
E. Boman1, V. Dobrev2, D.A. Ibanez1, K.E. Jansen3, T. Kolev2,

J.Merson4, O. Sahni4, M.S. Shephard4, C.W. Smith4 , M. Stowell2

1Sandia National Laboratories
2Lawrence Livermore National Laboratory

3University of Colorado
4Rensselaer Polytechnic Institute

FASTMath Unstructured Mesh Technologies

Unstructured mesh – a spatial domain discretization composed

of topological entities with general connectivity and shape

Unstructured Mesh Methods

Advantages

▪ Automatic mesh generation for

any level of geometric complexity.

▪ Can provide the highest accuracy

on a per degree of freedom basis

▪ General mesh anisotropy possible

▪ Meshes can easily be adaptively

modified.

▪ Given a complete geometry, with

analysis attributes defined on that

model, the entire simulation

workflow can be automated.

Disadvantages

▪ More complex data structures and

increased program complexity,

particularly in parallel.

▪ Requires careful mesh quality

control (level of control required is

a function of the unstructured

mesh analysis code).

▪ Poorly shaped elements increase

condition number of global system

which makes iterative matrix

solves slower and harder.

▪ Non-tensor product elements not

as computationally efficient.

36

Goal of FASTMath unstructured mesh developments include:

▪ Provide unstructured mesh components that are easily used

by application code developers to extend their simulation

capabilities.

▪ Ensure those components execute on exascale computing

systems and support performant exascale application codes.

▪ Develop components to operate through multi-level APIs that

increase interoperability and ease of integration.

▪ Address technical gaps by developing tools that address

needs and/or eliminate/minimize disadvantages of

unstructured meshes.

▪ Work with DOE application developers on integration of these

components into their codes.

▪ Develop unstructured mesh version of applications.

Unstructured Mesh Methods

37

▪ Unstructured Mesh Analysis Codes – Support application’s

PDE solution needs – MFEM library is a key example.

▪ Performant Mesh Adaptation – Parallel mesh adaptation to

integrate into analysis codes to ensure solution accuracy.

▪ Dynamic Load Balancing and Task Management –

Technologies to ensure load balance and effectively

execute by optimal task placement.

▪ Unstructured Mesh for Particle Codes – Tools to support

particle operations on unstructured meshes.

▪ Code Coupling Tools – Parallel geo./mesh/field coupling

▪ In Situ Vis and Data Analytics – Tools to gain insight as

simulations execute.

▪ Unstructured Mesh ML and UQ – ML for data reduction,

 adaptive mesh UQ.

FASTMath Unstructured Mesh Development Areas

38

▪ FE Analysis codes:

• MFEM (https://mfem.org/): High-order exascale finite element library.

• LGR (https://github.com/SNLComputation/lgrtk): Tool Kit for Lagrangian

grid reconnection.

• PHASTA (https://github.com/phasta/phasta): Stabilized finite element

fluid dynamics code.

▪ Load balancing, task placement:

• Jet (https://github.com/sandialabs/Jet-Partitioner/): Parallel graph

partitioner that runs on most CPU and GPU systems.

• Zoltan (https://github.com/sandialabs/Zoltan): Dynamic load balancing

library.

• Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2):

A package of combinatorial algorithms for scientific computing.

• PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based

parallel unstructured mesh dynamic partition improvement component

FASTMath Unstructured Mesh Tools and Components

39

https://mfem.org/
https://github.com/SNLComputation/lgrtk
https://github.com/phasta/phasta
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Jet-Partitioner/
https://github.com/sandialabs/Zoltan
https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2
http://scorec.github.io/EnGPar/

▪ Unstructured Mesh Infrastructure:

• PUMI-General-Adapt (https://github.com/SCOREC/core): CPU based

scalable conforming mesh adaptation based on local mesh modification.

• PUMI-Portable-Adapt (https://github.com/SCOREC/omega_h):

Perfromant (CPUs and GPUs currently) infrastructure supporting scalable

conforming mesh adaptation based on local mesh modification.

• PUMI-Pic (https://github.com/SCOREC/pumi-pic): Performance portable

(CPUs and GPUs) with scalable mesh and particle data structures and

operators to support particle-in-cell simulation codes.

• PUMI-Tally (to be released soon): Performance portable (CPUs and

GPUs) infrastructure with scalable mesh and particle data structures and

operators to support Monte Carlo neutral particle transport.

• PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based

parallel unstructured mesh dynamic partition improvement component.

▪ General code coupling:

• PCMS (https://github.com/SCOREC/pcms): Code coupling library for

 exascale applications (from file based to parallel in memory).

Parallel Unstructured Mesh Infrastructure

40

https://github.com/SCOREC/core
https://github.com/SCOREC/omega_h
https://github.com/SCOREC/pumi-pic
https://github.com/SCOREC/pumi-pic
https://github.com/SCOREC/pumi-pic
http://scorec.github.io/EnGPar/
https://github.com/SCOREC/pcms

Distributed meshPartition modelGeometric model

Parallel Unstructured Mesh Infrastructure

Support unstructured mesh interactions on exascale systems

• Mesh hierarchy to support interrogation

and modification of meshes.

• Maintains linkage to original geometry.

• Conforming mesh adaptation.

• Inter-process communication.

• Supports field operations.

iM
0

jM
1

1P

0P
2P

inter-process part

boundary

intra-process part

boundary

Proc jProc i

41

Mesh Generation:

▪ Automatically mesh complex domains – should work

directly from CAD, image data, etc.

▪ Use tools like Gmsh, Simmetrix, etc.

Mesh control:

▪ Use a posteriori information to improve mesh.

▪ Curved geometry and curved mesh entities.

▪ Support full range of mesh modifications –

vertex motion, mesh entity curving, cavity based

refinement and coarsening, etc. anisotropic adaptation.

▪ Control element shapes as needed by the various

discretization methods for maintaining accuracy and efficiency.

Parallel execution of all functions is critical on large meshes.

Mesh Generation and Control

42

General Mesh Modification for Mesh Adaptation

▪ Driven by an anisotropic mesh size field that can be set by any

combination of criteria.

▪ Employ a set of mesh modification operations to alter the mesh

into one that matches the given mesh size field.

▪ Advantages:

• Supports general anisotropic meshes.

• Can obtain level of accuracy desired.

• Can deal with any level of geometric domain complexity

• Solution transfer can be applied incrementally - provides
more control to satisfy conservation constraints.

Edge split face split Double split collapse to remove sliverEdge collapse

43

Improved

geometry
approximation

Mesh Adaptation Capabilities

44

Adaptation of

curved high-
order elements

Tracking evolving solution features

Automatic

detection and
isolation of

solution features

Mixed element

topology
boundary layer

mesh adaptation

Parallel

adaptation of
mesh with > 90
billion elements

Many applications have geometry that evolves as a function of the results:

Effective adaptive loops combine mesh motion and mesh modification.

Adaptive loop:

1. Initialize analysis case, generate initial mesh, start time stepping loop.

2. Perform time steps employing mesh motion - monitor element quality

and discretization errors.

3. When element quality is not satisfactory or discretization errors too

large – set mesh size field and perform mesh modification.

4. Return to step 2.

Mesh Adaptation of Evolving Geometry Problems

45

▪ Purpose: Balance or rebalance computational load while

controlling communications.

• Equal “work load” with minimum inter-process communications.

▪ FASTMath load balancing tools:

• Jet library is a multilevel graph partitioner

that runs on a GPU (distributed mesh

version under development).

• Zoltan/Zoltan2 libraries

provide multiple dynamic

partitioners with general control

of partition objects and weights.

• PUMI-Balance diffusive multi-criteria

partition improvement.

Load Balancing, Dynamic Load balancing

46

Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection

Recursive Inertial Bisection

Multi-Jagged Multi-section

Space Filling Curves

PHG Graph Partitioning

Interface to ParMETIS (U. Minnesota)

Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning

Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications;

no single partitioner is best for all applications.

Geometric

Topology-based

47

A New Graph Partitioner for GPU: Jet

▪ Multilevel graph partitioner

on GPU.

▪ Uses new label propagation type

refinement algorithm.

▪ Results (blue bars) slightly

better than Metis/Parametis,

but significant speedup due

to GPU execution.

▪ Best partitions for 98% of

the test graphs from finite

element meshes.

▪ Currently single GPU (up to ~1B edges)

▪ Multi GPU - distributed memory version is under development.

48

▪ Hyper-graph supports multiple

dependencies (edges) between

application work/data items (vertices).

▪ Application defined graph vertices

and edges.

▪ Diffusion movement of work from heavily

loaded parts to lightly loaded parts.

▪ In 8 seconds, PUMI-Balance reduced a

53% vtx imbalance to 6%, at a cost of

5% elm imbalance, and edge cut

increase by 1% on a 1.3B element mesh.

▪ Applied to PIC calculations for particle

balance – 20% reduction in run time.

PUMI-Balance Reduces Hyper-Graph Imbalance

Application of EnGPar particle

dynamic load balancing in a GITRm

impurity transport simulation
49

Parallel data and services used to develop adaptive simulations:

▪ Geometric model topology for domain linkage.

▪ Mesh topology – it must be distributed.

▪ Simulation fields distributed over geometric model and mesh.

▪ Partition control.

▪ Dynamic load

balancing required

at multiple steps.

▪ API’s to link to:

• CAD/Geometry
• Mesh generation

and adaptation.

• Error estimation.
• Field transfer.

Parallel Data & Services

Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Physics and Model Parameters Input Domain Definition with Attributes

Mesh-Based
Analysis

Complete
Domain

Definition

Mesh Generation
and/or Adaptation

Postprocessing/
Visualization

Solution
Transfer

Correction
Indicator

PDE’s and
discretization
methods

Solution transfer constraints

mesh with fields

mesh
with
fields

calculated fields

mesh size
 field

meshes
and
fields

meshing
operation geometric

 interrogation

Attributed

 topology

non-manifold
model construction

geometry updates

mesh size
field

mesh

Partition Control

Creation of Parallel Adaptive Loops

50

▪ In memory adaptive loops support effective
data movement.

▪ In-memory adaptive loops for:

• MFEM – High order
 FE framework

• PHASTA – FE for NS

• FUN3D – FV CFD

• Proteus – multiphase FE

• Albany – FE framework

• ACE3P – High order FE
 electromagnetics

• M3D-C1 – FE based MHD

• Nektar++ – High order FE flow

Parallel Adaptive Simulation Workflows

Application of

active flow control

to aircraft tails

Blood flow on the

arterial system

Fields in a particle accelerator

51

Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with

~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements,
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right)

shows the first eigenmode of the electric field on the final (adapted) mesh.

52

Application interactions – Land Ice

▪ FELIX, a component of the Albany

framework is the analysis code.

▪ PUMI-Perfromant-Adapt parallel

mesh adaptation is integrated

with Albany to do:

▪ Estimate error.

▪ Adapt the mesh.

▪ Ice sheet mesh is modified to

minimize degrees of freedom.

▪ Field of interest is the ice sheet

velocity.

53

Application interactions – RF Fusion

▪ Accurate RF simulations require:

• Detailed antenna CAD geometry.

• CAD geometry defeaturing.

• Extracted physics curves from

GEQDSK equilibrium file.

• Analysis geometry combines

CAD, and physics geometry.

• 3D meshes for accurate FE

calculations in MFEM.

• Projection based error

estimator.

• Conforming mesh

adaptation with PUMI.

CAD of

antenna array

Initial Mesh Final Adapted Mesh

Defeatured

antenna in

curved mesh

Fast elimination of unwanted features

54

PUMI-Pic data structures are mesh centric:

 Mesh is distributed as needed by the

application in terms of PICparts.

 Mesh can be graded and anisotropic.

 Particle data associated with elements.

 Operations take advantage of

distributed mesh topology.

 Mesh relation to geometry used to speed

calculation for near surface physics.

 Mesh distributed in PICparts:

 Start with a partition of mesh into a

set of “core parts”.

 A PICpart is defined by a “core part”

and sufficient buffer to keep particles

on process for one or more pushes.

Supporting Unstructured Mesh for Particle-in-Cell Calculations

3D mesh

(with high

anisotropy)

A PICPart with

part buffers.

Upper: PICpart more for

random particle motion.

Lower: Two PICparts for

field following particles

Particle Push
(update x, v)

Field to Particle
(mesh → particle)

Field solve on
mesh

Charge Deposition
(particle → mesh)

55

Mesh Data Structure for Heterogeneous Systems

▪ Mesh topology/adaptation tool –

PUMI-Portable-Adapt:
• Conforming mesh adaptation (coarsening past

initial mesh, refinement, swap).

• Manycore and GPU parallelism using Kokkos.

• Distributed mesh via mesh partitions with MPI

communications.

• Support for mesh-based fields.

• Curved mesh adaptation.

• Efficient field storage.

• Kokkos implementation on

latest NVIDIA, AMD and

Intel GPUs.
Mesh entity adjacency arrays.

Serial and RIB partitioned mesh of RF

antenna and vessel model.

Adaptation following

rotating flow field.

56

PUMI-Pic Particle Data Structures

▪ Layout of particles in memory is critical to performance:

• Optimizes push (sort/rebuild), scatter, and gather operations.

• Associate particles with elements for large per element particle cases.

• Support changes in the number of particles per element.

• Evenly distributes work under a range of particle distributions

(e.g. uniform, Gaussian, exponential, etc.).

• Stores a lot of particles per GPU – low overhead.

▪ Particle data structure interface and implementation:

• API abstracts implementation for PIC code developers.

• CSR, Sell-C-σ, CabanaM, DPS.

• Performance is a function of

particle distribution.

• Cabana AoSoA w/a CSR index of

elements-to-particles are promising.

• DPS particle structure for low

particle density applications. Left to Right: CSR, SCS with vertical slicing

(yellow boxes), CabanaM (red boxes are

SOAs). C is a team of threads.
57

PIC Operations Supported by PUMI-Pic

• Particle push.

• Adjacency based search

− Faster than grid based search.

• Element-to-particle association update.

• Particle Migration.

• Particle path visualization.

• Mesh partitioning w/buffer regions.

• Mesh field association.

• Fast construction of elements within given distance of mesh

faces on model surface.

• Poisson field solve using PETSc DMPlex on GPUs.

2020 PUMIPic Paper: https://www.scorec.rpi.edu/REPORTS/2020-2.pdf

58

PUMI-Pic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMI-Pic:

◼ All operations on GPUs – push, gather/scatter, etc.

Testing of PUMI-Pic for use in XGC like push:

◼ 2M elements, 1M vertices, 2 to 128 poloidal planes.

◼ Pseudo push and particle-to-mesh gyro scatter.

◼ Tested on up to 24,576 GPUs with 1.1 trillion

particles, for 100 iterations: push, adjacency.

◼ PUMI-Pic weak scaling up to 24,576 GPUs (4096

nodes) with 48 million particles per GPU.

Total time comparison:

◼ Ran on NERSC’s Perlmutter.

◼ XGCm 3 times faster than XGC for adiabatic

electron case, 21% faster for

kinetic electron case.

59

PUMIPic based GITRm Impurity Transport Code

▪ Incorporates impurity transport capabilities of GITR.

▪ 3D mesh for cases including divertors, tiles, limiters,

specific diagnostics/probes etc.

▪Status:

• Physics equivalent to GITR.

• Efficient Multi-species capabilities.

• Anisotropy mesh for accurate field transfer.

• Field transfer from SOLPS to 3D mesh.

• Non-uniform particle distribution

– evolves quickly in time.

• Load balancing particles via PUMI-Balance.

• Distance to boundary for sheath E field.

• Post-processing on 3D unstructured mesh.

Probes

60

PUMI-Tally - GPU Acceleration of Monte Carlo Tallies

▪ Builds on PUMI-PIC core to support

mesh-based tallies.

▪ Implements track length tallies.

• Sum weighted length of moves.

▪ Batch the particles for data parallel.

▪ Tested on both GPU and CPU’s.

▪ Compared to OpenMC implementation

 (does not batch particles):

• 19.7 times faster on and NVIDIA A100.

• 9.2 times faster using OpenMP on two

AMD EPYC 7763 CPUs.

• Field transfer from SOLPS to 3D mesh.

• GPU version demonstrated a 6.7 times

improvement in energy consumption.

61
Energy consumption

Computation Time

Parallel Coupler for Multimodel Simulations (PCMS)

Goals of PCMS:

▪ Keep applications clean. Only modification to application

codes is access its data structures.

▪ General structures and functions for coupling operations.

▪ Make effective use of the massively parallel,

heterogeneous computing systems.

App A data

App B

data

App B

data

App A data

A
D

IO
S

2

A
D

IO
S

2

A
D

IO
S

2

A
D

IO
S

2

Data in

App A

format

Data in

App B

format

Unmodifie

d App A

Routines

Unmodifie

d App B

Routines

Coupler

EFFIS 2.0

Multiscale Simulation
Specification

App A Parameters and

description of structures

App B Parameters and

description of structures
C

o
n

v
e

rt
 d

a
ta

to

/f
ro

m
 C

o
u

p
le

r
/

A
p

p
 B

C
o
n

v
e

rt
 d

a
ta

to

/f
ro

m
 C

o
u

p
le

r
/

A
p

p
 A

S
e

tu
p
 a

n
d

p

a
ra

m
e

te
r

e
v
a
lu

a
ti
o

n
 a

d
d

e
d

S
e

tu
p
 a

n
d

p

a
ra

m
e

te
r

e
v
a
lu

a
ti
o

n
 a

d
d

e
d

Each application solves its model(s) over a portion of the domain.

▪ The domains overlap: The overlap can

include three subregions.

▪ The blended region in which the fields are

coupled based on a field blending strategy.

▪ A buffer region for Application A (edge) in

which the “right” end boundary conditions

are determined by Application B (core)

and/or source terms added.

▪ A buffer region for Application B (core) in

which the “left” end boundary conditions are

determined by Application A (edge) and/or

source terms added.

In-Memory Coupling of Fusion Codes

63

AppA

given by AppB

AppB

given by AppA

Blended

=1=0


AppA

AppB
Blended

AppA
buffer

AppB
buffer

core

edge
edge

given by core∫

Red curves are flux
 curves used to

define region
boundaries

core
given by edge∫

Challenge:

▪ The coupled applications need to control their domain partitioning

to meet their specific needs.

Approach:

▪ Coupling applications A and B, each of which has it own partitions.

▪ Rendezvous algorithm uses a third partition to coordinate data transfers

between the applications.

▪ “Rendezvous” algorithm “enables scalable algorithms which are most

useful when processors neither know which other processors to send data

to, nor which other processors will be sending data to them”.

“Rendezvous” Algorithm to Control Coupler Domain Partition

Example Field Transfer with RBF on LCPP

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦 loaded as the

exact/initial field in the

coupler app

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦 after 10 MLS-RBF

interpolation operation: cell to

node and node to cell in each

iteration. 𝝆 = 𝟎. 𝟎𝟎𝟕

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦 error field after 10

MLS-RBF interpolation

operation: cell to node and

node to cell in each iteration.

𝝆 = 𝟎. 𝟎𝟎𝟕

error  = log10 𝑓𝑖 − 𝑔𝑖

XGC mesh with 611,359

elements and 306, 002

nodes

65

In Situ Machine Learning During Simulations

• Simulation data too large to save
=> need Online Machine Learning.

• Dynamic PDE data stream provides more
and better training data.

• Training using Smartsim/SmartRedis.

• Clustered and co-located deployment of
components utilizing CPU and/or GPU.

• Scalable: negligible overhead on simulation

• Data parallel training with Horovod
and PyTorch DDP.

• No dependency on analysis code/ARCH
(tested with PHASTA (legacy) and

libCEED (ECP) on Aurora and Polaris).

Online training with user

interactive script
R.Balin et al., In Situ Framework
for Coupling Machine Learning

with Application to CFD,
https://doi.org/10.48550/

arXiv.2306.12900

66

Mesh Related AI/ML Developments

Improve sensor data

multiscale
ML

Comparing ML to Multiscale

Robust feature detection/processing:
▪ Physics-based and AI/ML sensors: neural network

processes fragmented/noisy data.

▪ Application: anisotropic diffusion transport in

fusion devices, ground line dynamics in ice sheets.

▪ Physics informed material models

▪ Machine learned constitutive models can reduce

runtime cost of upscaling FEM simulations by

orders of magnitude while retaining 80% of

accuracy.

▪ ML Agents for automated hex meshing
▪ Reinforced learning agent decomposes

CAD modes into regions suitable for

hexahedral mesh generation.

67

Run the latest Simmetrix and PUMI software on RPI systems

We will help you run the latest Simmetrix and PUMI model

preparation, mesh generation, and adaptation tools on your

problem using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via

email at smithc11@rpi.edu for more information.

68

mailto:smithc11@rpi.edu

ATPESC 2025

▪ Backed by well-developed theory

▪ Naturally support unstructured and curvilinear grids.

▪ Finite elements naturally connect different physics

▪ High-order finite elements on high-order meshes

• increased accuracy for smooth problems

• sub-element modeling for problems with shocks

• bridge unstructured/structured grids

• bridge sparse/dense linear algebra

• HPC utilization, FLOPs/bytes increase with the order

▪ Need new (interesting!) R&D for full benefits

• meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simulation
of shock triple-point interaction

High-order

thermodynamics

High-order

MHD

High-order

rad. diffusion

“nodes” “elems”“edges” “faces”

High-order

kinematics

Core-Edge tokamak EM wave
propagation

Finite elements are a good foundation for large-scale
simulations on current and future architectures

1

ATPESC 2025

mfem.org
(v4.8, April 2025)

Flexible discretizations on unstructured grids

▪ Triangular, quadrilateral, tetrahedral, hexahedral, prism, pyramid; volume,

surface and topologically periodic meshes

▪ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …

▪ Local conforming and non-conforming AMR, mesh optimization

▪ Hybridization and static condensation

High-order methods and scalability
▪ Arbitrary-order H1, H(curl), H(div)- and L2 elements

▪ Arbitrary order curvilinear meshes

▪ MPI scalable to millions of cores + GPU accelerated

▪ Enables development from laptops to exascale machines.

Solvers and preconditioners
▪ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …

▪ AMG solvers for full de Rham complex on CPU+GPU, geometric MG

▪ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
▪ Open-source (GitHub) with 114 contributors, 50 clones/day

▪ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …

▪ 75+ example codes & miniapps: mfem.org/examples

Modular Finite Element Methods (MFEM)

2

http://mfem.org/examples

ATPESC 2025

Example 1 – Laplace equation

3

▪ Mesh

▪ Finite element space

▪ Initial guess, linear/bilinear forms

▪ Linear solve

▪ Visualization

▪ works for any mesh & any H1 order

▪ builds without external dependencies

ATPESC 2025

Example 1 – Laplace equation

4

▪ Mesh

ATPESC 2025

Example 1 – Laplace equation

5

▪ Finite element space

ATPESC 2025

Example 1 – Laplace equation

6

▪ Initial guess, linear/bilinear forms

ATPESC 2025

Example 1 – Laplace equation

7

▪ Linear solve

▪ Visualization

ATPESC 2025

Example 1 – parallel Laplace equation

8

▪ Parallel mesh

▪ Parallel finite element space

▪ Parallel initial guess, linear/bilinear forms

▪ Parallel linear solve with AMG

▪ Visualization

▪ highly scalable with minimal changes

▪ build depends on hypre and METIS

▪ Parallel assembly

ATPESC 2025

Example 1 – parallel Laplace equation

9

ATPESC 2025

MFEM example codes: mfem.org/examples

10

▪ 40+ example codes, most with both serial + parallel versions

▪ Tutorials to learn MFEM features

▪ Starting point for new applications

▪ Show integration with many external packages

▪ Miniapps: more advanced, ready-to-use physics solvers

ATPESC 2025

Topology optimization for
additive manufacturing (LiDO)

Core-edge tokamak EM
wave propagation (SciDAC, RPI)

Inertial confinement
fusion (BLAST)

Heart modeling (Cardioid)
Adaptive MHD island

coalescence (SciDAC, LANL)
MRI modeling (Harvard Medical)

Some large-scale simulation codes powered by MFEM

11

ATPESC 2025

Lagrange phase

Physical time evolution

Based on physical motion

Remap phase

Pseudo-time evolution

Based on mesh motion

❖ Galerkin FEM

❖ Discont. Galerkin

Gauss-Lobatto basis

Bernstein basis

BLAST models shock hydrodynamics using high-order FEM
in both Lagrangian and Remap phases of ALE

12

ATPESC 2025

Parallel ALE for Q4 Rayleigh-
Taylor instability (256 cores)

High-order finite elements lead to more accurate, robust
and reliable hydrodynamic simulations

13

Robustness in
Lagrangian shock-3pt
axisymm. interaction

Symmetry in
3D implosion

Symmetry in
Sedov blast

ATPESC 2025

Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K DOFs

Strong scaling, fixed #dofs

SGH

Finite element partial assembly FLOPs increase faster than runtime

more FLOPs,

same runtime

256 cores

High-order finite elements have excellent strong scalability

14

ATPESC 2025

Conforming & Nonconforming Mesh Refinement

15

ATPESC 2025 16

Adaptive mesh refinement on library level:

– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes

– h-refinement with fixed p

General approach:

– any high-order finite element space, H1, H(curl),
H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derefinement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in
applications)

MFEM’s unstructured AMR infrastructure

Example 15

Shaper miniapp

ATPESC 2025

General nonconforming constraints

High-order elements

Constraint: local interpolation matrix

17

Constraint: e = f = d/2

H(curl) elements

Indirect constraints

More complicated in 3D…

ATPESC 2025

Nonconforming variational restriction

18

ATPESC 2025

Nonconforming variational restriction

19

ATPESC 2025

Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

20

ATPESC 2025

Nonconforming variational restriction

Conforming solution y = P x

21

ATPESC 2025 22

AMR = smaller error for same number of unknowns

Anisotropic adaptation to

shock-like fields in 2D & 3D

uniform refinement

1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR

ATPESC 2025

Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores

23

ATPESC 2025

 1

 10

 100

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 384K

T
im

e
 o

f
A

M
R

 i
te

ra
ti
o

n
 [
s
e

c
o
n

d
s
]

CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
size 2M
size 4M
size 8M

size 16M
size 32M
size 64M

Parallel decomposition

(2048 domains shown)

Parallel partitioning via

Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q

• measure AMR only components: interpolation matrix, assembly, marking,

refinement & rebalancing (no linear solves, no “physics”)

Parallel AMR scaling to ~400K MPI tasks

24

ATPESC 2025 25

The assembly/evaluation of FEM operators can be decomposed into parallel, mesh
topology, basis, and geometry/physics components:

Fundamental finite element operator decomposition

 purely algebraic

 partial assembly = store only D, evaluate B (tensor-product structure)

 AD-friendly

 better representation than A: optimal memory, near-optimal FLOPs

 high-order operator format

* libCEED, github.com/ceed/libceed

ATPESC 2025 26

Poisson problem in variational form

Stiffness matrix (unit coefficient)

(BT)ik BkjDkkG,GT

Aij

• J is the Jacobian of the element
mapping (geometric factors)

• G is usually Boolean (except AMR)

• Element matrices AE = BTDB, are full,
account for bulk of the physics, can be
applied in parallel

• Never form AE, just apply its action
based on actions of B, BT and D

Example of a fast high-order operator

ATPESC 2025

CEED BP1 bakeoff on BG/Q

 All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.

 BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q.

 Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020

 Cooperation/collaboration is what makes the bake-offs rewarding.

Nek5000 MFEM-improved deal.ii

27

ATPESC 2025 28

Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

▪ Several MFEM examples + miniapps have been ported with small changes

▪ Many kernels have a single source for CUDA, RAJA and OpenMP backends

▪ Backends are runtime selectable, can be mixed

▪ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020

ATPESC 2025 29

1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s

Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s

Problem size: 10+ million

MFEM performance on multiple GPUs

ATPESC 2025 30

Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

can utilize tensor cores on A100

have better strong scaling,

V100 MI100 A100 H100

achieve 10+ GDOFs on H100

ATPESC 2025

• Explicit matrix assembly impractical at high order:

– Polynomial degree 𝑝, spatial dimension 𝑑

– Matrix assembly + sparse matvecs:

• 𝒪(𝑝2𝑑) memory transfers

• 𝒪(𝑝3𝑑) computations

• can be reduced to 𝒪(𝑝2𝑑+1) computations by sum factorization

– Matrix-free action of the operator (partial assembly):

• 𝒪(𝑝𝑑) memory transfers – optimal

• 𝒪(𝑝𝑑+1) computations – nearly-optimal

• efficient iterative solvers if combined with effective preconditioners

• Challenges:

– Traditional matrix-based preconditioners (e.g. AMG) not available

– Condition number of diffusion systems grows like 𝒪(𝑝3/ℎ2)

31

Matrix-free preconditioning

𝑝 + 1

𝒪(𝑝𝑑) element dofs

ATPESC 2025 32

Low-Order-Refined (LOR) preconditioning

“Low-order preconditioning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

I

I

HO LOR

▪ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

▪ ALOR is sparse and spectrally equivalent to AHO

▪ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR - can use BoomerAMG, AMS, ADS

ATPESC 2025

▪ More information and publications

• MFEM – mfem.org

• BLAST – computation.llnl.gov/projects/blast

• CEED – ceed.exascaleproject.org

▪ Open-source software

▪ Ongoing R&D

• GPU-oriented algorithms for Frontier, Aurora, El Capitan

• Matrix-free scalable preconditioners

• Automatic differentiation, design optimization

• Deterministic transport, multi-physics coupling

High-order methods show promise for high-quality &
performant simulations on exascale platforms

33

Q4 Rayleigh-Taylor single-
material ALE on 256 processors

ATPESC 2025

Upcoming MFEM Events

MFEM at LLNL HPC Tutorials

September 9, 2025

MFEM Community Workshop

September 10-11, 2025
Portland State University + Virtual

https://mfem.org/workshophttps://hpcic.llnl.gov/

Seminar series: https://mfem.org/seminar

34

This work performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

LLNL-PRES-755924

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National

Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

	Slide 35: FASTMath Unstructured Mesh Technologies
	Slide 36: Unstructured Mesh Methods
	Slide 37: Unstructured Mesh Methods
	Slide 38: FASTMath Unstructured Mesh Development Areas
	Slide 39: FASTMath Unstructured Mesh Tools and Components
	Slide 40: Parallel Unstructured Mesh Infrastructure
	Slide 41: Parallel Unstructured Mesh Infrastructure
	Slide 42: Mesh Generation and Control
	Slide 43: General Mesh Modification for Mesh Adaptation
	Slide 44: Mesh Adaptation Capabilities
	Slide 45: Mesh Adaptation of Evolving Geometry Problems
	Slide 46: Load Balancing, Dynamic Load balancing
	Slide 47: Zoltan/Zoltan2 Toolkits: Partitioners
	Slide 48: A New Graph Partitioner for GPU: Jet
	Slide 49: PUMI-Balance Reduces Hyper-Graph Imbalance
	Slide 50
	Slide 51
	Slide 52: Application interactions – Accelerator EM
	Slide 53: Application interactions – Land Ice
	Slide 54: Application interactions – RF Fusion
	Slide 55: Supporting Unstructured Mesh for Particle-in-Cell Calculations
	Slide 56: Mesh Data Structure for Heterogeneous Systems
	Slide 57: PUMI-Pic Particle Data Structures
	Slide 58: PIC Operations Supported by PUMI-Pic
	Slide 59: PUMI-Pic based XGCm Edge Plasma Code
	Slide 60: PUMIPic based GITRm Impurity Transport Code
	Slide 61: PUMI-Tally - GPU Acceleration of Monte Carlo Tallies
	Slide 62: Parallel Coupler for Multimodel Simulations (PCMS)
	Slide 63: In-Memory Coupling of Fusion Codes
	Slide 64: “Rendezvous” Algorithm to Control Coupler Domain Partition
	Slide 65: Example Field Transfer with RBF on LCPP
	Slide 66: In Situ Machine Learning During Simulations
	Slide 67: Mesh Related AI/ML Developments
	Slide 68: Run the latest Simmetrix and PUMI software on RPI systems

