
Data Visualization in Notebooks

David Koop
Northern Illinois University

David Koop ATPESC 2025

[J. Insley (vis), L. Bildsten & Y.-F. Jiang (data)]

David Koop

Also Visualizations

3

0 5 10 15 20 25 30 35 40 45 50 55 60
step

0

1

2

3

4

5

6

7
8

va
lu
e

max
mean
min

variable

ATPESC 2025

David Koop

"Scientific" and "Information" Visualization
• Two subfields of visualization
• Scientific visualization (SciVis) deals with data where the spatial position is

given with data
- Usually continuous data
- Often displaying physical phenonema
- Techniques like isosurfacing, volume rendering, vector field vis

• Information visualization (InfoVis) deals with data that has no set spatial
representation; the designer chooses how to visually represent data

4ATPESC 2025

David Koop

SciVis

5ATPESC 2025

David Koop

InfoVis

6ATPESC 2025

David Koop 7

"The purpose of visualization is insight, not pictures"

– B. Shneiderman

ATPESC 2025

David Koop

Why Graphics?
Figures are richer; provide more
information with less clutter and in less
space.
Figures provide the gestalt effect: they give
an overview; make structure more visible.
Figures are more accessible, easier to
understand, faster to grasp, more
comprehensible, more memorable, more
fun, and less formal.
 list adapted from: [Stasko et al. 1998]

Why do we visualize data?

8

[T. Nørretranders]
ATPESC 2025

[via A. Lex]

David Koop

Data Analysis

9ATPESC 2025

Data

David Koop

Data Analysis

9ATPESC 2025

Data Computation

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output Perception &
Cognition

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output Perception &
Cognition Knowledge

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output Perception &
Cognition Knowledge

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output Perception &
Cognition Knowledge

Explore

David Koop

Data Analysis

9ATPESC 2025

Data Computation Output Perception &
Cognition Knowledge

Explore

David Koop

Outputs Often Become Inputs

10ATPESC 2025

David Koop

Different Types of Notebooks, Many Similarities

11ATPESC 2025

David Koop

Different Types of Notebooks, Many Similarities

11ATPESC 2025

David Koop

Different Types of Notebooks, Many Similarities

11ATPESC 2025

David Koop

Notebooks Are Great for Exploration

12ATPESC 2025

In[1]:

Out[1]:

In[2]:

Out[2]:

f(Out[1], …)

David Koop

Notebooks Are Great for Exploration
• Digestible Blocks of Code

12ATPESC 2025

In[1]:

Out[1]:

In[2]:

Out[2]:

f(Out[1], …)

David Koop

Notebooks Are Great for Exploration
• Digestible Blocks of Code
• Rich, Inline Outputs (inc. widgets)

12ATPESC 2025

In[1]:

Out[1]:

In[2]:

Out[2]:

f(Out[1], …)

David Koop

Notebooks Are Great for Exploration
• Digestible Blocks of Code
• Rich, Inline Outputs (inc. widgets)
• Reuse Existing Outputs

12ATPESC 2025

In[1]:

Out[1]:

In[2]:

Out[2]:

f(Out[1], …)

David Koop

Notebooks Are Great for Exploration
• Digestible Blocks of Code
• Rich, Inline Outputs (inc. widgets)
• Reuse Existing Outputs
• Non-linear editing

12ATPESC 2025

In[2]:

Out[2]:

In[3]:

Out[3]:

f(Out[1], …)

David Koop

Focus on Jupyter Notebooks

13ATPESC 2025

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells
• Code Cells
- Code

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells
• Code Cells
- Code
- Execution Count

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells
• Code Cells
- Code
- Execution Count
- Output

• HTML

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells
• Code Cells
- Code
- Execution Count
- Output

• HTML
• Text

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

species island culmen_length_mm culmen_depth_mm … sex

0 Adelie Torgersen 39.1 18.7 … MALE

1 Adelie Torgersen 39.5 17.4 … FEMALE

… … … … … … …

[2]:

df.hist('body_mass_g', figsize=(6,3))[4]:

Notebook in JupyterLab
• Markdown Cells
• Code Cells
- Code
- Execution Count
- Output

• HTML
• Text

- Display
• Image

14ATPESC 2025

import pandas as pd[1]:

df = pd.read_csv('penguins_size.csv')[2]:

df['body_mass_g'].max()[3]:

6300.0[3]:

Penguin Data Analysis

array([[<AxesSubplot:title={'center':'body_mas…[4]:

David Koop

Support for Rapid Exploration
• Flexible environment
- Edit any cell whenever you want
- Execute whichever cells you want

• Inline views of outputs
- No context switch
- Easily compare and trace outputs

• Explore data in situ
- Notebooks run in browser
- Kernels can run remotely

16ATPESC 2025

David Koop

Support for Clear Explanation

17

[N. Fernandez et al.]
ATPESC 2025

David Koop

Support for Clear Explanation
• Textual explanation: markdown cells
• Graphical explanation: inline figures
• Interactive explanation: widgets
• Publishing: Web pages, LaTeX, etc.
• Structure: clear, linear cell layout
• Reproducible

18ATPESC 2025

David Koop

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
342 Adelie Torgersen NaN ... NaN NaN
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

[1]: import pandas as pd

[2]: df.read_csv('penguins_size.csv')

[2]:

[3]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

[3]:

Exemplar Notebook

19

Index(['species', 'island', 'culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g', 'sex'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

island
Biscoe 4775.0
Dream 3687.5
Torgersen 3700.0
Name: body mass (g), dtype: float64

[4]: df.columns

[4]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[6]: df['body mass (g)'].max()

[6]:

[7]: df.groupby('island')['body mass (g)'].median()

[7]:

ATPESC 2025

David Koop

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
342 Adelie Torgersen NaN ... NaN NaN
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

[1]: import pandas as pd

[2]: df.read_csv('penguins_size.csv')

[2]:

[3]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

[3]:

Exemplar Notebook

19

Index(['species', 'island', 'culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g', 'sex'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

island
Biscoe 4775.0
Dream 3687.5
Torgersen 3700.0
Name: body mass (g), dtype: float64

[4]: df.columns

[4]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[6]: df['body mass (g)'].max()

[6]:

[7]: df.groupby('island')['body mass (g)'].median()

[7]:

ATPESC 2025

Linear Cell Numbering

David Koop

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
342 Adelie Torgersen NaN ... NaN NaN
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

species island culmen_length_mm ... body_mass_g sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

[1]: import pandas as pd

[2]: df.read_csv('penguins_size.csv')

[2]:

[3]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

[3]:

Exemplar Notebook

19

Index(['species', 'island', 'culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g', 'sex'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

island
Biscoe 4775.0
Dream 3687.5
Torgersen 3700.0
Name: body mass (g), dtype: float64

[4]: df.columns

[4]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[6]: df['body mass (g)'].max()

[6]:

[7]: df.groupby('island')['body mass (g)'].median()

[7]:

ATPESC 2025

Linear Cell Numbering Code Runs Correctly

in Top-to-Bottom Order

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Missing Cell Numbers [2,3,4]

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Same Cell Number

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Out of Order Cell Numbers

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Why is this an error?

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Which df does this refer to?

David Koop

study
name

sample
number species ... culmen length

(mm)
body mass

(g)
0 PAL0708 1 Adelie ... 39.1 3750.0
1 PAL0708 1 Gentoo ... 46.1 4500.0

...
342 PAL0910 151 Adelie ... 36.0 3700.0
343 PAL0910 152 Adelie ... 41.5 4000.0

--
KeyError Traceback (most recent call last)
Input In [6], in <cell line: 1>()
----> 1 df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 2 'flipper_length_mm', 'body_mass_g'])

KeyError: ['culmen_length_mm', 'culmen_depth_mm', 'flipper_length_mm',
 'body_mass_g']

[1]: import pandas as pd

[5]: df = pd.read_csv('penguins_lter.csv')

[5]:

[6]: df = df.dropna(subset=['culmen_length_mm', 'culmen_depth_mm',
 'flipper_length_mm', 'body_mass_g'])

Confusing Notebook

20

Index(['study name', 'sample number', 'species', 'region', ...,
 'flipper length (mm)', 'culmen length (mm)', 'body mass (g)'],
 dtype='object')

species island culmen length (mm) ... body mass (g) sex
0 Chinstrap Dream 50.9 ... 3550.0 MALE
1 Gentoo Biscoe 47.3 ... 4725.0 NaN

...
341 Gentoo Biscoe 49.9 ... 5400.0 MALE
343 Chinstrap Dream 47.0 ... 3700.0 FEMALE

6300.0

study name
PAL0708 3900.0
PAL0809 4200.0
PAL0910 4000.0
Name: body mass (g), dtype: float64

[7]: df.columns

[7]:

[5]: df = df.rename(columns={'culmen_length_mm': 'culmen length (mm)',
 'body_mass_g': 'body mass (g)'})

[5]:

[8]: df['body mass (g)'].max()

[8]:

[10]: df.groupby('study name')['body mass (g)'].median()

[10]:

ATPESC 2025

Which df does this refer to?

David Koop

Notebook Reproducibility Potholes
• If you forget to run an edited cell, the

result may not match the code
• If you redefine or mutate a variable,

another cell may break
• The order of cell execution matters

21ATPESC 2025

David Koop

Notebook Problems & Solutions
• Problems:
- Users get lost, become less productive
- The notebook may not be re-executable
- The notebook may not be reproducible

• Solutions:
- Improve Notebook Structure [Dataflow Notebook, Koop & Patel, 2017],

[Brown & Koop, 2023]
- Best Practices & Linting [Julynter, Pimentel et al., 2021]
- Reactive Execution [ipyflow, Macke et al., 2021], [marimo, 2024]
- Fix Errors [Osiris, Wang et al., 2020]

22ATPESC 2025

David Koop

Improving Notebook Structure and Display
• Improve Reuse
- Remove ambiguities
- Enhance recall

• Improve Display

23ATPESC 2025

David Koop

In [5]: import pandas as pd
df = pd.read_csv('guardian-top100-female-2019.csv')

In [6]: df = df.rename(columns={'Age on 1 Dec 2019': 'Age'})

Out[5]: Name Rank Position Age on 1 Dec 2019 Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Out[6]: Name Rank Position Age Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Problem: How do Cells Connect?

24

In [3]: df = df[df.Age >= 31]

In [7]: df = df[df.Age <= 24]

Out[3]: Name Rank Position Age Nationality

2 Megan Rapinoe 3 Midfielder 34 USA

...

96 Cláudia Neto 97 Midfielder 31 Portugal
19 rows 5 columns

Out[7]: Name Rank Position Age Nationality

3 Ada Hegerberg 4 Forward 24 Norway

...

98 Lena Oberdorf 99 Midfielder 17 Germany
25 rows 5 columns

ATPESC 2025

David Koop

Dataflow Notebook Solution: Links Between Cells
• Make clear what the dependencies are between cells
• One cell's output (side-effect) is required before another cell can run
• If the system knows these:
- Can automatically execute dependencies before running the current cell
- Can show users relationships between cells
- Greater reproducibility

25ATPESC 2025

David Koop

In [d51f8eab]: import pandas as pd
df = pd.read_csv('guardian-top100-female-2019.csv')

In [full]: df = df.rename(columns={'Age on 1 Dec 2019': 'Age'})

df: Name Rank Position Age on 1 Dec 2019 Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

df: Name Rank Position Age Nationality

0 Sam Kerr 1 Forward 26 Australia

...

99 Ludmila 100 Forward 25 Brazil
100 rows 5 columns

Solution: Remove Ambiguities and Preserve Recall

26

In [over30]: df = df$full[df$full.Age >= 31]

In [under25]: df = df$full[df$full.Age <= 24]

df: Name Rank Position Age Nationality

2 Megan Rapinoe 3 Midfielder 34 USA

...

96 Cláudia Neto 97 Midfielder 31 Portugal
19 rows 5 columns

df: Name Rank Position Age Nationality

3 Ada Hegerberg 4 Forward 24 Norway

...

98 Lena Oberdorf 99 Midfielder 17 Germany
25 rows 5 columns

[dataflownb.github.io]
ATPESC 2025

http://dataflownb.github.io

David Koop

Problem: Messy Output Representations

{'setosa': (sepal_length sepal_width petal_length petal_width
 13 4.3 3.0 1.1 0.1,
 <IPython.core.display.Image object>),
 'versicolor': (sepal_length sepal_width petal_length petal_width
 99 5.7 2.8 4.1 1.3
 67 5.8 2.7 4.1 1.0,
 <IPython.core.display.Image object>),
 'virginica': (sepal_length sepal_width petal_length petal_width
 104 6.5 3.0 5.8 2.2
 121 5.6 2.8 4.9 2.0
 116 6.5 3.0 5.5 1.8,
 <IPython.core.display.Image object>)}

27ATPESC 2025

David Koop

Solution: Improved Output Representations
▼ { # len=3
 'setosa': ▶ (<pandas.core.frame.DataFrame>, <IPython.core.display.Image>),
 'versicolor': ▼ (# len=2
 0: ▶ <pandas.core.frame.DataFrame>,
 1: ▶ <IPython.core.display.Image>
),
 'virginica': ▼ (# len=2
 0: ▼

 1: ▼

)
}

28

[dataflownb.github.io]
ATPESC 2025

sepal_length sepal_width petal_length petal_width

104 6.5 3.0 5.8 2.2

121 5.6 2.8 4.9 2.0

116 6.5 3.0 5.5 1.8

http://dataflownb.github.io

David Koop

Dataflow Notebook
• Computational notebooks facilitate efficient exploration because users can

quickly inspect and reuse intermediate outputs
• It is important to show interactive output that summarizes while providing

the ability to dig into details
• It is important to be able to recall and reuse past outputs during and after

analysis without re-running or re-writing code
• JupyterLab and IPython extensions to improve notebooks
- Recall and reuse of past outputs (dfnotebook)
- Output display (ipycollections)

29ATPESC 2025

https://github.com/dataflownb/dfnotebook/

David Koop 30

Visualization in Notebooks

ATPESC 2025

• Apps:

• Domain-Specific Apps:

• APIs & Frameworks: VTK, ITK
• Also… Data Analysis Tools/Libraries
- JavaScript: D3, Observable Plot
- R: ggplot
- Python: matplotlib, altair, bokeh, …
- Matlab, GNUPlot

David Koop

Visualization Landscape

31ATPESC 2025

David Koop

seaborn
pandas

ggpy scikit-plot

yellowbrick

networkx

basemap

pythreejs

bqplot

bokeh

toyplot
plotly

ipyvolume

cufflinks

datashader

mpld3
altair

vincent
vispy glumpy

ipyleaflet

Lighting

glueviz

YT

d3po

vega-lite

vega

mayavi

graphviz

GR Framework
PyQTGraphpygal chaco

Vaex

graph-tool cartopy

pyglet

Matplotlib
javascript

d3js

OpenGL

holoviews

visvis

galry

plotnine

The Python Visualization Landscape

32

[J. VanderPlas, adapted by N. Rougier]
ATPESC 2025

https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017
https://github.com/rougier/python-visualization-landscape

David Koop

seaborn
pandas

ggpy scikit-plot

yellowbrick

networkx

basemap

pythreejs

bqplot

bokeh

toyplot
plotly

ipyvolume

cufflinks

datashader

mpld3
altair

vincent
vispy glumpy

ipyleaflet

Lighting

glueviz

YT

d3po

vega-lite

vega

mayavi

graphviz

GR Framework
PyQTGraphpygal chaco

Vaex

graph-tool cartopy

pyglet

Matplotlib
javascript

d3js

OpenGL

holoviews

visvis

galry

plotnine

The Python Visualization Landscape

32

[J. VanderPlas, adapted by N. Rougier]
ATPESC 2025

+ ipyparaview

+ holoviews

+ pyobsplot

https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017
https://github.com/rougier/python-visualization-landscape

[J. VanderPlas]
David Koop

matplotlib
• Strengths:
- Designed like Matlab
- Many rendering backends
- Can reproduce almost any plot
- Proven, well-tested

• Weaknesses:
- API is imperative
- Not originally designed for the web
- Dated styles

33ATPESC 2025

plt.hist(…)

https://speakerdeck.com/jakevdp/pythons-visualization-landscape-pycon-2017?slide=48

David Koop

Anatomy of a Figure

34ATPESC 2025

David Koop

Examples
• Examine airfoil data on Polaris
• Login to:
- jupyter.alcf.anl.gov

• Click on "Login Polaris"
• Copy .ipynb files from Track 4 Examples dir to your $HOME:

/eagle/projects/ATPESC2025/EXAMPLES/track-4-visualization
• …or use upload button to upload the two airfoil notebooks
- airfoil-flow.ipynb
- airfoil-line-plots.ipynb

• Once uploaded, click on the flow notebook to start

35ATPESC 2025

http://jupyter.alcf.anl.gov

David Koop

G
la

br
on

M
an

ch
ur

ia

N
o.

 4
57

N
o.

 4
62

N
o.

 4
75

Pe
at

la
nd

Sv
an

so
ta

Tr
eb

i

Ve
lv

et

W
is

co
ns

in
 N

o.
 3

8

variety

0

50

100

150

200

250

300

350

400

450

500

Su
m

 o
f y

ie
ld

Crookston
Duluth
Grand Rapids
Morris
University Farm
Waseca

site

Altair
• Declarative Visualization
- Specify what instead of how
- Separate specification from execution

• Based on VegaLite which is browser-based
• Strengths:
- Declarative visualization
- Web technologies

• Weaknesses:
- Scaling (improved in VegaFusion & Mosaic)
- Specifications + translate to JavaScript

36ATPESC 2025

https://vegafusion.io
https://idl.uw.edu/mosaic/

David Koop

Data Items Become Visual Marks
• Marks are the basic graphical elements in a visualization
• Marks classified by dimensionality:

• Also can have surfaces, volumes
• Think of marks as a mathematical definition, or if familiar with tools like Adobe

Illustrator or Inkscape, the path & point definitions
• Altair: area, bar, circle, geoshape, image, line, point, rect, rule, square, text, tick
- Also compound marks: boxplot, errorband, errorbar

37

[T. Munzner, E. Maguire (ill.)]
ATPESC 2025

Points Lines Areas

David Koop

Horizontal

Position

Vertical Both

Color

Shape Tilt

Size

Length Area Volume

Encode Attributes via Visual Channels

38

[T. Munzner, E. Maguire (ill.)]
ATPESC 2025

David Koop

Channel Types
• Identity => what or where, Magnitude => how much

39

[Munzner (ill. Maguire), 2014]
ATPESC 2025

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness Ranks

David Koop

Expressiveness and Effectiveness
• Expressiveness Principle: all data from the dataset and nothing more should

be shown
- Do encode ordered data in an ordered fashion
- Don’t encode categorical data in a way that implies an ordering

• Effectiveness Principle: most important attributes should be most salient
- Saliency: how noticeable something is
- How do the channels measure up?

40

[Munzner, 2014]
ATPESC 2025

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Expressiveness

41

[J. Mackinlay, 1986]
ATPESC 2025

https://dl.acm.org/doi/abs/10.1145/22949.22950

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Expressiveness

41

[J. Mackinlay, 1986]
ATPESC 2025

Not Expressive

https://dl.acm.org/doi/abs/10.1145/22949.22950

122 l Jock Mackinlay

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
Le Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

USA Japan Germany France Sweden Nation
Car nationality for I979

UP

I

Fig. 11. Incorrect use of a bar chart for the Nation relation. The
lengths of the bars suggest an ordering on the vertical axis, as if the
USA cars were longer or better than the other cars, which is not true
for the Nation relation.

exists a sentence s that satisfies (4) for the HorzPos language and relation r,
which means that both tuples mentioned above are encoded in s. In particular,
(2) indicates that there exists a mark oi that is paired with the domain value Ui,
and (3) indicates that bj = scale X (Position(oi, h) + offset) = bk, which contradicts
the assumed inequality of the two domain values in the one-to-many relation. Cl

Although the previous theorem is not particularly deep, it illustrates the
importance of precise definitions of the graphical conventions used to design and
interpret information presentations. Not only do precise definitions make theo-
rems possible, but they make clear which conventions are being used. Different
conventions lead to different theorems. For example, the HorzPos language is
based on the convention that the marks are uniquely paired with the domain
values of the first domain set. Occasionally, graphical presentations use a differ-
ent convention, that of pairing marks with the tuples rather than with the domain
values of the first domain set. Given such a convention, the previous theorem is
no longer valid because r(ai, bj) and r(ci, bk) can be encoded by the positions of
different marks. However, this alternative convention is not so common as the
HorzPos convention because it is natural to assume that marks are associated
with domain values. For example, it is natural to assume that each mark in
Figure 9 represents a unique car.

A second example, which focuses on the second expressiveness condition,
illustrates the fact that some graphical languages encode additional information
in the geometric relationships of the objects in a graphical sentence. Consider
the bar chart diagram of the Nation relation in Figure 11. Most people perceive
the lengths of the bars as an encoding of an ordered or quantitative set. That is,
given domain tuples r(ci, bi) and r(aj, bj) and the corresponding bar objects bari
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Expressiveness

42

[J. Mackinlay, 1986]
ATPESC 2025

Not Expressive

https://dl.acm.org/doi/abs/10.1145/22949.22950

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Effectiveness

43

[J. Mackinlay, 1986]
ATPESC 2025

https://dl.acm.org/doi/abs/10.1145/22949.22950

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Effectiveness

43

[J. Mackinlay, 1986]
ATPESC 2025

Not Effective

https://dl.acm.org/doi/abs/10.1145/22949.22950

David Koop

Automating the Design of Graphical Presentations . 117

Car
Accord

AMC Pacer
Audi 5000
BMW 320i

Champ
Chev Nova

Civic
Datsun 210
Datsun 810

Deville
La Car

Lint Cont
Horizon

Mustang
Peugeot

Saab 900
Subaru

Volvo 260
VW Dasher

10 20 30 40 3500 6000 8500 11000 13500
Mileage Price

Car mileage for 1979 Car price for I979

Fig. 7. Aligned bar chart for the price/mileage input. This diagram shows
the detailed properties of the cars better than a scatter plot. However, the
general relationships are not so easy to see.

the input can include more relations or relations with more domain sets. For
example, four binary relations (similar to the automobile data presented in
Figure 30) can generate over 21 billion different inputs. Furthermore, this
estimate does not include other factors that increase the number of designs that
must be generated by a presentation tool, such as application requests or prop-
erties of the output media.

4. APPROACH
The fundamental assumption of the approach described in this paper is that
graphical presentations are sentences of graphical languages, which are similar
to other formal languages in that they have precise syntactic and semantic
definitions. The three concerns described in the previous section are handled by
a careful analysis of the properties of these definitions. This analysis leads to
expressiveness and effectiveness criteria for evaluating graphical designs and a
composition algebra for generating design alternatives.

An expressiveness criterion, which is derived from a precise language definition,
is associated with each graphical language. A graphical language can be used to
present some information when it includes a graphical sentence that expresses
exactly the input information, that is, all the information and only the informa-
tion. Expressing additional information is potentially dangerous because it may
not be correct.

Effectiveness criteria can be based on a number of different factors. For
example, a design can be judged effective when it can be interpreted accurately
or quickly, when it has visual impact, or when it can be rendered in a

ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

Effectiveness

44

116 - Jock Mackinlay

Price
13500- Peugeot

+
Volvo 260

1 inc Q!Nille +

llOOO- + +

8500.

AudiFo 8
BMW 320i

aab900 +
+

Datsun 810
+

VW Dasher
+

6000. Accord
+

AMC Pacer
@gp,z’”

3500, &“pp”“0~~~y + , Mileage
10 20 30 40
Car price for I979
Car mileage for 1979

Fig. 6. Labeled scatter plot for the price/mileage input. Although a more
sophisticated rendering could avoid the overlapping of the labels, two basic
problems of a labeled scatter plot design reduce its effectiveness.
First, labels make it difficult to perceive the positions of the points.
Second, a given label is difficult to find.

explosion in the number of inputs that might be given to a presentation tool. To
see this, abstract the two binary relations by ignoring the functional dependen-
cies, the sharing of domain sets, and the properties of the domain sets:

d

R: A B
S: C D ” >

Given that there are on the average d domain sets for each relation and F relations
in the input, there are

(2d - 1)’ X (dr)! X 3dr

different possible design problems. The (2d - 1)’ factor is based on the fact that
each relation can be a functional dependency from 1 through d domain sets to
the remaining domain sets and is equivalent to the number of nonempty subsets
of the set of domain sets of the relation. The (dr)! factor is based on the number
of canonical permutation cycles that can be formed by the sharing of all the
domain sets [14]. The 3dr factor is based on the fact that each domain set can be
one of the following three types [20]: A domain set is nominal when it is a
collection of unordered items, such as {Jay, Eagle, Robin). A domain set is
ordinal when it is an ordered tuple, such as (Monday, Tuesday, Wednes-
day). A domain set is quantitative when it is a range, such as [0 , 2 7 31.

The preceding formula indicates that there can be many inputs to the presen-
tation tool. For two binary relations, there are over 17,000 possibilities. However,
ACM Transactions on Graphics, Vol. 5, No. 2, April 1986.

[J. Mackinlay, 1986]
ATPESC 2025

Not Effective

https://dl.acm.org/doi/abs/10.1145/22949.22950

David Koop

esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.

0

100

A B
0

100

A B
0

100

A B

Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.

A

B

B

A

A B

Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements

45

[Cleveland & McGill, 1984]
ATPESC 2025

David Koop

esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.

0

100

A B
0

100

A B
0

100

A B

Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.

A

B

B

A

A B

Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in length between elements

46

[Cleveland & McGill, 1984]
ATPESC 2025

Answer: Left is ~5.6x longer than Right

David Koop

esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.

0

100

A B
0

100

A B
0

100

A B

Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.

A

B

B

A

A B

Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements

47

[Heer & Bostock, 2010]
ATPESC 2025

David Koop

esting set of perceptual tasks, we replicated Cleveland &
McGill’s [7] classic study (Exp. 1A) of proportionality es-
timates across spatial encodings (position, length, angle),
and Stone & Bartram’s [30] alpha contrast experiment (Exp.
2), involving transparency (luminance) adjustment of chart
grid lines. Our second goal was to conduct additional ex-
periments that demonstrate the use of Mechanical Turk for
generating new insights. We studied rectangular area judg-
ments (Exp. 1B), following the methodology of Cleveland &
McGill to enable comparison, and then investigated optimal
chart heights and gridline spacing (Exp. 3). Our third goal
was to analyze data from across our experiments to character-
ize the use of Mechanical Turk as an experimental platform.

In the following four sections, we describe our experiments
and focus on details specific to visualization. Results of a
more general nature are visited in our performance and cost
analysis; for example, we delay discussion of response time
results. Our experiments were initially launched with a lim-
ited number of assignments (typically 3) to serve as a pilot.
Upon completion of the trial assignments and verification of
the results, the number of assignments was increased.

EXPERIMENT 1A: PROPORTIONAL JUDGMENT
We first replicated Cleveland & McGill’s seminal study [7]
on Mechanical Turk. Their study was among the first to rank
visual variables empirically by their effectiveness for con-
veying quantitative values. It also has influenced the design
of automated presentation techniques [21, 22] and been suc-
cessfully extended by others (e.g., [36]). As such, it is a nat-
ural experiment to replicate to assess crowdsourcing.

Method
Seven judgment types, each corresponding to a visual en-
coding (such as position or angle) were tested. The first five
correspond to Cleveland & McGill’s original position-length
experiment; types 1 through 3 use position encoding along a
common scale (Figure 1), while 4 and 5 use length encoding.
Type 6 uses angle (as a pie chart) and type 7 uses circular
area (as a bubble chart, see Figure 2).

Ten charts were constructed at a resolution of 380⇥380 pix-
els, for a total of 70 trials (HITs). We mimicked the number,
values and aesthetics of the original charts as closely as pos-
sible. For each chart, N=50 subjects were instructed first to
identify the smaller of two marked values, and then “make
a quick visual judgment” to estimate what percentage the
smaller was of the larger. The first question served broadly to
verify responses; only 14 out of 3,481 were incorrect (0.4%).
Subjects were paid $0.05 per judgment.

To participate in the experiment, subjects first had to com-
plete a qualification test consisting of two labeled example
charts and three test charts. The test questions had the same
format as the experiment trials, but with multiple choice
rather than free text responses; only one choice was cor-
rect, while the others were grossly wrong. The qualification
thus did not filter inaccurate subjects—which would bias the
responses—but ensured that subjects understood the instruc-
tions. A pilot run of the experiment omitted this qualification
and over 10% of the responses were unusable. We discuss
this observation in more detail later in the paper.

0

100

A B
0

100

A B
0

100

A B

Figure 1: Stimuli for judgment tasks T1, T2 & T3. Sub-
jects estimated percent differences between elements.

A

B

B

A

A B

Figure 2: Area judgment stimuli. Top left: Bubble
chart (T7), Bottom left: Center-aligned rectangles (T8),
Right: Treemap (T9).

In the original experiment, Cleveland & McGill gave each
subject a packet with all fifty charts on individual sheets.
Lengthy tasks are ill-suited to Mechanical Turk; they are
more susceptible to “gaming” since the reward is higher, and
subjects cannot save drafts, raising the possibility of lost data
due to session timeout or connectivity error. We instead as-
signed each chart as an individual task. Since the vast ma-
jority (95%) of subjects accepted all tasks in sequence, the
experiment adhered to the original within-subjects format.

Results
To analyze responses, we replicated Cleveland & McGill’s
data exploration, using their log absolute error measure of
accuracy: log2(|judged percent - true percent| + 1

8). We first
computed the midmeans of log absolute errors1 for each chart
(Figure 3). The new results are similar (though not identical)
to the originals: the rough shape and ranking of judgment
types by accuracy (T1-5) are preserved, supporting the valid-
ity of the crowdsourced study.

Next we computed the log absolute error means and 95%
confidence intervals for each judgment type using bootstrap-
ping (c.f., [7]). The ranking of types by accuracy is consistent
between the two experiments (Figure 4). Types 1 and 2 are
closer in the crowdsourced study; this may be a result of a
smaller display mitigating the effect of distance. Types 4 and
5 are more accurate than in the original study, but position
encoding still significantly outperformed length encoding.

We also introduced two new judgment types to evaluate an-
gle and circular area encodings. Cleveland & McGill con-
ducted a separate position-angle experiment; however, they
used a different task format, making it difficult to compare

1The midmean–the mean of the middle two quartiles–is a robust measure
less susceptible to outliers. A log scale is used to measure relative propor-
tional error and the 1

8 term is included to handle zero-valued differences.

Test % difference in area between elements

48

[Heer & Bostock, 2010]
ATPESC 2025

Answer: B is ~2.5 larger (in area) than A

David Koop

Positions

Rectangular
areas

(aligned or in a
treemap)

Angles

Circular
areas

Cleveland & McGill’s Results

Crowdsourced Results

1.0 3.01.5 2.52.0
Log Error

1.0 3.01.5 2.52.0
Log Error

Results Summary

49

[Munzner (ill. Maguire) based on Heer & Bostock, 2014]
ATPESC 2025

David Koop

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes

Spatial region

Color hue

Motion

Shape

Position on common scale

Position on unaligned scale

Length (1D size)

Tilt/angle

Area (2D size)

Depth (3D position)

Color luminance

Color saturation

Curvature

Volume (3D size)

Channels: Expressiveness Types and Effectiveness RanksRanking Channels by Effectiveness

50

[Munzner (ill. Maguire), 2014]
ATPESC 2025

David Koop

Examples
• Examine airfoil data on Polaris
• Login to:
- jupyter.alcf.anl.gov

• Click on "Login Polaris"
• Copy .ipynb files from Track 4 Examples dir to your $HOME:

/eagle/projects/ATPESC2025/EXAMPLES/track-4-visualization
• …or use upload button to upload the two airfoil notebooks
- airfoil-flow.ipynb
- airfoil-line-plots.ipynb

• Once uploaded, click on the flow notebook to start

51ATPESC 2025

http://jupyter.alcf.anl.gov

David Koop 52

Scalability in Visualization

ATPESC 2025

David Koop

Scalability in Visualization
• Displaying Large Amounts of Data
• Providing Low-Latency Interaction

53ATPESC 2025

David Koop

Data Sampling

ModelingBinning

Displaying Large Amounts of Data
• Sampling
• Modeling
• Aggregation (Binning)

54

[J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series: 1M samples, 1 sample/secondAggregation

55

[J. Heer]
ATPESC 2025

Time Series: 1 Sample/sec → 1M Samples

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

670 pixels

Time Series: 1M samples, 1 sample/secondAggregation: How much do we see?

56

[J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series Aggregation
• Insight: the resolution is bound by the number of pixels

57

[Jugel et al. 2014 via J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series Aggregation
• Insight: the resolution is bound by the number of pixels
• Compute average value per pixel (1 point/pixel)
- …this may miss extreme (min, max) values

57

[Jugel et al. 2014 via J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series Aggregation
• Insight: the resolution is bound by the number of pixels
• Compute average value per pixel (1 point/pixel)
- …this may miss extreme (min, max) values

• Plot min/max values per pixel (2 points/pixel)
- …this does better, but still misrepresents

57

[Jugel et al. 2014 via J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series Aggregation
• Insight: the resolution is bound by the number of pixels
• Compute average value per pixel (1 point/pixel)
- …this may miss extreme (min, max) values

• Plot min/max values per pixel (2 points/pixel)
- …this does better, but still misrepresents

• M4: min/max values & timestamps (4 points/pixel)
- …this provides provable fidelity to the full data!

57

[Jugel et al. 2014 via J. Heer]
ATPESC 2025

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Time Series: 1M samples, 1 sample/secondScaling Visualization

58

[J. Heer]
ATPESC 2025

1M Samples → 2,653 Points!

http://courses.cs.washington.edu/courses/cse512/23sp/lectures/CSE512-Scalability.pdf

David Koop

Supporting Low-Latency Interaction
• Database Queries (e.g. DuckDB)
• Data Structures (e.g. Indexing, Data

Cubes)
• Prefetching & Caching
• Approximation

59ATPESC 2025

David Koop

Supporting Low-Latency Interaction
• Database Queries (e.g. DuckDB)
• Data Structures (e.g. Indexing, Data

Cubes)
• Prefetching & Caching
• Approximation

• Mosaic incorporates a number of
these techniques to provide scalable
interaction visualization

60

[Mosaic, J. Heer & D. Moritz]
ATPESC 2025

Fig. 2: Mosaic architecture overview. A Coordinator proxies queries to a
backing Data Source for one or more data-consuming Clients. Params
and Selections broadcast reactive updates for scalar values or query
predicates, respectively. Interactions that update Params and Selections
may be handled directly by a client, or via Interactor components.

results or errors back to clients. Interactions among components are
mediated by Params and Selections, reactive variables for scalar values
and query predicates, respectively. Figure 2 illustrates this architec-
ture. For clarity the figure depicts a single client; Mosaic applications
typically include multiple clients with shared Params or Selections.

Though various query languages might be used, given the ubiquity
of the relational data model and the availability of scalable databases,
we focus on SQL (Structured Query Language). Our reference imple-
mentation uses DuckDB [34] as the backing data source. DuckDB is
a high-performance open-source analytic database that can run both
server-side and in the browser via WebAssembly (WASM) [21].

3.1 Clients
Mosaic Clients are responsible for publishing their data needs and
performing data processing tasks—such as rendering a visualization—
once data is provided by the Coordinator. Clients typically take the
form of Web (HTML/SVG) elements, but are not required to.

Figure 3 depicts a Mosaic lifecycle. Upon registration, the Coordina-
tor calls the client fields() method to request an optional list of fields,
consisting of table and column names as well as statistics such as the
row count or min/max values. The Coordinator queries the Data Source
for requested metadata (e.g., column type) and summary statistics as
needed, and returns them via the client fieldInfo() method.

Next, the Coordinator calls the client query() method. The return
value may be a SQL query string or a structured object that produces a
query upon string coercion. Mosaic includes a query builder API that
simplifies the construction of complex queries while enabling query
analysis without need of a parser. The query method takes a single
argument: an optional filter predicate (akin to a SQL WHERE clause)
indicating a data subset. The client is responsible for incorporating the
filter criteria into the returned query. Before the Coordinator submits
a query for execution, it calls queryPending() to inform the client.
Once query execution completes, the Coordinator returns data via the
client queryResult() method or reports an error via queryError().

Clients can also request queries in response to internal events. The
client requestQuery(query) method passes a specific query to the
Coordinator with a guarantee that it will be evaluated. The client
requestUpdate() method instead makes throttled requests for a stan-
dard query(); multiple calls to requestUpdate() may result in only
one query (the most recent) being serviced. Finally, clients may expose
a filterBy Selection property. The predicates provided by filterBy
are passed as an argument to the client query() method.

3.2 Coordinator
The Coordinator is responsible for managing client data needs. Clients
are registered via the Coordinator connect(client) method, and
similarly removed using disconnect(). Upon registration, the event
lifecycle begins. In addition to the fields and query calls described
above, the Coordinator checks if a client exposes a filterBy property,
and if so, adds the client to a filter group: a set of clients that share the
same filterBy Selection. Upon changes to this selection (e.g., due

Fig. 3: Example Mosaic event timeline (not to scale). A client can provide
a list of fields for which the Coordinator returns metadata. Next, the
Coordinator requests a query from the Client, submits it to a Data Source
for execution (dotted lines), and returns the result, providing the data
the client needs to render. Interactions such as interval selections or
pan/zoom update the state of linked Params or Selections, triggering
additional rounds of query and update. While a query is being executed,
corresponding selection updates are throttled (dashed lines): intermedi-
ate updates are dropped and only the most recent update is serviced.

to interactions such as brushing or zooming), the Coordinator collects
updated queries for all corresponding clients, queries the Data Source,
and updates clients in turn. This process is depicted in Figure 3.

As input events (and thus Selection updates) may arrive at a faster
rate than the system can service queries, the Coordinator also throttles
updates for a filter group. If new updates arrive while a prior update is
being serviced, intermediate updates are dropped in favor of the most
recent update. The Coordinator additionally performs optimizations
including caching and data cube indexing, detailed later in Section 6.

3.3 Data Source
The Coordinator submits queries to a Data Source for evaluation, us-
ing an extensible set of database connectors. By default Mosaic uses
DuckDB as its backing database and provides connectors for commu-
nicating with a DuckDB server via Web Sockets or HTTP calls, with
DuckDB-WASM in the browser, or through Jupyter widgets to DuckDB
in Python. For data transfer, we default to the binary Apache Arrow
format [1], which enables efficient serialization of query results with no
subsequent parsing overhead. While the socket and HTTP connectors
also support JSON, this is more costly to serialize, results in larger
payloads, and must be parsed on the client side.

3.4 Params and Selections
Params and Selections support cross-component coordination. Akin
to Vega’s signals [36] and Improvise’s live properties [42], Params
are reactive variables that hold scalar values (accessible via the value
property) and broadcast updates upon changes. Params can parameter-
ize Mosaic clients and may be updated by input widgets. The Mosaic
architecture is agnostic as to where Param and Selection updates come
from. As we will illustrate later, updates may be initiated by clients
themselves or by dedicated interactor components.

A Selection is a specialized Param that manages one or more pred-
icates (Boolean-valued query expressions), generalizing Vega-Lite’s
selection abstraction [35]. Interaction components update selections
by providing a clause, an object consisting of the source component
providing the clause, a set of clients associated with the clause, a query
predicate (e.g, the range predicate column BETWEEN 0 AND 1), a cor-
responding value (e.g., the range array [0,1]), and an optional schema
providing clause metadata (used for optimization, see Section 6). Upon
update, any prior clause with the same source is removed and the new,
most recent clause (called the active clause) is added. Selections over-
ride the Param value property to return the active clause value, making
Selections compatible where standard Params are expected.

Selections expose a predicate(client) function that takes a
client as input and returns a correponding predicate for filtering the
client’s data. Selections apply a resolution strategy to merge clauses
into client-specific predicates. The single strategy simply includes only
the most recent clause. The union strategy creates a disjunctive pred-
icate, combining all clause predicates via Boolean OR. Similarly, the
intersect strategy performs conjunction via Boolean AND. Any of these

const brush = Selection.intersect()
const channels = { x: 't', y: 'v', fill: 'steelblue' }
vconcat(
plot(
areaY(from('walk'), channels),
intervalX({ as: brush })
),
plot(
areaY(from('walk', { filterBy: brush }), channels),
yDomain(Fixed)
)
)

Fig.�7:�An�overview+detail�visualization�of�a�50,000�point�time-series�and�
JavaScript�API�specification.�The�areaY mark�uses�M4�optimization�[19]�
to�reduce�the�number�of�drawn�points�by�over�an�order�of�magnitude.�

const bandwidth = Param.value(10)
vconcat(
slider({ as: bandwidth, min: 0.1, max: 100, step: 0.1 }),
plot(
densityY(from('flights'), { x: 'distance', bandwidth }),
yAxis(null)
)
)

Fig.�8:�1D�kernel�density�estimate�(KDE)�of�airline�miles�flown.�Linear�
binning�is�performed�in�database,�subsequent�smoothing�is�performed�in�
browser.� Param updates�to�the�kernel�bandwidth�from�the�slider are�
calculated�immediately,�without�having�to�re-query�the�database.�

that�produces�queries�for�needed�data.�Figure�6�shows�some�supported�
mark�types.�Marks�accept�a�data�source�definition�and�a�set�of�supported�
options,�including�encoding�channels�(such�as�x,�y,�fill,�and�stroke)�
that�can�encode�data�fields.� A�data�field�may�be�a�column�reference�
or�query�expression,�including�dynamic�Param�values.� Common�ex-
pressions�include�aggregates�(count,�sum,�avg,�median,�etc.),�window�
functions�(e.g.,�moving�averages),�date�functions,�and�a�bin transform.�
Field�expressions�are�specified�using�Mosaic’s�SQL�builder�methods.�

Basic�marks,�such�as�dot,�bar,�rect,�cell,�and�text mirror�their�
namesakes�in�Observable�Plot�[4].�Variants�such�as�barX and�rectY
indicate�spatial�orientation�and�data�type�assumptions.� For�example,�
barY indicates�vertical�bars—continuous�y over�an�ordinal�x domain—�
whereas�rectY indicates�a�continuous�x domain.�Basic�marks�follow�
a�straightforward�query() construction�process:� Iterate�over�all�en-
coding�channels.�If�no�aggregates�are�found,�SELECT all�fields�directly.�
If�aggregates�are�present,�include�non-aggregate�fields�as�GROUP BY
criteria.�If�provided,�map�the�filter argument�to�a�WHERE clause.�For�
more�details�on�query�generation,�see�Appendix�A.�

The�area and�line marks�connect�consecutive�sample�points.�Fig-
ure�7�presents�an�overview+detail�area�chart.�The�queries�for�spatially�
oriented�marks�(areaY,�lineX)�apply�M4�optimization�[19, 20].�The�

Fig.�9:� Hexagonal�bins�of�airline�delay�by�scheduled�departure�time,�
alongside�marginal�histograms.� Hex�binning�and�aggregation�are�per-
formed�in�database.�Interactive�changes�to�the�color�scale�(e.g.,�linear,�
log,�or�square�root�scale)�are�processed�immediately�in�browser.�

plot(
denseLine(from('stocks_after_2006'), {
x: 'Date', y: 'Close', z: 'Symbol', fill: 'density'
}),
colorScheme('pubugn')
)
Fig.�10:�An�arc-length�normalized�density�line�chart�[28]�for�240k�monthly�
stock�price�values.�Note�high�points�across�the�top,�the�2008�crash,�and�
distinct�bands�of�$25�and�$15�stocks.�

query() method�determines�the�pixel�resolution�along�the�major�axis�
and�performs�perceptually�faithful,�pixel-aware�binning�of�the�series,�
limiting�the�number�of�drawn�points.�This�optimization�offers�dramatic�
data�reductions,�potentially�spanning�multiple�orders�of�magnitude.�

The�regression mark�(Figure�4)�visualizes�linear�regression�fits.�
Statistical�calculations�are�performed�in�a�single�aggregate�query().�
The�mark�then�draws�regression�lines�and�confidence�intervals.�

The�densityX/Y marks�perform�1D�kernel�density�estimation.�Fig-
ure� 8� shows� a�densityY mark,� with� a�slider-bound�bandwidth
Param.�The�generated�query() performs�linear�binning�[18,41],�which�
proportionally�assigns�point�weights�between�adjacent�bins�to�provide�
greater�estimation�accuracy�[17].� Subqueries� for�“left”�and�“right”�
bins�are�aggregated�into�a�1D�grid,�then�smoothed�in-browser�using�
Deriche’s�accurate�linear-time�approximation�[14, 17].�

The�density2D,�contour,�and�raster marks�compute�densities�
over�a�2D�domain.�Binning�and�aggregation�is�performed�in�database,�
while�dynamic�changes�of�bandwidth,�contour�thresholds,�and�color�
scales�are�handled� immediately� in� the�browser.� The�hexbin mark�
pushes�hexagonal�binning�and�aggregation�to�the�database�(Figure�9);�
color�and�size�channels�may�map�to�count or�other�aggregate�functions.�

Rather�than�point�densities,�the�denseLine mark�(Figure�10)�plots�
densities�of� line� segments� [28].� The�query() method�pushes� line�
rasterization�and�aggregation�to�the�database�with�a�multi-part�process�
described�in�Appendix�A.5.�We�added�the�denseLine mark�late�in�our�
development�process�to�test�extensibility,�overriding�the�raster mark�
with�a�new�query() method.�As�a�result,�the�denseLine mark�inherits�
raster’s�smoothing�capability�to�create�curve�density�estimates�[23].�

Interactors imbue�plots�with�interactive�behavior.�Most�interactors�
listen�to�input�events�to�update�bound�Selections.�The�toggle interac-

https://idl.uw.edu/mosaic/
https://idl.uw.edu/papers/mosaic

David Koop

Questions?

61ATPESC 2025

chart = alt.Chart(df).encode(x='step')

area = chart.mark_area(opacity=0.4).encode(y='max', y2='min')
line = chart.mark_line(color='blue').encode(y='max')
line2 = chart.mark_line(color='orange').encode(y='mean')
line3 = chart.mark_line(color='red').encode(y='min')

area + line + line2 + line3

plt.imshow(twod_data_array, cmap=cmap, extent=[-2.5,2.5,-2.5,2.5])
plt.clim(-1.0, 0.5); # for p
plt.title('MFEM Simulation of Potential Flow Around an Airfoil');
plt.ylabel('Height of domain');
plt.xlabel('Length of domain');
cb = plt.colorbar(extend='both');
cb.set_label('Pressure', rotation=270, labelpad=24)

