComputation/lgrtk): Tool Kit for Lagrangian grid reconnection.
 - PHASTA (https://github.com/phasta/phasta): Stabilized finite element fluid dynamics code.
- Load balancing, task placement:
 - Jet (<u>https://github.com/sandialabs/Jet-Partitioner/</u>): Parallel graph partitioner that runs on most CPU and GPU systems.
 - Zoltan (https://github.com/sandialabs/Zoltan): Dynamic load balancing library.
 - Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2):
 A package of combinatorial algorithms for scientific computing.
 - PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based parallel unstructured mesh dynamic partition improvement component

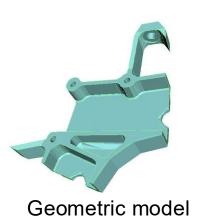
Parallel Unstructured Mesh Infrastructure

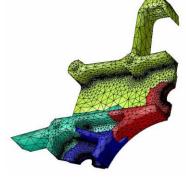
- Unstructured Mesh Infrastructure:
 - PUMI-General-Adapt (https://github.com/SCOREC/core): CPU based scalable conforming mesh adaptation based on local mesh modification.
 - PUMI-Portable-Adapt (https://github.com/SCOREC/omega_h):
 Perfromant (CPUs and GPUs currently) infrastructure supporting scalable conforming mesh adaptation based on local mesh modification.
 - PUMI-Pic (https://github.com/SCOREC/pumi-pic): Performance portable (CPUs and GPUs) with scalable mesh and particle data structures and operators to support particle-in-cell simulation codes.
 - PUMI-Tally (to be released soon): Performance portable (CPUs and GPUs) infrastructure with scalable mesh and particle data structures and operators to support Monte Carlo neutral particle transport.
 - PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based parallel unstructured mesh dynamic partition improvement component.
- General code coupling:
 - PCMS (https://github.com/SCOREC/pcms): Code coupling library for exascale applications (from file based to parallel in memory).

Parallel Unstructured Mesh Infrastructure

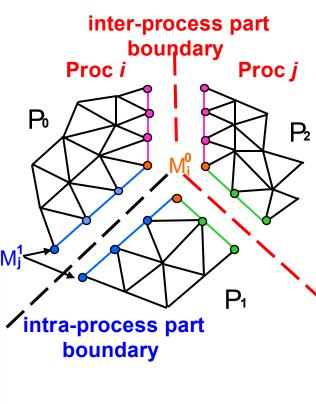
Support unstructured mesh interactions on exascale systems

- Mesh hierarchy to support interrogation and modification of meshes.
- Maintains linkage to original geometry.
- Conforming mesh adaptation.
- Inter-process communication.
- Supports field operations.





Distributed mesh



Mesh Generation and Control

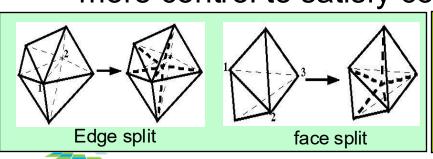
Mesh Generation:

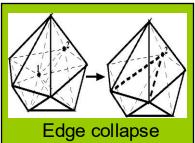
- Automatically mesh complex domains should work directly from CAD, image data, etc.
- Use tools like Gmsh, Simmetrix, etc. Mesh control:
- Use a posteriori information to improve mesh.
- Curved geometry and curved mesh entities.
- Support full range of mesh modifications vertex motion, mesh entity curving, cavity based refinement and coarsening, etc. anisotropic adaptation.
- Control element shapes as needed by the various discretization methods for maintaining accuracy and efficiency.

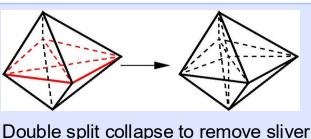
Parallel execution of all functions is critical on large meshes.

General Mesh Modification for Mesh Adaptation

- Driven by an anisotropic mesh size field that can be set by any combination of criteria.
- Employ a set of mesh modification operations to alter the mesh into one that matches the given mesh size field.
- Advantages:
 - Supports general anisotropic meshes.
 - Can obtain level of accuracy desired.
 - Can deal with any level of geometric domain complexity
 - Solution transfer can be applied incrementally provides more control to satisfy conservation constraints.





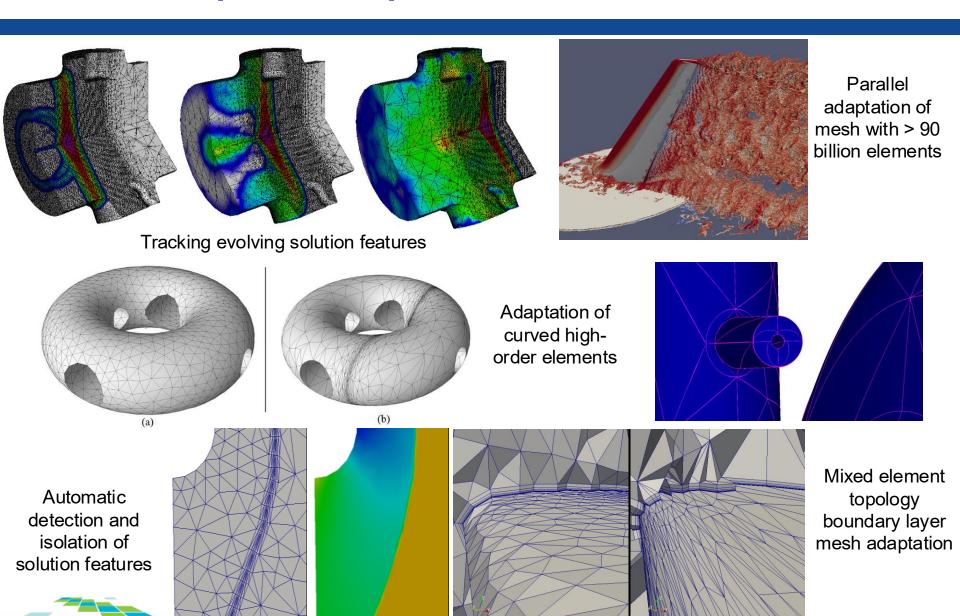


Improved geometry

approximation

Mesh Adaptation Capabilities

MATH

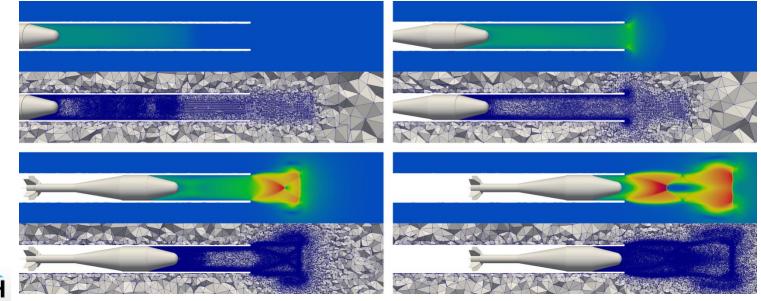


Mesh Adaptation of Evolving Geometry Problems

Many applications have geometry that evolves as a function of the results: Effective adaptive loops combine mesh motion and mesh modification.

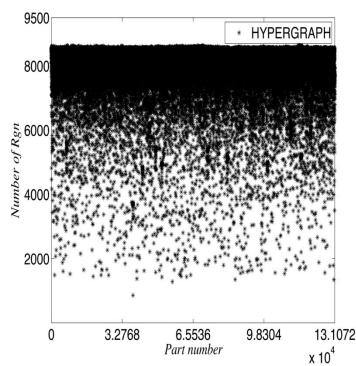
Adaptive loop:

- 1. Initialize analysis case, generate initial mesh, start time stepping loop.
- 2. Perform time steps employing mesh motion monitor element quality and discretization errors.
- 3. When element quality is not satisfactory or discretization errors too large set mesh size field and perform mesh modification.
- 4. Return to step 2.



Load Balancing, Dynamic Load balancing

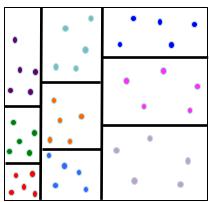
- Purpose: Balance or rebalance computational load while controlling communications.
 - Equal "work load" with minimum inter-process communications.
- FASTMath load balancing tools:
 - Jet library is a multilevel graph partitioner that runs on a GPU (distributed mesh version under development).
 - Zoltan/Zoltan2 libraries
 provide multiple dynamic
 partitioners with general control
 of partition objects and weights.
 - PUMI-Balance diffusive multi-criteria partition improvement.



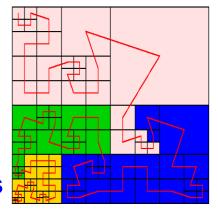
Zoltan/Zoltan2 Toolkits: Partitioners

Suite of partitioners supports a wide range of applications; no single partitioner is best for all applications.

Geometric

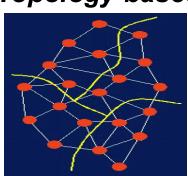


Recursive Coordinate Bisection Recursive Inertial Bisection Multi-Jagged Multi-section



Space Filling Curves

Topology-based

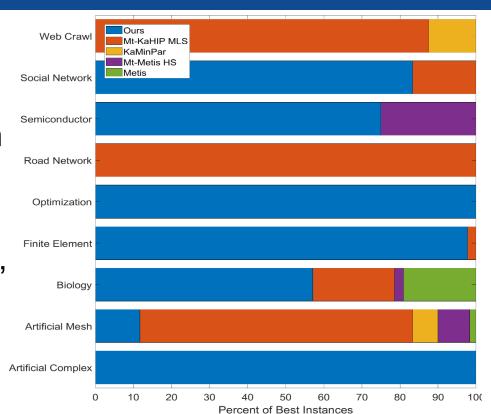


PHG Graph Partitioning
Interface to ParMETIS (U. Minnesota)
Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning Interface to PaToH (Ohio St.)

A New Graph Partitioner for GPU: Jet

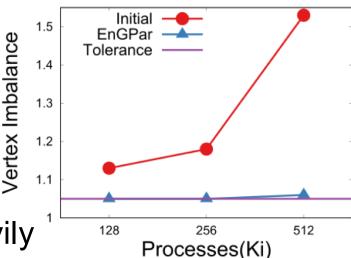
- Multilevel graph partitioner on GPU.
- Uses new label propagation refinement algorithm.
- Results (blue bars) slightly better than Metis/Parametis, but significant speedup due to GPU execution.
- Best partitions for 98% of the test graphs from finite element meshes.

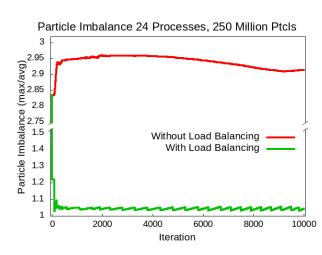


- Currently single GPU (up to ~1B edges)
- Multi GPU distributed memory version is under development.

PUMI-Balance Reduces Hyper-Graph Imbalance

- Hyper-graph supports multiple dependencies (edges) between application work/data items (vertices).
- Application defined graph vertices and edges.
- Diffusion movement of work from heavily loaded parts to lightly loaded parts.
- In 8 seconds, PUMI-Balance reduced a 53% vtx imbalance to 6%, at a cost of 5% elm imbalance, and edge cut increase by 1% on a 1.3B element mesh.
- Applied to PIC calculations for particle balance – 20% reduction in run time.



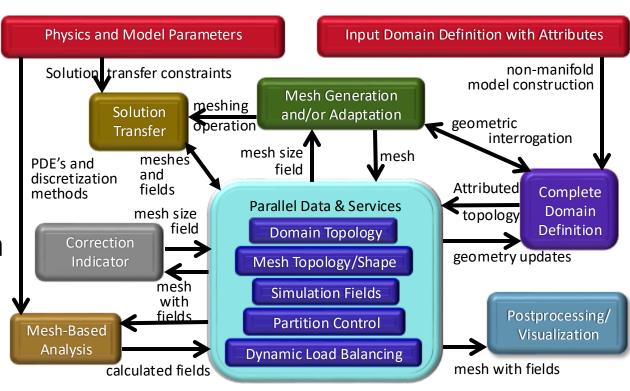


Application of EnGPar particle dynamic load balancing in a GITRm impurity transport simulation

Creation of Parallel Adaptive Loops

Parallel data and services used to develop adaptive simulations:

- Geometric model topology for domain linkage.
- Mesh topology it must be distributed.
- Simulation fields distributed over geometric model and mesh.
- Partition control.
- Dynamic load balancing required at multiple steps.
- API's to link to:
 - CAD/Geometry
 - Mesh generation and adaptation.
 - Error estimation.
 - Field transfer.

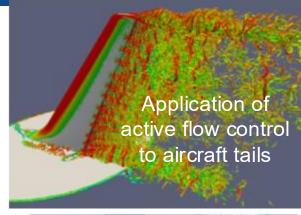


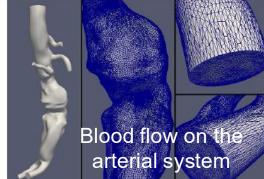
Parallel Adaptive Simulation Workflows

 In memory adaptive loops support effective data movement.

• In-memory adaptive loops for:

- MFEM High order
 FE framework
- PHASTA FE for NS
- FUN3D FV CFD
- Proteus multiphase FE
- Albany FE framework
- ACE3P High order FE electromagnetics
- M3D-C1 FE based MHD
- Nektar++ High order FE flow

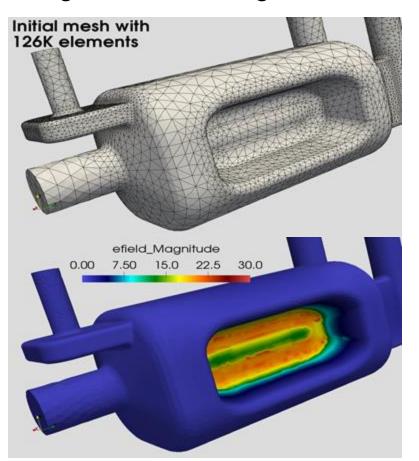




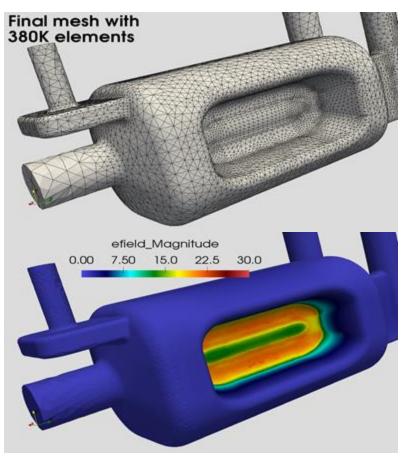


Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)



MATH



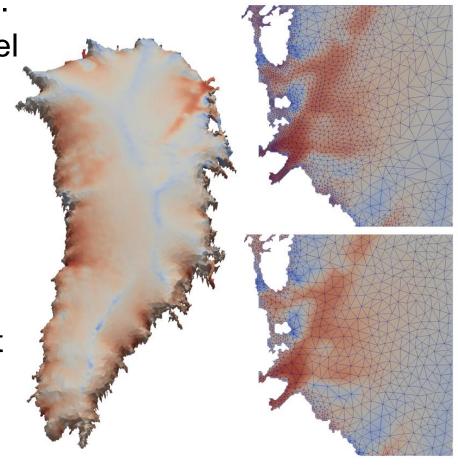
This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with ~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements, (bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right) shows the first eigenmode of the electric field on the final (adapted) mesh.

Application interactions – Land Ice

 FELIX, a component of the Albany framework is the analysis code.

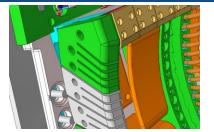
 PUMI-Perfromant-Adapt parallel mesh adaptation is integrated with Albany to do:

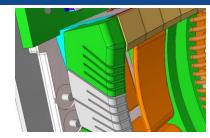
- Estimate error.
- Adapt the mesh.
- Ice sheet mesh is modified to minimize degrees of freedom.
- Field of interest is the ice sheet velocity.



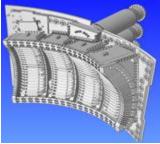
Application interactions – RF Fusion

- Accurate RF simulations require:
 - Detailed antenna CAD geometry.
 - CAD geometry defeaturing.
 - Extracted physics curves from GEQDSK equilibrium file.
 - Analysis geometry combines CAD, and physics geometry.
 - 3D meshes for accurate FE calculations in MFEM.
 - Projection based error estimator.
 - Conforming mesh adaptation with PUMI.

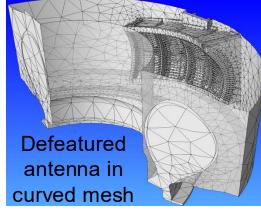


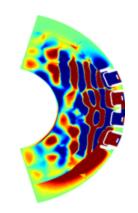


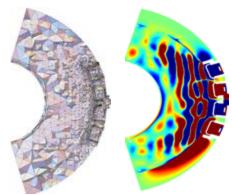
Fast elimination of unwanted features



CAD of antenna array





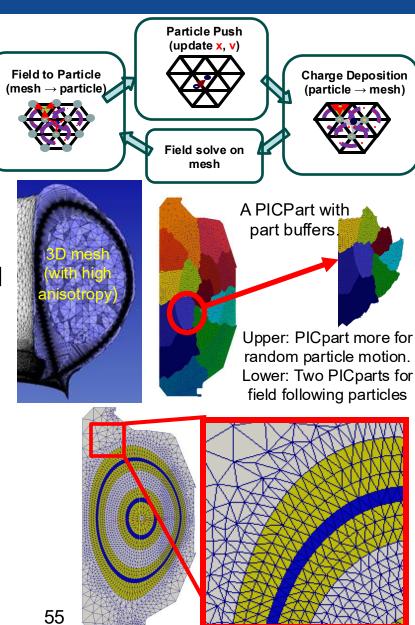


Final Adapted Mesh

Supporting Unstructured Mesh for Particle-in-Cell Calculations

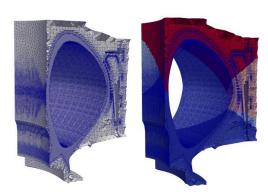
PUMI-Pic data structures are mesh centric:

- Mesh is distributed as needed by the application in terms of PICparts.
- Mesh can be graded and anisotropic.
- Particle data associated with elements.
- Operations take advantage of distributed mesh topology.
- Mesh relation to geometry used to speed calculation for near surface physics.
- Mesh distributed in PICparts:
 - Start with a partition of mesh into a set of "core parts".
 - A PICpart is defined by a "core part" and sufficient buffer to keep particles on process for one or more pushes.

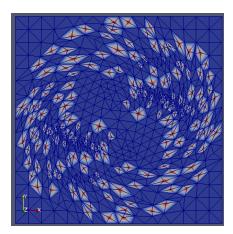


Mesh Data Structure for Heterogeneous Systems

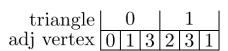
- Mesh topology/adaptation tool PUMI-Portable-Adapt:
 - Conforming mesh adaptation (coarsening past initial mesh, refinement, swap).
 - Manycore and GPU parallelism using Kokkos.
 - Distributed mesh via mesh partitions with MPI communications.
 - Support for mesh-based fields.
 - Curved mesh adaptation.
 - Efficient field storage.
 - Kokkos implementation on latest NVIDIA, AMD and Intel GPUs.

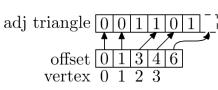


Serial and RIB partitioned mesh of RF antenna and vessel model.



Adaptation following rotating flow field.

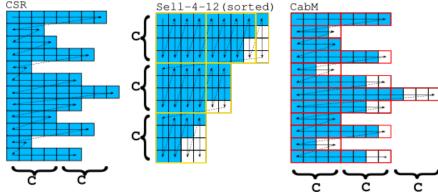




Mesh entity adjacency arrays.

PUMI-Pic Particle Data Structures

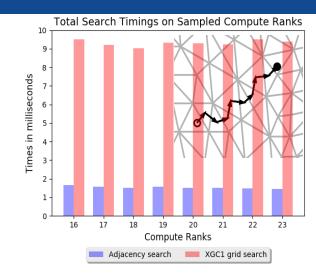
- Layout of particles in memory is critical to performance:
 - Optimizes push (sort/rebuild), scatter, and gather operations.
 - Associate particles with elements for large per element particle cases.
 - Support changes in the number of particles per element.
 - Evenly distributes work under a range of particle distributions (e.g. uniform, Gaussian, exponential, etc.).
 - Stores a lot of particles per GPU low overhead.
- Particle data structure interface and implementation:
 - API abstracts implementation for PIC code developers.
 - CSR, Sell-C-σ, CabanaM, DPS.
 - Performance is a function of particle distribution.
 - Cabana AoSoA w/a CSR index of elements-to-particles are promising.
 - DPS particle structure for low particle density applications.



Left to Right: CSR, SCS with vertical slicing (yellow boxes), CabanaM (red boxes are SOAs). C is a team of threads.

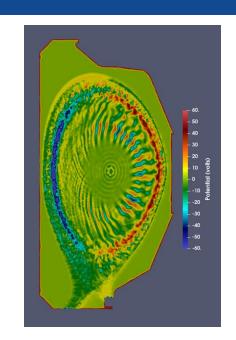
PIC Operations Supported by PUMI-Pic

- Particle push.
- Adjacency based search
 - Faster than grid based search.
- Element-to-particle association update.
- Particle Migration.
- Particle path visualization.
- Mesh partitioning w/buffer regions.
- Mesh field association.
- Fast construction of elements within given distance of mesh faces on model surface.
- Poisson field solve using PETSc DMPlex on GPUs.



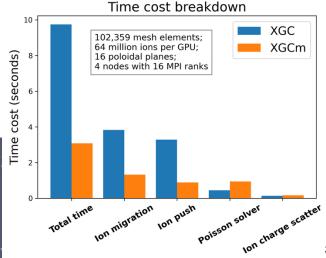
PUMI-Pic based XGCm Edge Plasma Code

- XGCm is a version of XGC built on PUMI-Pic:
 - All operations on GPUs push, gather/scatter, etc.
- Testing of PUMI-Pic for use in XGC like push:
 - 2M elements, 1M vertices, 2 to 128 poloidal planes.
 - Pseudo push and particle-to-mesh gyro scatter.
 - Tested on up to 24,576 GPUs with 1.1 trillion particles, for 100 iterations: push, adjacency.
 - PUMI-Pic weak scaling up to 24,576 GPUs (4096 nodes) with 48 million particles per GPU.



Total time comparison:

- Ran on NERSC's Perlmutter.
- XGCm 3 times faster than XGC for adiabatic electron case, 21% faster for kinetic electron case.

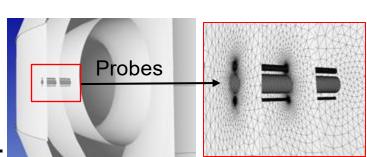


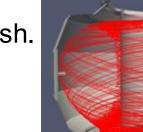
PUMIPic based GITRm Impurity Transport Code

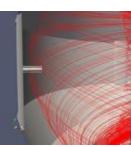
Incorporates impurity transport capabilities of GITR.

3D mesh for cases including divertors, tiles, limiters, specific diagnostics/probes etc.

- Status:
 - Physics equivalent to GITR.
 - Efficient Multi-species capabilities.
 - Anisotropy mesh for accurate field transfer.
 - Field transfer from SOLPS to 3D mesh.
 - Non-uniform particle distribution
 - evolves quickly in time.
 - Load balancing particles via PUMI-Balance.
 - Distance to boundary for sheath E field.
 - Post-processing on 3D unstructured mesh.

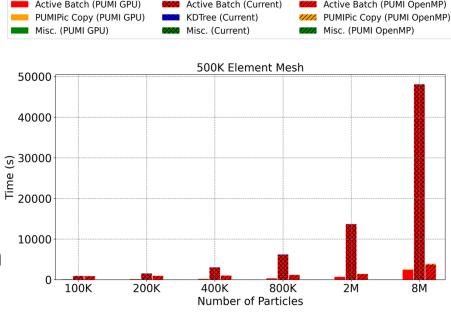




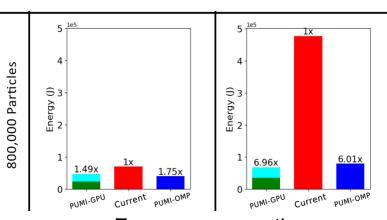


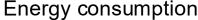
PUMI-Tally - GPU Acceleration of Monte Carlo Tallies

- Builds on PUMI-PIC core to support mesh-based tallies.
- Implements track length tallies.
 - Sum weighted length of moves.
- Batch the particles for data parallel.
- Tested on both GPU and CPU's.
- Compared to OpenMC implementation (does not batch particles):
 - 19.7 times faster on and NVIDIA A100.
 - 9.2 times faster using OpenMP on two AMD EPYC 7763 CPUs.
 - Field transfer from SOLPS to 3D mesh.
 - GPU version demonstrated a 6.7 times improvement in energy consumption.



Computation Time

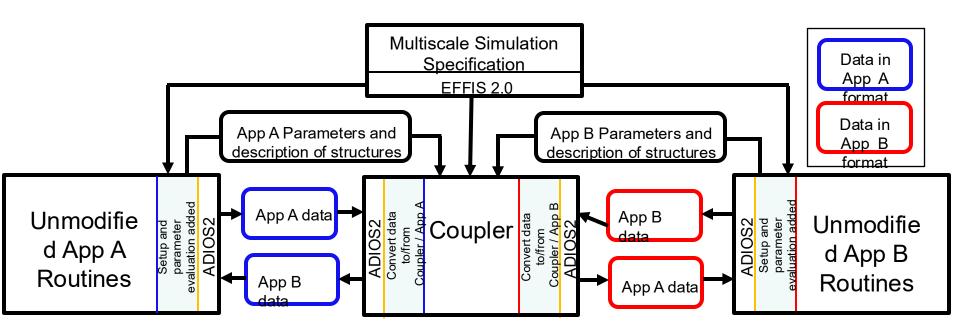




Parallel Coupler for Multimodel Simulations (PCMS)

Goals of PCMS:

- Keep applications clean. Only modification to application codes is access its data structures.
- General structures and functions for coupling operations.
- Make effective use of the massively parallel, heterogeneous computing systems.



In-Memory Coupling of Fusion Codes

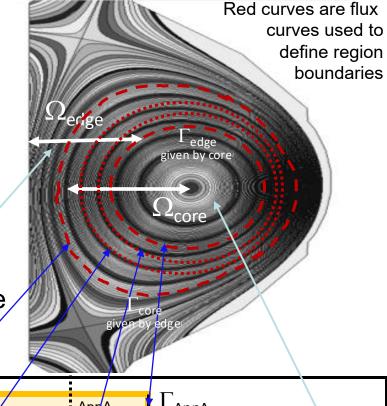
Each application solves its model(s) over a portion of the domain.

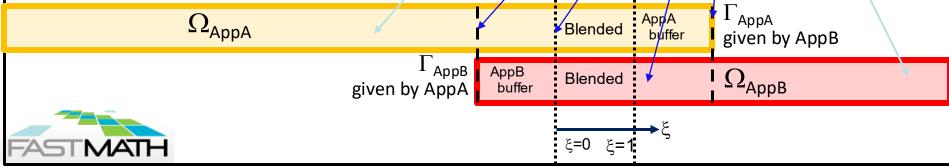
 The domains overlap: The overlap can include three subregions.

 The blended region in which the fields are coupled based on a field blending strategy.

 A buffer region for Application A (edge) in which the "right" end boundary conditions are determined by Application B (core) and/or source terms added.

 A buffer region for Application B (core) in which the "left" end boundary conditions are determined by Application A (edge) and/or source terms added.





"Rendezvous" Algorithm to Control Coupler Domain Partition

Challenge:

 The coupled applications need to control their domain partitioning to meet their specific needs.

Approach:

- Coupling applications A and B, each of which has it own partitions.
- Rendezvous algorithm uses a third partition to coordinate data transfers between the applications.
- "Rendezvous" algorithm "enables scalable algorithms which are most useful when processors neither know which other processors to send data to, nor which other processors will be sending data to them".

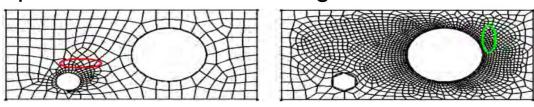


Fig. 4. Thermal (left) and stress (right) grids. The colored ovals are clumps of grid cells the same processor owns in the two grids.

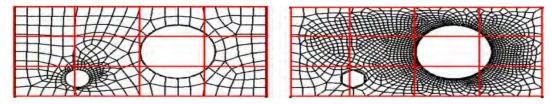
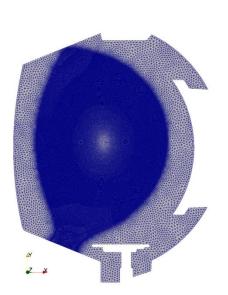
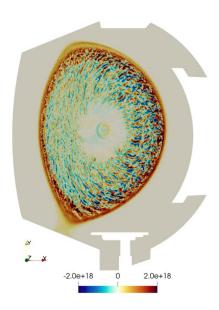


Fig. 5. Rendezvous decomposition overlaid on thermal and stress grids.

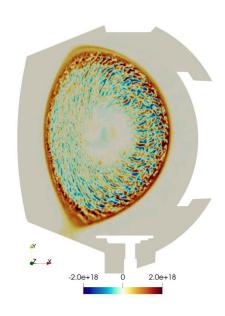
Example Field Transfer with RBF on LCPP



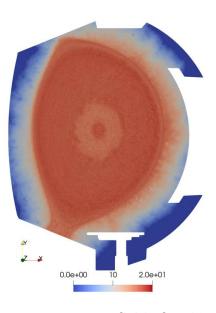
XGC mesh with 611,359 elements and 306, 002 nodes



idensity loaded as the
exact/initial field in the
coupler app



idensity after 10 MLS-RBF interpolation operation: cell to node and node to cell in each iteration. $\rho = 0.007$



idensity error field after 10

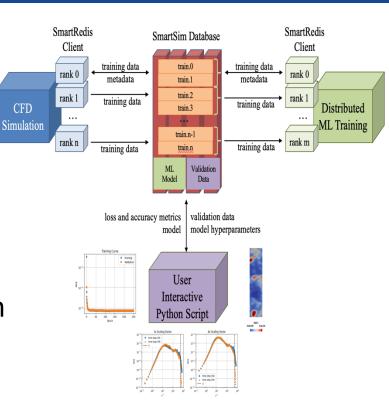
MLS-RBF interpolation
operation: cell to node and
node to cell in each iteration.

$$\rho = 0.007$$

error =
$$\log_{10} |f_i - g_i|$$

In Situ Machine Learning During Simulations

- Simulation data too large to save
 need Online Machine Learning.
- Dynamic PDE data stream provides more and better training data.
- Training using Smartsim/SmartRedis.
- Clustered and co-located deployment of components utilizing CPU and/or GPU.
- Scalable: negligible overhead on simulation
- Data parallel training with Horovod and PyTorch DDP.
- No dependency on analysis code/ARCH (tested with PHASTA (legacy) and libCEED (ECP) on Aurora and Polaris).



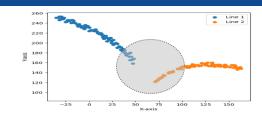
Online training with user interactive script

R.Balin et al., In Situ Framework for Coupling Machine Learning with Application to CFD, https://doi.org/10.48550/ arXiv.2306.12900

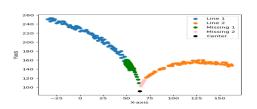
Mesh Related Al/ML Developments

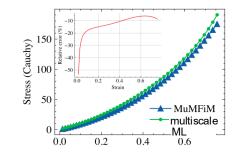
Robust feature detection/processing:

- Physics-based and AI/ML sensors: neural network processes fragmented/noisy data.
- Application: anisotropic diffusion transport in fusion devices, ground line dynamics in ice sheets.
- Physics informed material models
- Machine learned constitutive models can reduce runtime cost of upscaling FEM simulations by orders of magnitude while retaining 80% of accuracy.
- ML Agents for automated hex meshing
- Reinforced learning agent decomposes CAD modes into regions suitable for hexahedral mesh generation.

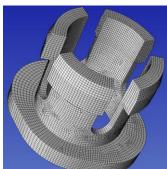


Improve sensor data





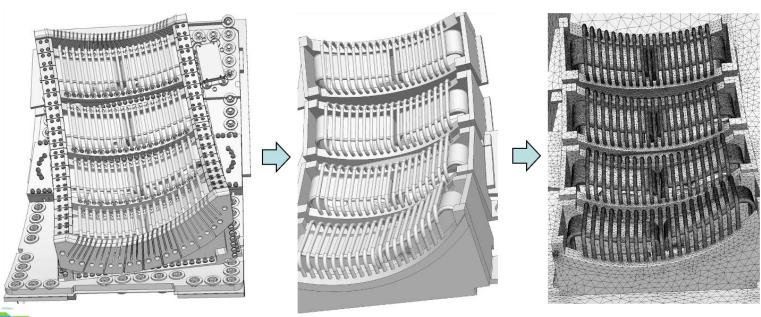
Comparing ML to Multiscale



Run the latest Simmetrix and PUMI software on RPI systems

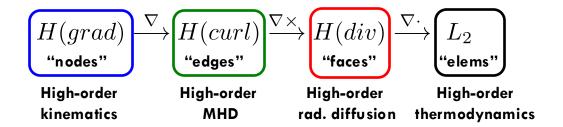
We will help you run the latest Simmetrix and PUMI model preparation, mesh generation, and adaptation tools on **your problem** using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via email at smithc11@rpi.edu for more information.



Finite elements are a good foundation for large-scale simulations on current and future architectures

- Backed by well-developed theory
- Naturally support unstructured and curvilinear grids.
- Finite elements naturally connect different physics

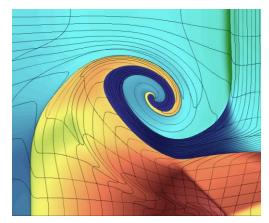


High-order finite elements on high-order meshes

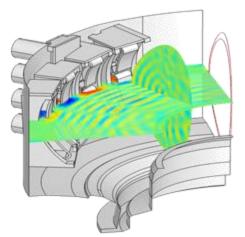
- · increased accuracy for smooth problems
- sub-element modeling for problems with shocks
- bridge unstructured/structured grids
- bridge sparse/dense linear algebra
- HPC utilization, FLOPs/bytes increase with the order

Need new (interesting!) R&D for full benefits

• meshing, discretizations, solvers, AMR, UQ, visualization, ...



8th order Lagrangian simulation of shock triple-point interaction



Core-Edge tokamak EM wave propagation

Modular Finite Element Methods (MFEM)

Flexible discretizations on unstructured grids

- Triangular, quadrilateral, tetrahedral, hexahedral, prism, pyramid; volume, surface and topologically periodic meshes
- Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, ...
- Local conforming and non-conforming AMR, mesh optimization
- Hybridization and static condensation

High-order methods and scalability

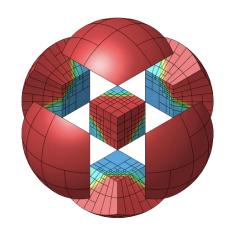
- Arbitrary-order H1, H(curl), H(div)- and L2 elements
- Arbitrary order curvilinear meshes
- MPI scalable to millions of cores + GPU accelerated
- Enables development from laptops to exascale machines.

Solvers and preconditioners

- Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, Vislt, ...
- AMG solvers for full de Rham complex on CPU+GPU, geometric MG
- Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software

- Open-source (GitHub) with 114 contributors, 50 clones/day
- Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, ...
- 75+ example codes & miniapps: mfem.org/examples



mfem.org (v4.8, April 2025)

Mesh

```
// 2. Read the mesh from the given mesh file. We can handle triangular,
             quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
             the same code.
66
       Mesh *mesh;
67
       ifstream imesh(mesh file);
       if (!imesh)
68
69
70
71
          cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
          return 2:
72
73
74
75
76
77
78
79
80
       mesh = new Mesh(imesh, 1, 1);
       imesh.close();
       int dim = mesh->Dimension();
       // 3. Refine the mesh to increase the resolution. In this example we do
              'ref levels' of uniform refinement. We choose 'ref levels' to be the
             largest number that gives a final mesh with no more than 50,000
81
82
83
84
          int ref levels =
             (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
          for (int 1 = 0; 1 < ref_levels; 1++)</pre>
85
             mesh->UniformRefinement():
```

Finite element space

```
88  // 4. Define a finite element space on the mesh. Here we use continuous
89  // Lagrange finite elements of the specified order. If order < 1, we
90  // instead use an isoparametric/isogeometric space.
91  FiniteElementCollection *fec;
92  if (order > 0)
93     fec = new H1 FECOllection(order, dim);
94     else if (mesh->GetNodes())
95     fec = mesh->GetNodes() ->OwnFEC();
96     else
97     fec = new H1 FECOllection(order = 1, dim);
98     FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99     cout < "Number of unknowns: " << fespace->GetVSize() << end1;</pre>
```

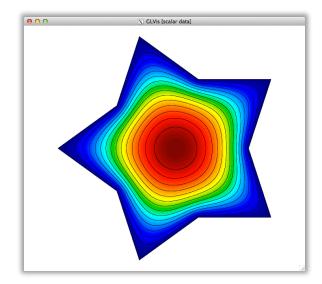
Initial guess, linear/bilinear forms

```
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
             the FEM linear system, which in this case is (1,phi_i) where phi_i are
             the basis functions in the finite element fespace.
       LinearForm *b = new LinearForm(fespace);
       ConstantCoefficient one(1.0);
       b->AddDomainIntegrator(new DomainLFIntegrator(one));
       b->Assemble();
108
       // 6. Define the solution vector x as a finite element grid function
             corresponding to fespace. Initialize x with initial guess of zero,
             which satisfies the boundary conditions.
112
       GridFunction x(fespace);
113
114
       // 7. Set up the bilinear form a(.,.) on the finite element space
             corresponding to the Laplacian operator -Delta, by adding the Diffusion
             domain integrator and imposing homogeneous Dirichlet boundary
             conditions. The boundary conditions are implemented by marking all the
118
             boundary attributes from the mesh as essential (Dirichlet). After
             assembly and finalizing we extract the corresponding sparse matrix A.
       BilinearForm *a = new BilinearForm(fespace);
       a->AddDomainIntegrator(new DiffusionIntegrator(one));
       a->Assemble();
124
       Array<int> ess bdr(mesh->bdr attributes.Max());
       ess bdr = 1;
       a->EliminateEssentialBC(ess bdr, x, *b);
       a->Finalize();
       const SparseMatrix &A = a->SpMat();
```

Linear solve

```
// 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
             solve the system Ax=b with PCG.
133
       GSSmoother M(A);
134
       PCG(A, M, *b, x, 1, 200, 1e-12, 0.0);
135
136
       // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
137
       UMFPackSolver umf_solver;
138
       umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
139
       umf_solver.SetOperator(A);
       umf_solver.Mult(*b, x);
```

Visualization



- works for any mesh & any H1 order
- builds without external dependencies

Mesh

```
63
      // 2. Read the mesh from the given mesh file. We can handle triangular,
64
             quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
       //
65
       //
             the same code.
66
      Mesh *mesh;
67
       ifstream imesh(mesh file);
68
      if (!imesh)
69
70
         cerr << "\nCan not open mesh file: " << mesh file << '\n' << endl;
71
         return 2:
72
73
      mesh = new Mesh(imesh, 1, 1);
74
       imesh.close();
75
       int dim = mesh->Dimension();
76
77
       // 3. Refine the mesh to increase the resolution. In this example we do
78
       //
             'ref levels' of uniform refinement. We choose 'ref levels' to be the
79
       //
             largest number that gives a final mesh with no more than 50,000
80
       //
             elements.
81
82
          int ref levels =
83
             (int)floor(log(50000./mesh->GetNE())/log(2.)/dim);
84
          for (int 1 = 0; 1 < ref levels; 1++)
85
             mesh->UniformRefinement();
86
```

Finite element space

```
// 4. Define a finite element space on the mesh. Here we use continuous
89
            Lagrange finite elements of the specified order. If order < 1, we
90
            instead use an isoparametric/isogeometric space.
91
      FiniteElementCollection *fec;
92
      if (order > 0)
93
         fec = new H1 FECollection(order, dim);
94
      else if (mesh->GetNodes())
95
         fec = mesh->GetNodes()->OwnFEC();
96
      else
97
         fec = new H1 FECollection(order = 1, dim);
98
      FiniteElementSpace *fespace = new FiniteElementSpace(mesh, fec);
99
      cout << "Number of unknowns: " << fespace->GetVSize() << endl;
```

Initial guess, linear/bilinear forms

```
// 5. Set up the linear form b(.) which corresponds to the right-hand side of
101
102
             the FEM linear system, which in this case is (1,phi i) where phi i are
103
             the basis functions in the finite element fespace.
104
       LinearForm *b = new LinearForm(fespace);
105
       ConstantCoefficient one(1.0);
106
       b->AddDomainIntegrator(new DomainLFIntegrator(one));
107
       b->Assemble();
108
109
       // 6. Define the solution vector x as a finite element grid function
110
             corresponding to fespace. Initialize x with initial guess of zero,
111
             which satisfies the boundary conditions.
112
       GridFunction x(fespace);
113
       x = 0.0;
114
115
       // 7. Set up the bilinear form a(.,.) on the finite element space
116
       //
             corresponding to the Laplacian operator -Delta, by adding the Diffusion
117
       //
             domain integrator and imposing homogeneous Dirichlet boundary
118
             conditions. The boundary conditions are implemented by marking all the
119
       //
             boundary attributes from the mesh as essential (Dirichlet). After
120
             assembly and finalizing we extract the corresponding sparse matrix A.
121
       BilinearForm *a = new BilinearForm(fespace);
122
       a->AddDomainIntegrator(new DiffusionIntegrator(one));
123
       a->Assemble():
124
       Array<int> ess bdr(mesh->bdr attributes.Max());
125
       ess bdr = 1;
       a->EliminateEssentialBC(ess bdr, x, *b);
126
127
       a->Finalize();
128
       const SparseMatrix &A = a->SpMat();
```

Linear solve

```
130 #ifndef MFEM USE SUITESPARSE
131
       // 8. Define a simple symmetric Gauss-Seidel preconditioner and use it to
132
             solve the system Ax=b with PCG.
133
       GSSmoother M(A);
134
       PCG(A, M, *b, x, 1, 200, 1e-12, 0.0);
135 #else
     // 8. If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
136
137
       UMFPackSolver umf solver;
       umf solver.Control[UMFPACK ORDERING] = UMFPACK ORDERING METIS;
138
139
       umf solver.SetOperator(A);
140
       umf solver.Mult(*b, x);
141 #endif
```

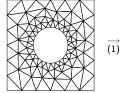
Visualization

```
// 10. Send the solution by socket to a GLVis server.
152
153
        if (visualization)
154
155
           char vishost[] = "localhost";
156
           int visport
                         = 19916;
157
           socketstream sol sock(vishost, visport);
           sol sock.precision(8);
158
159
           sol sock << "solution\n" << *mesh << x << flush;
160
```

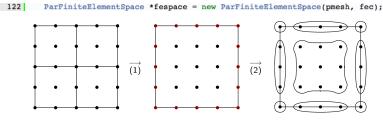
Example 1 – parallel Laplace equation

Parallel mesh

```
101  // 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
102  // this mesh further in parallel to increase the resolution. Once the
103  // parallel mesh is defined, the serial mesh can be deleted.
104  ParMesh *pmesh = new ParMesh(MPI_COMM_WORLD, *mesh);
105  delete mesh;
106  {
107  int par ref_levels = 2;
108  for (int 1 = 0; 1 < par_ref_levels; 1++)
109  pmesh->UniformRefinement();
110 }
```



Parallel finite element space



 $P: true_dof \mapsto dof$

Parallel initial guess, linear/bilinear forms

```
130    ParLinearForm *b = new ParLinearForm(fespace);
138    ParGridFunction x(fespace);
147    ParBilinearForm *a = new ParBilinearForm(fespace);
```

Parallel assembly

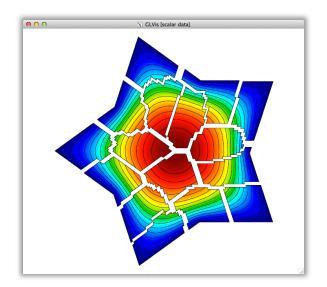
```
// 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
// b(.) and the finite element approximation.
// hypreParMatrix *h = a-PparallelAssemble();
// hypreParVector *B = b-PparallelAssemble();
// hypreParVector *X = x.ParallelAssemble();
```

$$A = P^T a P \qquad B = P^T b \qquad x = PX$$

Parallel linear solve with AMG

```
// 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
// preconditioner from hypre.
166 HypreSolver *amg = new HypreBoomerAMG(*A);
167 HyprePCG *pcg = new HyprePCG(*A);
168 pcg->SetTol(le-12);
169 pcg->SetPrintLevel(20);
170 pcg->SetPreconditioner(*amg);
171 pcg->SetPreconditioner(*amg);
172 pcg->Mult(*B, *X);
```

Visualization



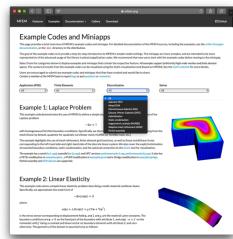
- highly scalable with minimal changes
- build depends on hypre and METIS

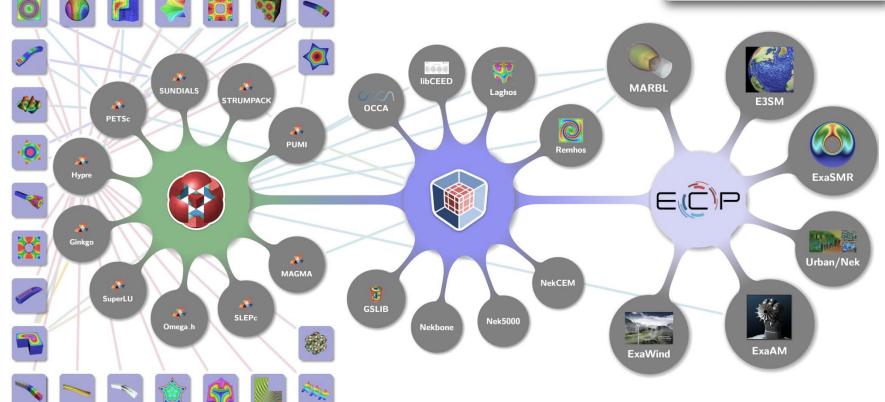
Example 1 – parallel Laplace equation

```
// 5. Define a parallel mesh by a partitioning of the serial mesh. Refine
101
102
              this mesh further in parallel to increase the resolution. Once the
              parallel mesh is defined, the serial mesh can be deleted.
103
        ParMesh *pmesh = new ParMesh(MPI COMM WORLD, *mesh);
104
105
        delete mesh;
106
107
           int par ref levels = 2;
108
           for (int l = 0; l < par ref levels; <math>l++)
              pmesh->UniformRefinement();
109
110
122
       ParFiniteElementSpace *fespace = new ParFiniteElementSpace(pmesh, fec);
130
       ParLinearForm *b = new ParLinearForm(fespace);
138
       ParGridFunction x(fespace);
147
       ParBilinearForm *a = new ParBilinearForm(fespace);
155
       // 10. Define the parallel (hypre) matrix and vectors representing a(.,.),
156
              b(.) and the finite element approximation.
       HypreParMatrix *A = a->ParallelAssemble():
157
       HypreParVector *B = b->ParallelAssemble():
158
159
       HypreParVector *X = x.ParallelAverage();
       // 11. Define and apply a parallel PCG solver for AX=B with the BoomerAMG
164
165
               preconditioner from hypre.
        //
166
       HypreSolver *amg = new HypreBoomerAMG(*A);
167
       HyprePCG *pcg = new HyprePCG(*A);
168
       pcg->SetTol(1e-12);
169
       pcg->SetMaxIter(200);
170
       pcg->SetPrintLevel(2);
171
       pcg->SetPreconditioner(*amg);
172
       pcq->Mult(*B, *X);
           sol sock << "parallel " << num procs << " " << myid << "\n";
200
201
           sol sock.precision(8);
           sol sock << "solution\n" << *pmesh << x << flush;
202
```

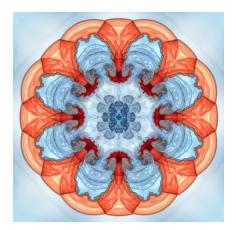
MFEM example codes: mfem.org/examples

- 40+ example codes, most with both serial + parallel versions
- Tutorials to learn MFEM features
- Starting point for new applications
- Show integration with many external packages
- Miniapps: more advanced, ready-to-use physics solvers

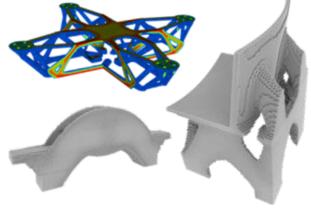




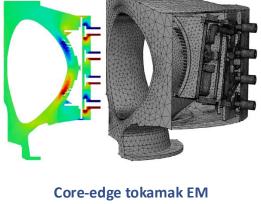
Some large-scale simulation codes powered by MFEM



Inertial confinement fusion (BLAST)



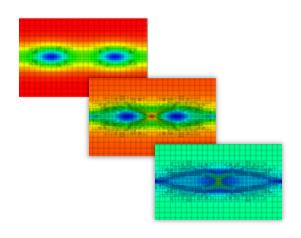
Topology optimization for additive manufacturing (LiDO)



wave propagation (SciDAC, RPI)

MRI modeling (Harvard Medical)

Heart modeling (Cardioid)



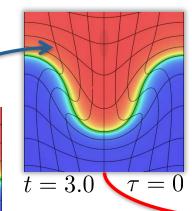
Adaptive MHD island coalescence (SciDAC, LANL)

BLAST models shock hydrodynamics using high-order FEM in both Lagrangian and Remap phases of ALE

Lagrange phase

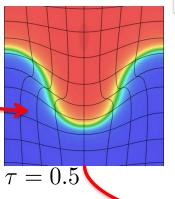
Physical time evolution

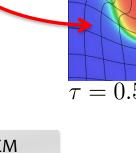
Based on physical motion

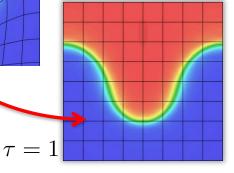


Remap phase

Pseudo-time evolution Based on mesh motion







Lagrangian phase $(\vec{c} = \vec{0})$

Momentum Conservation:

$$\rho \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = \nabla \cdot \sigma \quad \longleftarrow$$

t = 0

Mass Conservation:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho\nabla\cdot\vec{\mathbf{v}}$$

t=1.5

Energy Conservation:

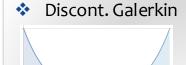
$$\rho \frac{\mathrm{d}e}{\mathrm{d}t} = \sigma : \nabla \vec{\mathbf{v}}$$

Equation of Motion:

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \vec{v}$$

Galerkin FEM

Gauss-Lobatto basis



Bernstein basis

Advection phase ($\vec{c} = -\vec{v}_m$)

Momentum Conservation:

$$rac{\mathrm{d}(
hoec{v})}{\mathrm{d} au} = ec{v}_m\cdot
abla(
hoec{v})$$

Mass Conservation:

$$\frac{\mathrm{d}\rho}{\mathrm{d}\tau} = \vec{\mathbf{v}}_{\mathsf{m}} \cdot \nabla \rho$$

Energy Conservation:

$$\frac{\mathrm{d}(\rho e)}{\mathrm{d}\tau} = \vec{\mathrm{v}}_m \cdot \nabla(\rho e)$$

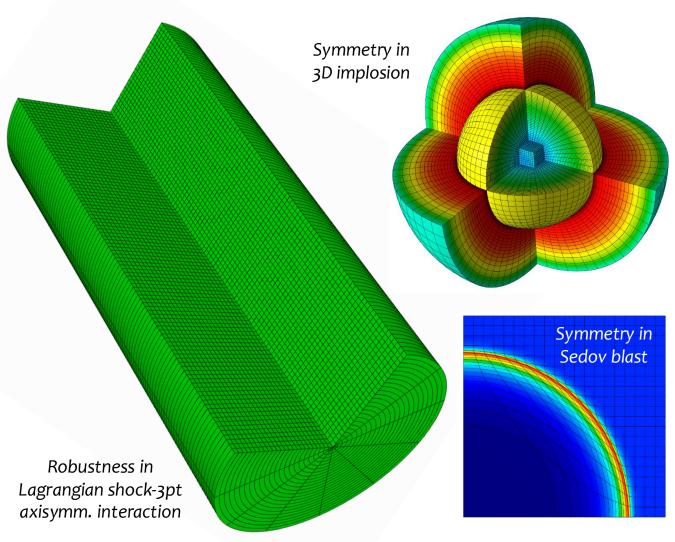
Mesh velocity:

$$\vec{v}_m = \frac{\mathrm{d}\vec{x}}{\mathrm{d}\tau}$$

ATPESC 2025

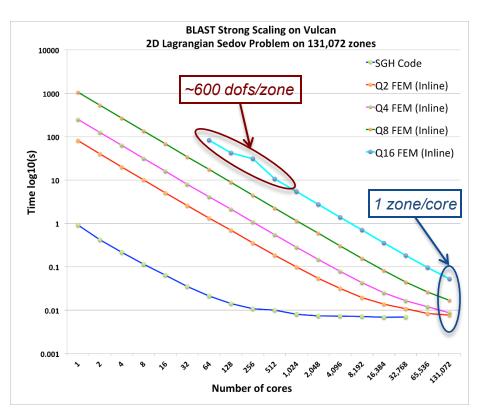
High-order finite elements lead to more accurate, robust and reliable hydrodynamic simulations

Parallel ALE for Q4 Rayleigh-Taylor instability (256 cores)

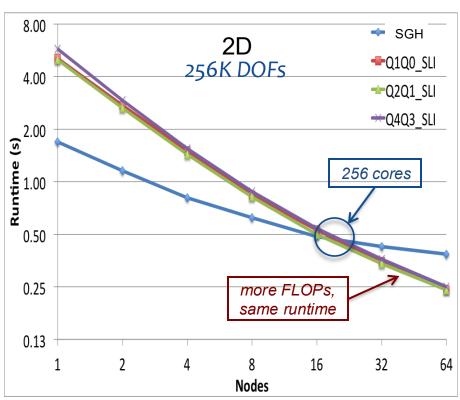


High-order finite elements have excellent strong scalability

Strong scaling, p-refinement



Strong scaling, fixed #dofs

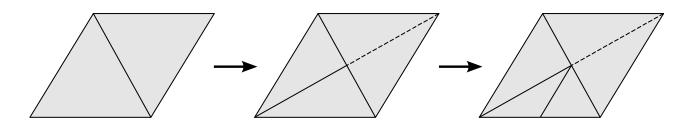


Finite element partial assembly

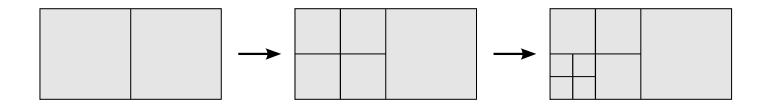
FLOPs increase faster than runtime

Conforming & Nonconforming Mesh Refinement

Conforming refinement



Nonconforming refinement



Natural for quadrilaterals and hexahedra

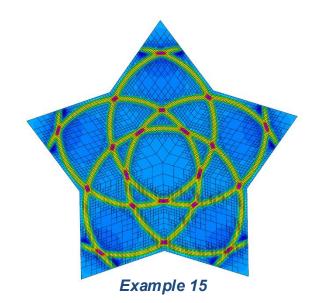
MFEM's unstructured AMR infrastructure

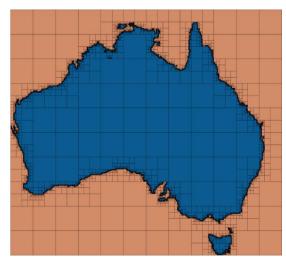
Adaptive mesh refinement on library level:

- Conforming local refinement on simplex meshes
- Non-conforming refinement for quad/hex meshes
- h-refinement with fixed p

General approach:

- any high-order finite element space, H1, H(curl),
 H(div), ..., on any high-order curved mesh
- 2D and 3D
- arbitrary order hanging nodes
- anisotropic refinement
- derefinement
- serial and parallel, including parallel load balancing
- independent of the physics (easy to incorporate in applications)

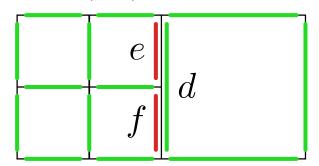




Shaper miniapp

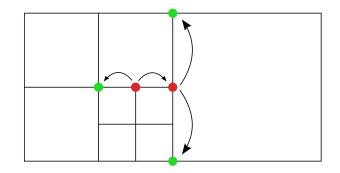
General nonconforming constraints

H(curl) elements



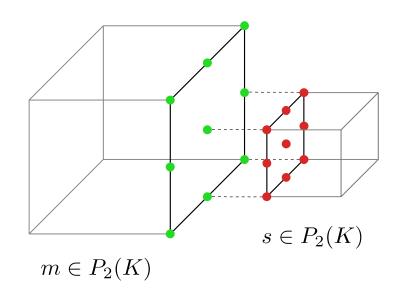
Constraint: e = f = d/2

Indirect constraints



More complicated in 3D...

High-order elements



Constraint: local interpolation matrix

$$s = Q \cdot m, \quad Q \in \mathbb{R}^{9 \times 9}$$

General constraint:

$$y = Px, \quad P = \begin{bmatrix} I \\ W \end{bmatrix}.$$

x – conforming space DOFs,

y – nonconforming space DOFs (unconstrained + slave),

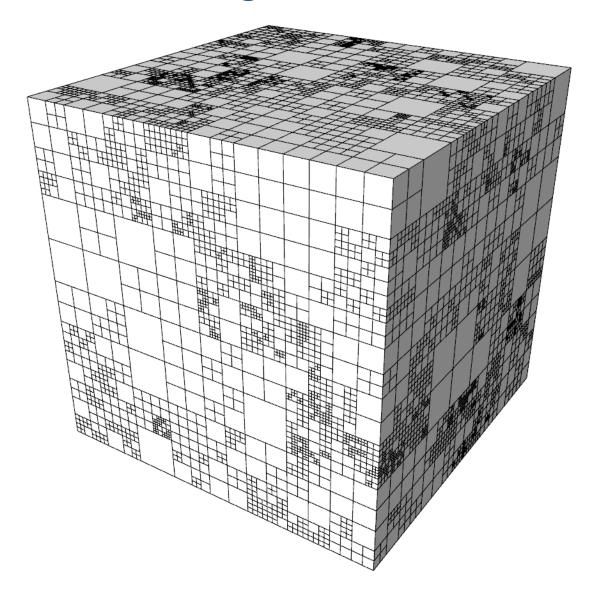
$$\dim(x) \leq \dim(y)$$

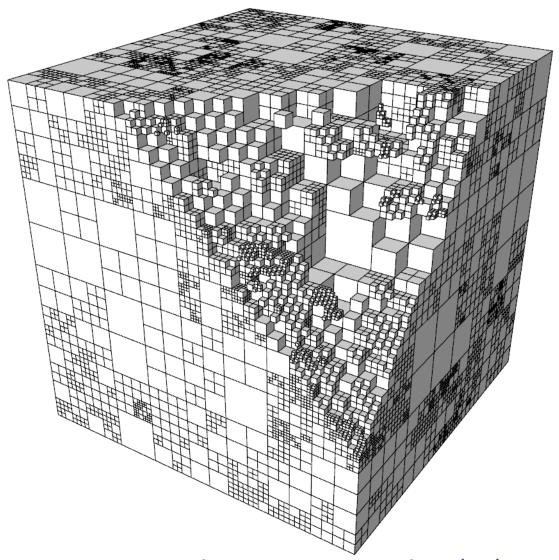
W – interpolation for slave DOFs

Constrained problem:

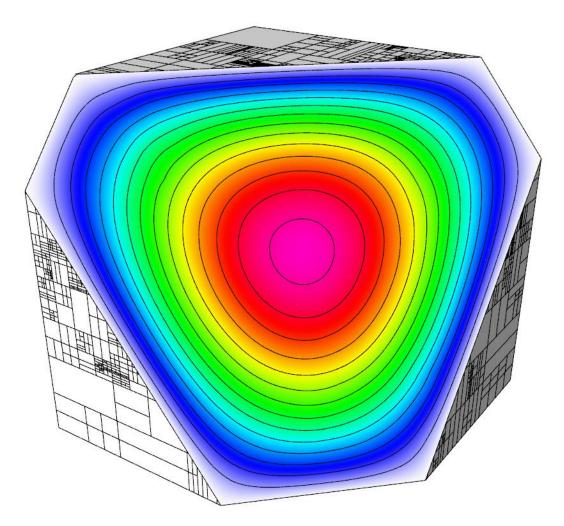
$$P^TAPx = P^Tb,$$

 $y = Px.$



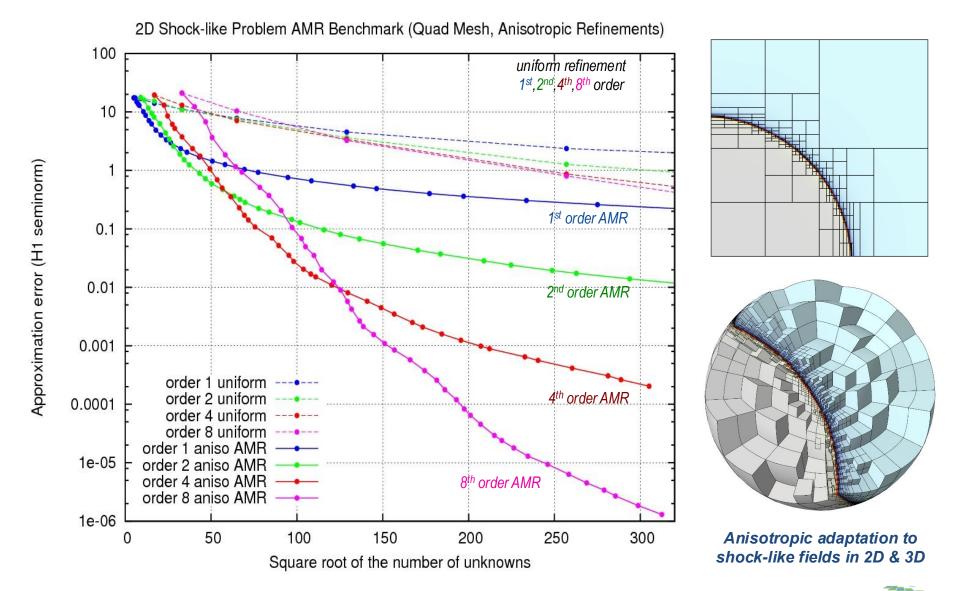


Regular assembly of A on the elements of the (cut) mesh

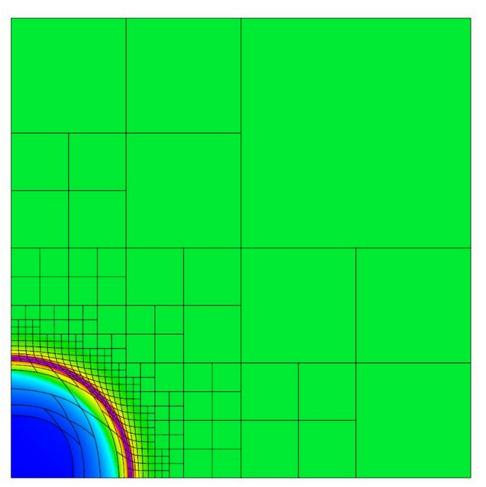


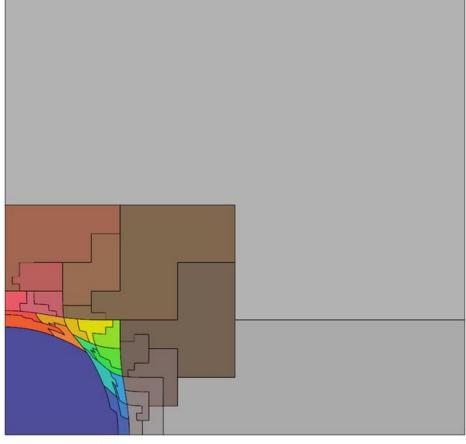
Conforming solution y = P x

AMR = smaller error for same number of unknowns



Parallel dynamic AMR, Lagrangian Sedov problem

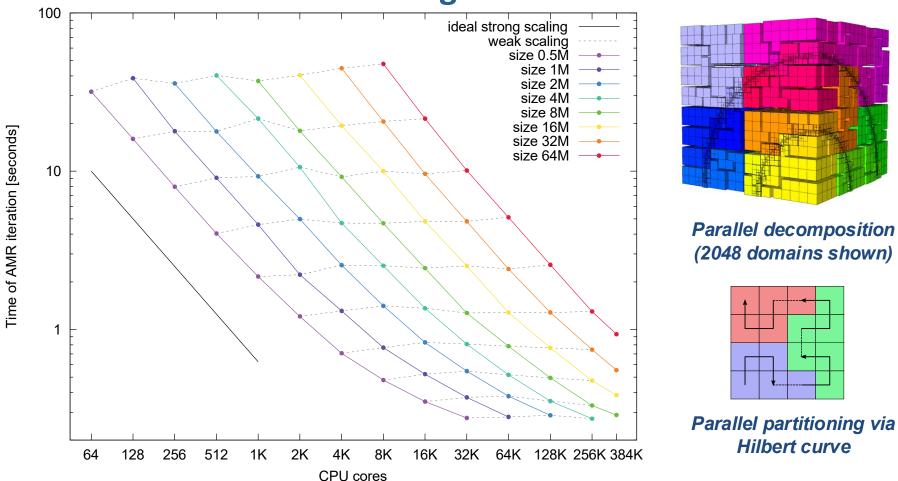




Adaptive, viscosity-based refinement and derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on spacefilling curve partitioning, 16 cores

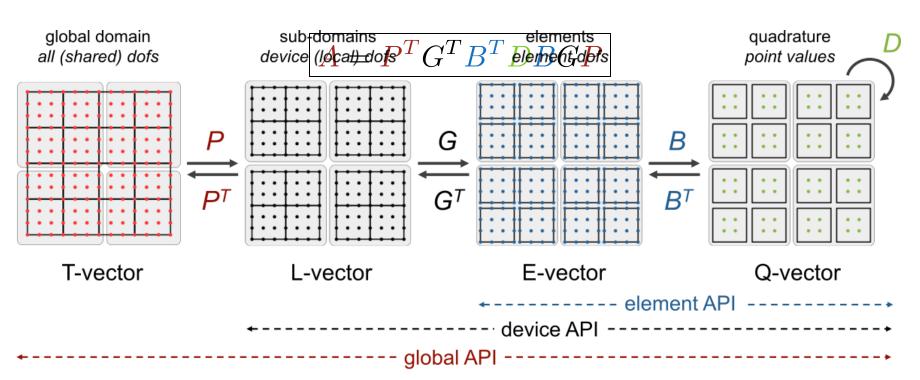
Parallel AMR scaling to ~400K MPI tasks



- weak+strong scaling up to ~400K MPI tasks on BG/Q
- measure AMR only components: interpolation matrix, assembly, marking, refinement & rebalancing (no linear solves, no "physics")

Fundamental finite element operator decomposition

The assembly/evaluation of FEM operators can be decomposed into **parallel**, **mesh topology**, **basis**, and **geometry/physics** components:



- ✓ partial assembly = store only D, evaluate B (tensor-product structure)
- ✓ better representation than A: optimal memory, near-optimal FLOPs
- purely algebraic
- ✓ high-order operator format
- AD-friendly

Example of a fast high-order operator

Poisson problem in variational form

Find
$$u \in Q_p \subset \mathcal{H}_0^1$$
 s.t. $\forall v \in Q_p$,

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v$$

Stiffness matrix (unit coefficient)

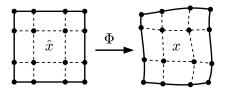
Stiffness matrix (unit coefficient)
$$\int_{\Omega} \nabla \varphi_{i} \nabla \varphi_{j} = \sum_{E} \int_{E} \nabla \varphi_{i} \nabla \varphi_{j}$$

$$= \sum_{E} \sum_{k} \alpha_{k} J_{E}^{-1}(q_{k}) \hat{\nabla} \hat{\varphi}_{i}(q_{k}) J_{E}^{-1}(q_{k}) \hat{\nabla} \hat{\varphi}_{j}(q_{k}) |J_{E}(q_{k})|$$

$$= \sum_{E} \sum_{k} \hat{\nabla} \hat{\varphi}_{i}(q_{k}) (\alpha_{k} J_{E}^{-T}(q_{k}) J_{E}^{-1}(q_{k}) |J_{E}(q_{k})|) \hat{\nabla} \hat{\varphi}_{j}(q_{k})$$

$$= C, G^{T} (B^{T})_{ik} D_{kk} B_{kj}$$

J is the Jacobian of the element mapping (geometric factors)

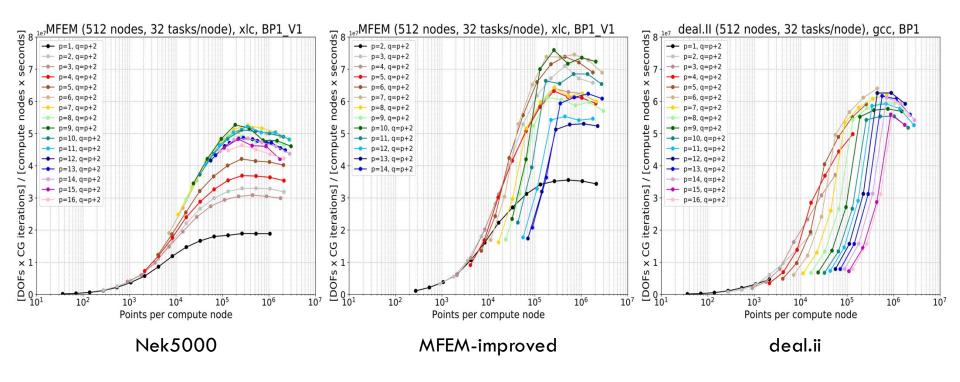


- G is usually Boolean (except AMR)
- Element matrices $A_{E} = B^{T}DB$, are full, account for bulk of the physics, can be applied in parallel

$$\left[\begin{array}{ccc}A^1\\&A^2\\&&\ddots\\&&A^4\end{array}\right]$$

Never form A_F , just apply its action based on actions of B, B^T and D

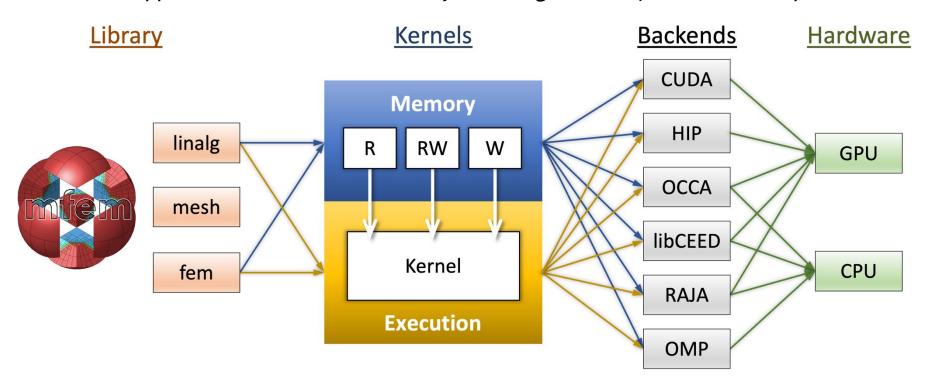
CEED BP1 bakeoff on BG/Q



- ✓ All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ..., 16; quad. points q = p + 2.
- ✓ BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.
- ✓ Paper: "Scalability of High-Performance PDE Solvers", IJHPCA, 2020
- ✓ Cooperation/collaboration is what makes the bake-offs rewarding.

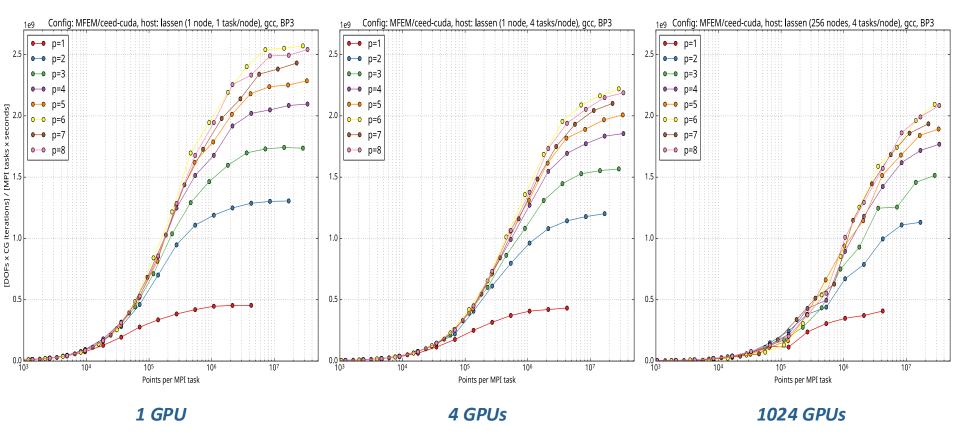
Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations



- Several MFEM examples + miniapps have been ported with small changes
- Many kernels have a single source for CUDA, RAJA and OpenMP backends
- Backends are runtime selectable, can be mixed
- Recent improvements in CUDA, HIP, RAJA, SYCL, ...

MFEM performance on multiple GPUs



Single GPU performance: 2.6 GDOF/s

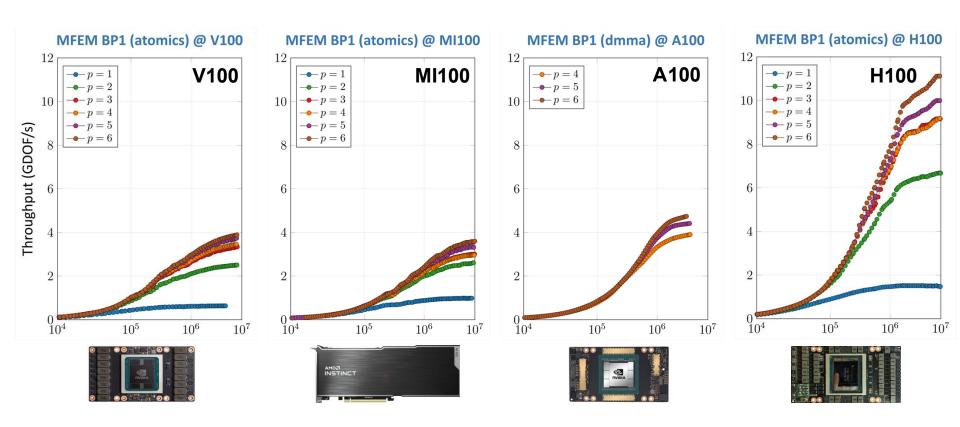
Problem size: 10+ million

Best total performance: 2.1 TDOF/s

Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

Recent improvements on NVIDIA and AMD GPUs



New MFEM GPU kernels: perform on both V100 + MI100, have better strong scaling, can utilize tensor cores on A100 achieve 10+ GDOFs on H100

Matrix-free preconditioning

Explicit matrix assembly impractical at high order:

- $-\,\,$ Polynomial degree p, spatial dimension d
- Matrix assembly + sparse matvecs:
 - $\mathcal{O}(p^{2d})$ memory transfers
 - $\mathcal{O}(p^{3d})$ computations
 - can be reduced to $\mathcal{O}(p^{2d+1})$ computations by sum factorization
- Matrix-free action of the operator (partial assembly):
 - $\mathcal{O}(p^d)$ memory transfers optimal
 - $\mathcal{O}(p^{d+1})$ computations nearly-optimal
 - efficient iterative solvers if combined with effective preconditioners

• Challenges:

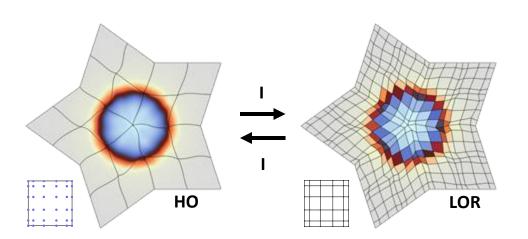
- Traditional matrix-based preconditioners (e.g. AMG) not available
- Condition number of diffusion systems grows like $\mathcal{O}(p^3/h^2)$

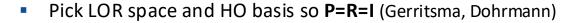
 $\mathcal{O}(p^d)$ element dofs

p+1

Low-Order-Refined (LOR) preconditioning

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators



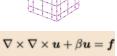




Theorem 2. Let M_{\star} and K_{\star} denote the mass and stiffness matrices, respectively, where \star represents one of the above-defined finite element spaces with basis as in Section 4.3. Then we have the following spectral equivalences, independent of mesh size h and polynomial degree p.

$$\begin{split} &M_{V_h} \sim M_{V_p}, &K_{V_h} \sim K_{V_p}, \\ &M_{\boldsymbol{W}_h} \sim M_{\boldsymbol{W}_p}, &K_{\boldsymbol{W}_h} \sim K_{\boldsymbol{W}_p}, \\ &M_{\boldsymbol{X}_h} \sim M_{\boldsymbol{X}_p}, &K_{\boldsymbol{X}_h} \sim K_{\boldsymbol{X}_p}, \\ &M_{Y_h} \sim M_{Y_{p-1}}, &K_{Z_h} \sim K_{Z_p}. \end{split}$$

 $(A_{HO})^{-1} pprox (A_{LOR})^{-1} pprox B_{LOR}$ - can use BoomerAMG, AMS, ADS

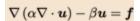


Bott mile									
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ			
2	41	0.082	0.277	0.768	516,820	1.65×10^{7}			
3	63	0.251	0.512	2.754	1,731,408	5.64×10^{7}			
4	75	0.679	1.133	7.304	4,088,888	1.34×10^{8}			
5	62	1.574	2.185	11.783	7,968,340	$2.61 imes 10^8$			
6	89	3.336	4.024	30.702	13,748,844	4.51×10^8			
			Matrix-Bas	sed AMS					
p	Its.	Assembly (s)	AMG Setup (s)	Solve (s)	# DOFs	# NNZ			
2	39	0.140	0.385	1.423	516,820	5.24×10^{7}			
3	44	1.368	1.572	9.723	1,731,408	4.01×10^{8}			
4	49	9.668	5.824	45.277	4,088,888	1.80×10^{9}			
5	53	61 726	15 695	148 757	7 968 340	5.92×10^9			

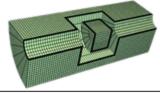
424.100

40.128

LOR-AMS



502.607



13,748,844

 1.59×10^{10}

	LOF	R-ADS	Matrix-I		
p	Runtime (s)	Memory (GB)	Runtime (s)	Memory (GB)	Speedup
2	2.11	0.04	2.98	0.20	1.41×
3	6.64	0.15	22.58	1.84	3.40×
4	17.40	0.35	114.35	9.13	6.57×
5	43.70	0.68	422.74	32.21	$9.67 \times$
6	92.76	1.18	1324.94	91.09	14.28×

High-order methods show promise for high-quality & performant simulations on exascale platforms

More information and publications

- MFEM mfem.org
- BLAST computation.llnl.gov/projects/blast
- CEED ceed.exascaleproject.org

Open-source software

Ongoing R&D

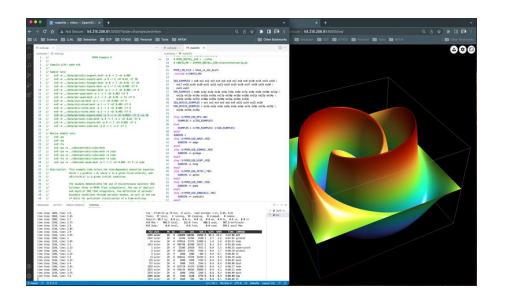
- GPU-oriented algorithms for Frontier, Aurora, El Capitan
- Matrix-free scalable preconditioners
- Automatic differentiation, design optimization
- Deterministic transport, multi-physics coupling

Q4 Rayleigh-Taylor singlematerial ALE on 256 processors

Upcoming MFEM Events

MFEM at LLNL HPC Tutorials

September 9, 2025



MFEM Community Workshop

September 10-11, 2025 Portland State University + Virtual

https://hpcic.llnl.gov/

https://mfem.org/workshop

Seminar series: https://mfem.org/seminar

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

