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Unstructured mesh – a spatial domain discretization composed 

of topological entities with general connectivity and shape

Unstructured Mesh Methods

Advantages

▪ Automatic mesh generation for 

any level of geometric complexity.

▪ Can provide the highest accuracy 

on a per degree of freedom basis

▪ General mesh anisotropy possible

▪ Meshes can easily be adaptively 

modified.

▪ Given a complete geometry, with 

analysis attributes defined on that 

model, the entire simulation 

workflow can be automated.

Disadvantages

▪ More complex data structures and 

increased program complexity, 

particularly in parallel.

▪ Requires careful mesh quality 

control (level of control required is 

a function of the unstructured 

mesh analysis code).

▪ Poorly shaped elements increase 

condition number of global system 

which makes iterative matrix 

solves slower and harder.

▪ Non-tensor product elements not 

as computationally efficient.
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Goal of FASTMath unstructured mesh developments include:

▪ Provide unstructured mesh components that are easily used 

by application code developers to extend their simulation 

capabilities.

▪ Ensure those components execute on exascale computing 

systems and support performant exascale application codes.

▪ Develop components to operate through multi-level APIs that 

increase interoperability and ease of integration.

▪ Address technical gaps by developing tools that address 

needs and/or eliminate/minimize disadvantages of 

unstructured meshes.

▪ Work with DOE application developers on integration of these 

components into their codes.

▪ Develop unstructured mesh version of applications.

Unstructured Mesh Methods
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▪ Unstructured Mesh Analysis Codes – Support application’s 

PDE solution needs – MFEM library is a key example.

▪ Performant Mesh Adaptation – Parallel mesh adaptation to 

integrate into analysis codes to ensure solution accuracy. 

▪ Dynamic Load Balancing and Task Management – 

Technologies to ensure load balance and effectively 

execute by optimal task placement. 

▪ Unstructured Mesh for Particle Codes – Tools to support 

particle operations on unstructured meshes.

▪ Code Coupling Tools – Parallel geo./mesh/field coupling 

▪ In Situ Vis and Data Analytics – Tools to gain insight as  

simulations execute.

▪ Unstructured Mesh ML and UQ – ML for data reduction,

              adaptive mesh UQ.

FASTMath Unstructured Mesh Development Areas
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▪ FE Analysis codes: 

• MFEM (https://mfem.org/): High-order exascale finite element library.

• LGR (https://github.com/SNLComputation/lgrtk): Tool Kit for Lagrangian 

grid reconnection.

• PHASTA (https://github.com/phasta/phasta): Stabilized finite element 

fluid dynamics code.

▪ Load balancing, task placement:

• Jet (https://github.com/sandialabs/Jet-Partitioner/): Parallel graph 

partitioner that runs on most CPU and GPU systems.

• Zoltan (https://github.com/sandialabs/Zoltan): Dynamic load balancing 

library.

• Zoltan2 (https://github.com/trilinos/Trilinos/tree/master/packages/zoltan2): 

A package of combinatorial algorithms for scientific computing.

• PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based 

parallel unstructured mesh dynamic partition improvement component

FASTMath Unstructured Mesh Tools and Components
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▪ Unstructured Mesh Infrastructure:

• PUMI-General-Adapt (https://github.com/SCOREC/core): CPU based 

scalable conforming mesh adaptation based on local mesh modification.

• PUMI-Portable-Adapt (https://github.com/SCOREC/omega_h): 

Perfromant (CPUs and GPUs currently) infrastructure supporting scalable 

conforming mesh adaptation based on local mesh modification.

• PUMI-Pic (https://github.com/SCOREC/pumi-pic): Performance portable 

(CPUs and GPUs) with scalable mesh and particle data structures and 

operators to support particle-in-cell simulation codes.

• PUMI-Tally (to be released soon): Performance portable (CPUs and 

GPUs) infrastructure with scalable mesh and particle data structures and 

operators to support Monte Carlo neutral particle transport.  

• PUMI-Balance (http://scorec.github.io/EnGPar/): A hyper-graph based 

parallel unstructured mesh dynamic partition improvement component.

▪ General code coupling:

• PCMS (https://github.com/SCOREC/pcms): Code coupling library for 

              exascale applications (from file based to parallel in memory). 

Parallel Unstructured Mesh Infrastructure
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Distributed meshPartition modelGeometric model

Parallel Unstructured Mesh Infrastructure

Support unstructured mesh interactions on exascale systems

• Mesh hierarchy to support interrogation 

and modification of meshes.

• Maintains linkage to original geometry.

• Conforming mesh adaptation.

• Inter-process communication.

• Supports field  operations.

iM
0

jM
1

1P

0P
2P

inter-process part  

boundary

intra-process part  

boundary

Proc jProc i
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Mesh Generation: 

▪ Automatically mesh complex domains – should work 

directly from CAD, image data, etc.

▪ Use tools like Gmsh, Simmetrix, etc.

Mesh control: 

▪ Use a posteriori information to improve mesh.

▪ Curved geometry and curved mesh entities.

▪ Support full range of mesh modifications – 

vertex motion, mesh entity curving, cavity based

refinement and coarsening, etc. anisotropic adaptation.

▪ Control element shapes as needed by the various 

discretization methods for maintaining accuracy and efficiency.

Parallel execution of all functions is critical on large meshes.

Mesh Generation and Control
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General Mesh Modification for Mesh Adaptation

▪ Driven by an anisotropic mesh size field that can be set by any 

combination of criteria.

▪ Employ a set of mesh modification operations to alter the mesh 

into one that matches the given mesh size field.

▪ Advantages:  

• Supports general anisotropic meshes.

• Can obtain level of accuracy desired.

• Can deal with any level of geometric domain complexity

• Solution transfer can be applied incrementally - provides 
more control to satisfy conservation constraints.

Edge split face split Double split collapse to remove sliverEdge collapse
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Mesh Adaptation Capabilities
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Adaptation of 

curved high-
order elements

Tracking evolving solution features

Automatic 

detection and 
isolation of 

solution features

Mixed element 

topology 
boundary layer 

mesh adaptation

Parallel 

adaptation of 
mesh with > 90 
billion elements



Many applications have geometry that evolves as a function of the results: 

Effective adaptive loops combine mesh motion and mesh modification.

Adaptive loop:

1. Initialize analysis case, generate initial mesh, start time stepping loop.

2. Perform time steps employing mesh motion - monitor element quality 

and discretization errors.

3. When element quality is not satisfactory or discretization errors too 

large – set mesh size field and perform mesh modification.

4. Return to step 2. 

Mesh Adaptation of Evolving Geometry Problems
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▪ Purpose: Balance or rebalance computational load while 

controlling communications.

• Equal “work load” with minimum inter-process communications.

▪ FASTMath load balancing tools:

• Jet library is a multilevel graph partitioner 

that runs on a GPU (distributed mesh 

version under development). 

• Zoltan/Zoltan2 libraries 

provide multiple dynamic 

partitioners with general control

of partition objects and weights.

• PUMI-Balance diffusive multi-criteria

partition improvement.

Load Balancing, Dynamic Load balancing
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Zoltan/Zoltan2 Toolkits: Partitioners

Recursive Coordinate Bisection

Recursive Inertial Bisection

Multi-Jagged Multi-section

Space Filling Curves 

PHG Graph Partitioning

Interface to ParMETIS  (U. Minnesota)

Interface to PT-Scotch (U. Bordeaux)

PHG Hypergraph Partitioning

Interface to PaToH (Ohio St.)

Suite of partitioners supports a wide range of applications; 

no single partitioner is best for all applications.

Geometric

Topology-based
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A New Graph Partitioner for GPU: Jet

▪ Multilevel graph partitioner 

on GPU.

▪ Uses new label propagation type 

refinement algorithm.

▪ Results (blue bars) slightly 

better than Metis/Parametis,

but significant speedup due 

to GPU execution.

▪ Best partitions for 98% of 

the test graphs from finite 

element meshes.

▪ Currently single GPU (up to ~1B edges)

▪ Multi GPU - distributed memory version is under development.
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▪ Hyper-graph supports multiple 

dependencies (edges) between 

application work/data items (vertices).

▪ Application defined graph vertices 

and edges.

▪ Diffusion movement of work from heavily 

loaded parts to lightly loaded parts.

▪ In 8 seconds, PUMI-Balance reduced a 

53% vtx imbalance to 6%, at a cost of 

5% elm imbalance, and edge cut 

increase by 1% on a 1.3B element mesh.

▪ Applied to PIC calculations for particle 

balance – 20% reduction in run time.

PUMI-Balance Reduces Hyper-Graph Imbalance

Application of EnGPar particle 

dynamic load balancing in a GITRm 

impurity transport simulation
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Parallel data and services used to develop adaptive simulations:

▪ Geometric model topology for domain linkage.

▪ Mesh topology – it must be distributed. 

▪ Simulation fields distributed over geometric model and mesh.

▪ Partition control.

▪ Dynamic load 

balancing required 

at multiple steps. 

▪ API’s to link to:

• CAD/Geometry
• Mesh generation

and adaptation.

• Error estimation.
• Field transfer.

Parallel Data & Services

Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Physics and Model Parameters Input Domain Definition with Attributes

Mesh-Based 
Analysis

Complete 
Domain 

Definition

Mesh Generation 
and/or Adaptation

Postprocessing/
Visualization

Solution
Transfer

Correction 
Indicator

PDE’s and
discretization
methods

Solution  transfer constraints

mesh with fields

mesh 
with 
fields

calculated fields

mesh size 
          field

meshes 
and 
fields

meshing 
operation geometric

          interrogation

Attributed 

   topology 

non-manifold
model construction

geometry updates

mesh size 
field

mesh 

Partition Control

Creation of Parallel Adaptive Loops
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▪ In memory adaptive loops support effective 
data movement.

▪ In-memory adaptive loops for:

• MFEM – High order 
               FE framework 

• PHASTA – FE for NS

• FUN3D – FV CFD

• Proteus – multiphase FE

• Albany – FE framework

• ACE3P – High order FE 
    electromagnetics

• M3D-C1 – FE based MHD

• Nektar++ – High order FE flow

Parallel Adaptive Simulation Workflows

Application of 

active flow control 

to aircraft tails 

Blood flow on the 

arterial system

Fields in a particle accelerator
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Application interactions – Accelerator EM

Omega3P Electro Magnetic Solver (second-order curved meshes)

This figure shows the adaptation results for the CAV17 model. (top left) shows the initial mesh with 

~126K elements, (top right) shows the final (after 3 adaptation levels) mesh with ~380K elements, 
(bottom left) shows the first eigenmode for the electric field on the initial mesh, and (bottom right) 

shows the first eigenmode of the electric field on the final (adapted) mesh.
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Application interactions – Land Ice

▪ FELIX, a component of the Albany 

framework is the analysis code.

▪ PUMI-Perfromant-Adapt parallel 

mesh adaptation is integrated 

with Albany to do:

▪ Estimate error.

▪ Adapt the mesh.

▪ Ice sheet mesh is modified to 

minimize degrees of freedom.

▪ Field of interest is the ice sheet 

velocity.
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Application interactions – RF Fusion

▪ Accurate RF simulations require:

• Detailed antenna CAD geometry.

• CAD geometry defeaturing.

• Extracted physics curves from 

GEQDSK equilibrium file. 

• Analysis geometry combines 

CAD, and physics geometry.

• 3D meshes for accurate FE 

calculations in MFEM.

• Projection based error 

estimator.

• Conforming mesh 

adaptation with PUMI.

CAD of 

antenna array

Initial Mesh Final Adapted Mesh

Defeatured 

antenna in 

curved mesh 

Fast elimination of unwanted features
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PUMI-Pic data structures are mesh centric:

 Mesh is distributed as needed by the 

application in terms of PICparts.

 Mesh can be graded and anisotropic.

 Particle data associated with elements.

 Operations take advantage of 

distributed mesh topology.

 Mesh relation to geometry used to speed 

calculation for near surface physics.

 Mesh distributed in PICparts:

 Start with a partition of mesh into a 

set of “core parts”.

 A PICpart is defined by a “core part” 

and sufficient buffer to keep particles 

on process for one or more pushes.

Supporting Unstructured Mesh for Particle-in-Cell Calculations

3D mesh

(with high 

anisotropy)

A PICPart with

part buffers.

Upper: PICpart more for 

random particle motion.

Lower: Two PICparts for 

field following particles  

Particle Push
(update x, v)

Field to Particle
(mesh → particle)

Field solve on
mesh

Charge Deposition
(particle → mesh)
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Mesh Data Structure for Heterogeneous Systems

▪ Mesh topology/adaptation tool – 

PUMI-Portable-Adapt:
• Conforming mesh adaptation (coarsening past 

initial mesh, refinement, swap).

• Manycore and GPU parallelism using Kokkos.

• Distributed mesh via mesh partitions with MPI 

communications.

• Support for mesh-based fields.

• Curved mesh adaptation.

• Efficient field storage.

• Kokkos implementation on 

latest NVIDIA, AMD and 

Intel GPUs.
Mesh entity adjacency arrays.

Serial and RIB partitioned mesh of RF 

antenna and vessel model.

Adaptation following 

rotating flow field.
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PUMI-Pic Particle Data Structures

▪ Layout of particles in memory is critical to performance:

• Optimizes push (sort/rebuild), scatter, and gather operations.

• Associate particles with elements for large per element particle cases.

• Support changes in the number of particles per element.

• Evenly distributes work under a range of particle distributions 

(e.g. uniform, Gaussian, exponential, etc.). 

• Stores a lot of particles per GPU – low overhead.

▪ Particle data structure interface and implementation:

• API abstracts implementation for PIC code developers. 

• CSR, Sell-C-σ, CabanaM, DPS. 

• Performance is a function of 

particle distribution.

• Cabana AoSoA w/a CSR index of 

elements-to-particles are promising. 

• DPS particle structure for low 

particle density applications. Left to Right: CSR, SCS with vertical slicing 

(yellow boxes), CabanaM (red boxes are 

SOAs). C is a team of threads.
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PIC Operations Supported by PUMI-Pic

• Particle push.

• Adjacency based search

− Faster than grid based search.

• Element-to-particle association update.

• Particle Migration.

• Particle path visualization.

• Mesh partitioning w/buffer regions.

• Mesh field association.

• Fast construction of elements within given distance of mesh 

faces on model surface.

• Poisson field solve using PETSc DMPlex on GPUs. 

2020 PUMIPic Paper: https://www.scorec.rpi.edu/REPORTS/2020-2.pdf
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PUMI-Pic based XGCm Edge Plasma Code

XGCm is a version of XGC built on PUMI-Pic:

◼ All operations on GPUs – push, gather/scatter, etc.

Testing of PUMI-Pic for use in XGC like push: 

◼ 2M elements, 1M vertices, 2 to 128 poloidal planes.

◼ Pseudo push and particle-to-mesh gyro scatter.

◼ Tested on up to 24,576 GPUs with 1.1 trillion 

particles, for 100 iterations: push, adjacency.

◼ PUMI-Pic weak scaling up to 24,576 GPUs (4096 

nodes) with 48 million particles per GPU.
 

Total time comparison:

◼ Ran on NERSC’s Perlmutter.

◼ XGCm 3 times faster than XGC for adiabatic 

electron case, 21% faster for 

kinetic electron case.
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PUMIPic based GITRm Impurity Transport Code

▪ Incorporates impurity transport capabilities of GITR.

▪ 3D mesh for cases including divertors, tiles, limiters, 

specific diagnostics/probes etc.

▪Status:

• Physics equivalent to GITR.

• Efficient Multi-species capabilities.

• Anisotropy mesh for accurate field transfer.

• Field transfer from SOLPS to 3D mesh.

• Non-uniform particle distribution 

– evolves quickly in time.

• Load balancing particles via PUMI-Balance.

• Distance to boundary for sheath E field. 

• Post-processing on 3D unstructured mesh.

Probes
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PUMI-Tally - GPU Acceleration of Monte Carlo Tallies

▪ Builds on PUMI-PIC core to support 

mesh-based tallies.

▪ Implements track length tallies.

• Sum weighted length of moves.

▪ Batch the particles for data parallel.

▪ Tested on both GPU and CPU’s.

▪ Compared to OpenMC implementation

   (does not batch particles):

• 19.7 times faster on and NVIDIA A100.

• 9.2 times faster using OpenMP on two 

AMD EPYC 7763 CPUs.

• Field transfer from SOLPS to 3D mesh.

• GPU version demonstrated a 6.7 times 

improvement in energy consumption.
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Parallel Coupler for Multimodel Simulations (PCMS)

Goals of PCMS:

▪ Keep applications clean. Only modification to application 

codes is access its data structures. 

▪ General structures and functions for coupling operations.

▪ Make effective use of the massively parallel, 

heterogeneous computing systems. 
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Each application solves its model(s) over a portion of the domain.

▪ The domains overlap: The overlap can 

include three subregions.

▪ The blended region in which the fields are 

coupled based on a field blending strategy.

▪ A buffer region for Application A (edge) in 

which the “right” end boundary conditions 

are determined by Application B (core) 

and/or source terms added.

▪ A buffer region for Application B (core) in 

which the “left” end boundary conditions are 

determined by Application A (edge) and/or 

source terms added.

In-Memory Coupling of Fusion Codes 
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Challenge:

▪ The coupled applications need to control their domain partitioning 

to meet their specific needs.

Approach:

▪ Coupling applications A and B, each of which has it own partitions.

▪ Rendezvous algorithm uses a third partition to  coordinate data transfers 

between the applications.

▪ “Rendezvous” algorithm “enables scalable  algorithms which are most 

useful when processors neither know which other processors to send data 

to, nor which other processors will be sending data  to them”.

“Rendezvous” Algorithm to Control Coupler Domain Partition



Example Field Transfer with RBF on LCPP

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦 loaded as the 

exact/initial field in the 

coupler app

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦  after 10 MLS-RBF 

interpolation operation: cell to 

node and node to cell in each 

iteration. 𝝆 = 𝟎. 𝟎𝟎𝟕

𝑖𝑑𝑒𝑛𝑠𝑖𝑡𝑦  error field after 10 

MLS-RBF interpolation 

operation: cell to node and 

node to cell in each iteration. 

𝝆 = 𝟎. 𝟎𝟎𝟕

error  = log10 𝑓𝑖 − 𝑔𝑖

XGC mesh with 611,359 

elements and 306, 002 

nodes
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In Situ Machine Learning During Simulations

• Simulation data too large to save 
=> need  Online Machine Learning.

• Dynamic PDE data stream provides more 
and better training data. 

• Training using Smartsim/SmartRedis.

• Clustered and co-located deployment of 
components utilizing CPU and/or GPU.

• Scalable: negligible overhead on simulation

• Data parallel training with Horovod 
and PyTorch DDP.

• No dependency on analysis code/ARCH 
(tested with PHASTA (legacy) and 

libCEED (ECP) on Aurora and Polaris).

Online training with user 

interactive script 
R.Balin et al., In Situ Framework 
for Coupling Machine Learning  

with Application to CFD, 
https://doi.org/10.48550/

arXiv.2306.12900 
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Mesh Related AI/ML Developments

Improve sensor data

multiscale
ML

Comparing ML to Multiscale 

Robust feature detection/processing:
▪ Physics-based and AI/ML sensors: neural network 

processes fragmented/noisy data.

▪ Application: anisotropic diffusion transport in 

fusion devices, ground line dynamics in ice sheets.

▪ Physics informed material models

▪ Machine learned constitutive models can reduce 

runtime cost of upscaling FEM simulations by 

orders of magnitude while retaining 80% of 

accuracy.

▪ ML Agents for automated hex meshing
▪ Reinforced learning agent decomposes 

CAD modes into regions suitable for 

hexahedral mesh generation.
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Run the latest Simmetrix and PUMI software on RPI systems

We will help you run the latest Simmetrix and PUMI model 

preparation, mesh generation, and adaptation tools on your 

problem using HPC systems at RPI.

Contact Cameron Smith in Slack, during Speed-Dating, or via 

email at smithc11@rpi.edu for more information.
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ATPESC 2025

▪ Backed by well-developed theory

▪ Naturally support unstructured and curvilinear grids.

▪ Finite elements naturally connect different physics

▪ High-order finite elements on high-order meshes

• increased accuracy for smooth problems

• sub-element modeling for problems with shocks

• bridge unstructured/structured grids

• bridge sparse/dense linear algebra

• HPC utilization, FLOPs/bytes increase with the order

▪ Need new (interesting!) R&D for full benefits

• meshing, discretizations, solvers, AMR, UQ, visualization, …

8th order Lagrangian simulation 
of shock triple-point interaction

High-order 

thermodynamics

High-order 

MHD

High-order 

rad. diffusion

“nodes” “elems”“edges” “faces”

High-order 

kinematics

Core-Edge tokamak EM wave 
propagation

Finite elements are a good foundation for large-scale 
simulations on current and future architectures
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ATPESC 2025

mfem.org
(v4.8, April 2025)

Flexible discretizations on unstructured grids

▪ Triangular, quadrilateral, tetrahedral, hexahedral, prism, pyramid; volume, 

surface and topologically periodic meshes

▪ Bilinear/linear forms for: Galerkin methods, DG, HDG, DPG, IGA, …

▪ Local conforming and non-conforming AMR, mesh optimization

▪ Hybridization and static condensation

High-order methods and scalability
▪ Arbitrary-order H1, H(curl), H(div)- and L2 elements

▪ Arbitrary order curvilinear meshes

▪ MPI scalable to millions of cores + GPU accelerated

▪ Enables development from laptops to exascale machines.

Solvers and preconditioners
▪ Integrated with: HYPRE, SUNDIALS, PETSc, SLEPc, SUPERLU, VisIt, …

▪ AMG solvers for full de Rham complex on CPU+GPU, geometric MG

▪ Time integrators: SUNDIALS, PETSc, built-in RK, SDIRK, ...

Open-source software
▪ Open-source (GitHub) with 114 contributors, 50 clones/day

▪ Part of FASTMath, ECP/CEED, xSDK, OpenHPC, E4S, …

▪ 75+ example codes & miniapps: mfem.org/examples 

Modular Finite Element Methods (MFEM)

2
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ATPESC 2025

Example 1 – Laplace equation

3

▪ Mesh

▪ Finite element space

▪ Initial guess, linear/bilinear forms

▪ Linear solve

▪ Visualization

▪ works for any mesh & any H1 order

▪ builds without external dependencies



ATPESC 2025

Example 1 – Laplace equation

4

▪ Mesh



ATPESC 2025

Example 1 – Laplace equation

5

▪ Finite element space



ATPESC 2025

Example 1 – Laplace equation

6

▪ Initial guess, linear/bilinear forms



ATPESC 2025

Example 1 – Laplace equation

7

▪ Linear solve

▪ Visualization



ATPESC 2025

Example 1 – parallel Laplace equation

8

▪ Parallel mesh

▪ Parallel finite element space

▪ Parallel initial guess, linear/bilinear forms

▪ Parallel linear solve with AMG

▪ Visualization

▪ highly scalable with minimal changes

▪ build depends on hypre and METIS

▪ Parallel assembly



ATPESC 2025

Example 1 – parallel Laplace equation
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ATPESC 2025

MFEM example codes: mfem.org/examples 

10

▪ 40+ example codes, most with both serial + parallel versions

▪ Tutorials to learn MFEM features

▪ Starting point for new applications

▪ Show integration with many external packages

▪ Miniapps: more advanced, ready-to-use physics solvers



ATPESC 2025

Topology optimization for 
additive manufacturing (LiDO)

Core-edge tokamak EM
wave propagation (SciDAC, RPI)

Inertial confinement 
fusion (BLAST)

Heart modeling (Cardioid)
Adaptive MHD island

coalescence (SciDAC, LANL)
MRI modeling (Harvard Medical)

Some large-scale simulation codes powered by MFEM
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ATPESC 2025

Lagrange phase

Physical time evolution

Based on physical motion

Remap phase

Pseudo-time evolution

Based on mesh motion

❖ Galerkin FEM

❖ Discont. Galerkin

Gauss-Lobatto basis

Bernstein basis

BLAST models shock hydrodynamics using high-order FEM 
in both Lagrangian and Remap phases of ALE
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ATPESC 2025

Parallel ALE for Q4 Rayleigh-
Taylor instability (256 cores)

High-order finite elements lead to more accurate, robust 
and reliable hydrodynamic simulations

13

Robustness in 
Lagrangian shock-3pt 
axisymm. interaction

Symmetry in 
3D implosion

Symmetry in 
Sedov blast



ATPESC 2025

Strong scaling, p-refinement

1 zone/core

~600 dofs/zone

2D
256K DOFs

Strong scaling, fixed #dofs

SGH

Finite element partial assembly FLOPs increase faster than runtime

more FLOPs, 

same runtime

256 cores

High-order finite elements have excellent strong scalability

14
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Conforming & Nonconforming Mesh Refinement

15
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Adaptive mesh refinement on library level:

– Conforming local refinement on simplex meshes

– Non-conforming refinement for quad/hex meshes 

– h-refinement with fixed p

General approach: 

– any high-order finite element space, H1, H(curl), 
H(div), …, on any high-order curved mesh

– 2D and 3D

– arbitrary order hanging nodes

– anisotropic refinement

– derefinement

– serial and parallel, including parallel load balancing

– independent of the physics (easy to incorporate in 
applications)

MFEM’s unstructured AMR infrastructure

Example 15

Shaper miniapp
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General nonconforming constraints

High-order elements

Constraint:  local interpolation matrix

17

Constraint:  e = f = d/2

H(curl) elements

Indirect constraints

More complicated in 3D…
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Nonconforming variational restriction

18
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Nonconforming variational restriction

19
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Nonconforming variational restriction

Regular assembly of A on the elements of the (cut) mesh

20
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Nonconforming variational restriction

Conforming solution y = P x

21
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AMR = smaller error for same number of unknowns

Anisotropic adaptation to 

shock-like fields in 2D & 3D

uniform refinement

1st,2nd,4th,8th order

1st order AMR

2nd order AMR

4th order AMR

8th order AMR
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Parallel dynamic AMR, Lagrangian Sedov problem

Adaptive, viscosity-based refinement and 
derefinement. 2nd order Lagrangian Sedov

Parallel load balancing based on space-
filling curve partitioning, 16 cores

23
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CPU cores

ideal strong scaling
weak scaling

size 0.5M
size 1M
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size 8M

size 16M
size 32M
size 64M

Parallel decomposition 

(2048 domains shown)

Parallel partitioning via 

Hilbert curve

• weak+strong scaling up to ~400K MPI tasks on BG/Q

• measure AMR only components: interpolation matrix, assembly, marking, 

refinement & rebalancing (no linear solves, no “physics”)

Parallel AMR scaling to ~400K MPI tasks

24
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The assembly/evaluation of FEM operators can be decomposed into parallel, mesh 
topology, basis, and geometry/physics components:

Fundamental finite element operator decomposition

 purely algebraic

 partial assembly = store only D, evaluate B (tensor-product structure)

 AD-friendly

 better representation than A: optimal memory, near-optimal FLOPs

 high-order operator format

* libCEED, github.com/ceed/libceed
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Poisson problem in variational form

Stiffness matrix (unit coefficient)

(BT)ik BkjDkkG,GT

Aij 

• J is the Jacobian of the element 
mapping (geometric factors)

• G is usually Boolean (except AMR)

• Element matrices AE = BTDB, are full, 
account for bulk of the physics, can be 
applied in parallel

• Never form AE, just apply its action 
based on actions of B, BT and D

Example of a fast high-order operator
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CEED BP1 bakeoff on BG/Q

 All runs done on BG/Q (for repeatability), 16384 MPI ranks. Order p = 1, ...,16; quad. points q = p + 2.

 BP1 results of MFEM+xlc (left), MFEM+xlc+intrinsics (center), and deal.ii + gcc (right) on BG/Q. 

 Paper: “Scalability of High-Performance PDE Solvers”, IJHPCA, 2020

 Cooperation/collaboration is what makes the bake-offs rewarding.

Nek5000 MFEM-improved deal.ii

27



ATPESC 2025 28

Device support in MFEM

MFEM support GPU acceleration in many linear algebra and finite element operations

▪ Several MFEM examples + miniapps have been ported with small changes

▪ Many kernels have a single source for CUDA, RAJA and OpenMP backends

▪ Backends are runtime selectable, can be mixed

▪ Recent improvements in CUDA, HIP, RAJA, SYCL, …

“MFEM: A modular finite element methods library”, CAMWA 2020
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1 GPU 4 GPUs 1024 GPUs

Best total performance: 2.1 TDOF/s

Largest size: 34 billion

Optimized kernels for MPI buffer packing/unpacking on the GPU

Single GPU performance: 2.6 GDOF/s

Problem size: 10+ million

MFEM performance on multiple GPUs
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Recent improvements on NVIDIA and AMD GPUs

New MFEM GPU kernels: perform on both V100 + MI100,

MI250X results in the CEED-MS39 report: ceed.exascaleproject.org/pubs

can utilize tensor cores on A100

have better strong scaling,

V100 MI100 A100 H100

achieve 10+ GDOFs on H100
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• Explicit matrix assembly impractical at high order:

– Polynomial degree 𝑝, spatial dimension 𝑑

– Matrix assembly + sparse matvecs:

• 𝒪(𝑝2𝑑) memory transfers

• 𝒪(𝑝3𝑑) computations

• can be reduced to 𝒪(𝑝2𝑑+1) computations by sum factorization

– Matrix-free action of the operator (partial assembly):

• 𝒪(𝑝𝑑) memory transfers – optimal 

• 𝒪(𝑝𝑑+1) computations – nearly-optimal

• efficient iterative solvers if combined with effective preconditioners

• Challenges:

– Traditional matrix-based preconditioners (e.g. AMG) not available

– Condition number of diffusion systems grows like 𝒪(𝑝3/ℎ2)

31

Matrix-free preconditioning

𝑝 + 1

𝒪(𝑝𝑑) element dofs
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Low-Order-Refined (LOR) preconditioning

“Low-order preconditioning for the high-order de Rham complex”, Pazner, Kolev, Dohrmann, 2022

Efficient LOR-based preconditioning of H1, H(curl), H(div) and L2 high-order operators

I

I

HO LOR

▪ Pick LOR space and HO basis so P=R=I (Gerritsma, Dohrmann)

▪ ALOR is sparse and spectrally equivalent to AHO 

▪ (AHO)-1 ≈ (ALOR)-1 ≈ BLOR  - can use BoomerAMG, AMS, ADS
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▪ More information and publications

• MFEM – mfem.org

• BLAST – computation.llnl.gov/projects/blast

• CEED – ceed.exascaleproject.org

▪ Open-source software

▪ Ongoing R&D 

• GPU-oriented algorithms for Frontier, Aurora, El Capitan

• Matrix-free scalable preconditioners

• Automatic differentiation, design optimization

• Deterministic transport, multi-physics coupling

High-order methods show promise for high-quality & 
performant simulations on exascale platforms

33

Q4 Rayleigh-Taylor single-
material ALE on 256 processors  
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Upcoming MFEM Events

MFEM at LLNL HPC Tutorials

September 9, 2025

MFEM Community Workshop

September 10-11, 2025
Portland State University + Virtual

https://mfem.org/workshophttps://hpcic.llnl.gov/

Seminar series:  https://mfem.org/seminar

34
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